

Supporting Information © Wiley-VCH 2015

69451 Weinheim, Germany

Remote Enantioselective Friedel–Crafts Alkylations of Furans through HOMO Activation**

Jun-Long Li, Cai-Zhen Yue, Peng-Qiao Chen, You-Cai Xiao, and Ying-Chun Chen*

anie_201403082_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

1. General methods	S2
2. Procedure for the preparation of ketone substrates	S2-S4
3. More screening conditions for enantioselective Friedel–Crafts alkylation	S4-S5
4. General procedure for catalytic asymmetric Friedel–Crafts alkylation	S5-S13
5. More explorations of activated alkenes and heterocyclic ketones	S14-S18
6. Synthetic transformations of the chiral product	S19
7. Crystal data and structure refinement for enantiopure 16	S20
8. Proposed catalytic mechanism for the remote Friedel–Crafts reaction	S21-S22
9. NMR spectra and HPLC chromatograms	S23-S86

1. General methods

NMR data were obtained for ¹H at 400 MHz, and for ¹³C at 100 or 150 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralcel OD-H Column (250 x 4.6 mm), Chiralpak AD-H Column (250 x 4.6 mm) or Chiralpak IC Column (250 x 4.6 mm). UV detection was monitored at 220 nm or 254 nm. Optical rotation was examined in CHCl₃ solution at 20 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I₂ were used to visualize products. All chemicals including 2-furylacetone **1a** were used without purification as commercially available unless otherwise noted. Alkylidenemalononitriles were prepared according to the literature procedures.^[2]

[1] K. M. Guo, J. Thompson, B. Chen, J. Org. Chem. 2009, 74, 6999.

[2] a) H. Brunner, J. Bügler, B. Nuber, *Tetrahedron: Asymmetry* 1995, *6*, 1699; b) T. He, J.-Y. Qian,
H.-L. Song, X.-Y. Wu, *Synlett* 2009, 3195; c) K. Mei, S. Zhang, S. He, P. Li, M. Jin, F. Xue, G. Luo,
H. Zhang, L. Song, W. Duan, W. Wang, *Tetrahedron Lett.* 2008, *49*, 2681.

2. Procedure for the preparation of ketone substrates

The ketone substrates **1** were synthesized according to the literature procedures.^[3] [3] A. S. K. Hashmi, M. Wölfle, *Tetrahedron* **2009**, *65*, 9021.

$$R^{1} \xrightarrow{r} + O \xrightarrow{R^{2}} R^{2} \xrightarrow{n-BuLi, THF} R^{1} \xrightarrow{HO} R^{2} \xrightarrow{IBX, DMSO} R^{1} \xrightarrow{O} R^{2}$$

$$X = O, S, NPG$$

To the solution of furan in THF was added *n*-BuLi (2.4 M solution in hexane) at 0 °C under Ar atmosphere. Then the solution was warmed to room temperature and stirred for 3 h. The solution was cooled to 0 °C again and the corresponding epoxide was added slowly. After completion, the solution was quenched with NH₄Cl solution and extracted with DCM. The combined organic layers were washed with brine and dried with MgSO₄, filtered and concentrated. The obtained alcohol was dissolved in DMSO and IBX was added at 0 °C. The reaction was allowed to warm to room temperature and stirred for about 2 h. After completion, the reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were washed with brine and dried with MgSO₄, filtered and concentrated. The obtained alcohol was dissolved in DMSO and IBX was added at 0 °C. The reaction was allowed to warm to room temperature and stirred for about 2 h. After completion, the reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were washed with brine and dried with MgSO₄, filtered and concentrated. The obtained alcohol was distributed with ethyl acetate. The combined organic layers were washed with brine and dried with MgSO₄, filtered and concentrated. The desired ketone **1** was obtained as a colorless oil after

purification by flash chromatography.

1-(Furan-2-yl)dodecan-2-one (**1c**): ¹H NMR (400 MHz, CDCl₃): δ = 6.35 (d, *J* = 1.2 Hz, 1H), 6.34-6.33 (m, 1H), 6.18 (d, *J* = 2.4 Hz, 1H), 3.69 (s, 2H), 2.43 (d, *J* = 7.6 Hz, 2H), 1.57-1.54 (m, 2H), 1.28-1.25 (m, 14H), 0.88 (t, *J* = 7.2 Hz, 3H) ppm.

1-(Furan-2-yl)-3-phenylpropan-2-one (**1d**): ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.25$ (m, 4H), 7.18-7.16 (m, 2H), 6.35 (d, J = 1.6 Hz, 1H), 6.17 (d, J = 2.4 Hz, 1H), 3.74 (s, 2H), 3.73 (s, 2H) ppm.

1-(Furan-2-yl)hex-5-en-2-one (**1e**): ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36$ (d, J = 0.8, 1H), 6.35-6.34 (m, 1H), 6.19 (d, J = 3.2 Hz, 1H), 5.81-5.72 (m, 1H), 5.02-4.95 (m, 2H), 3.70 (s, 2H), 2.55 (t, J = 7.2, 2H), 2.34-2.28 (m, 2H) ppm.

1-(4-(((tert-Butyldimethylsilyl)oxy)methyl)furan-2-yl)propan-2-one (1g): ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (s, 1H), 6.18 (s, 1H), 4.56 (s, 2H), 3.67 (s, 2H), 2.17 (s, 3H), 0.91 (s, 9H), 0.08 (s, 6H) ppm.

1-(3-Bromofuran-2-yl)propan-2-one (1h): ¹H NMR (400 MHz, CDCl₃): δ = 7.34 (d, *J* = 1.6 Hz, 1H), 6.42 (d, *J* = 1.6 Hz, 1H), 3.72 (s, 2H), 2.16 (s, 3H) ppm.

1-(3-(2-Butyl-1,3-dithian-2-yl)furan-2-yl)propan-2-ol (alcohol of **1i**): ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (d, *J* = 1.6 Hz, 1H), 6.56 (d, *J* = 1.6 Hz, 1H), 4.19-4.16 (m, 1H), 3.21-3.09 (m, 2H), 2.86-2.73 (m, 4H), 2.06-1.91 (m, 4H), 1.40-1.26 (m, 7H), 0.87 (t, *J* = 7.2 Hz, 3H) ppm. *The alcohol of 1i was oxidized by IBX and the*

corresponding ketone *Ii*, which was not stable enough, was directly used in the aminocatalytic reaction.

= 7.2 Hz, 3H) ppm. This substrate is inert in the current catalytic system due to steric hindrance.

1-(5-Methylfuran-2-yl)propan-2-one (11): ¹H NMR (400 MHz, CDCl₃): $\delta = 6.03$ (d, J = 2.4 Hz, 1H), 5.88 (d, J = 2.0 Hz, 1H), 3.61 (s, 2H), 2.23 (s, 3H), 2.13 (s, 3H) ppm. No reaction was observed for the combination of **11** and acceptor **2a** under current

catalytic conditions.

1-(Thiophen-2-yl)propan-2-one (12): ¹H NMR (400 MHz, CDCl₃): δ = 7.22-7.21 (m, 1H), 6.98-6.96 (m, 1H), 6.89-6.88 (m, 1H), 3.89 (s, 2H), 2.19 (s, 3H) ppm.

1-(1-Methyl-1H-pyrrol-2-yl)butan-2-one: ¹H NMR (400 MHz, CDCl₃): δ = 6.59 (s, 1H), 6.08 (br s, 1H), 6.01 (s, 1H), 3.65 (s, 2H), 3.51 (s, 3H), 2.46 (q, *J* = 7.2 Hz, 2H), 1.03 (t, *J* = 7.2 Hz, 3H) ppm.

3. More screening conditions for enantioselective Friedel-Crafts alkylation

Table 1. More bifunctional catalyst screenings^[a]

Entry	Catalyst	Yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	C5	81	27
2	C6	85	83
3	C7	78	54
4	C8	70	60
5	С9	59	48
6	C10	70	-9
7	C11	56	-37
8	C12	81	78

9	C13	74	58
10	C14	<10	ND ^[d]

[a] Reactions were conducted with **1a** (0.3 mmol), **2a** (0.1 mmol), catalyst **C** (0.02 mmol), benzoic acid (0.02 mmol) in toluene at rt for 12 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Not determined.

Table 2.	More	acid	additive	screenings ^[a]

Ia O	Ae + CN CN 2a	C2 (20 mol%) BA (20 mol%) Toluene, RT	Me O CN 3a CN	$\begin{array}{c} Ph \\ H_2N \\ H_2N \\ HN \\ C2 \\ CF_3 \end{array}$
A2	OH COOH A3 NHBoc		COOH F_3C COO A6	ОН СООН А7
СООН	СООН	соон		соон ССсоон
A8	A9 A10	A11	COOH A12	A13 A1
Entry	Acid		Yield $(\%)^{[b]}$	<i>ee</i> (%) ^[c]
1	A2		74	63
2	A3		70	73
3	A4		85	88
4	A5		78	75
5	A6		59	81
6	A7		63	77
7	A8		71	82
8	A9		56	67
	A10		52	65
9	A11		81	76
10	A12		76	78
11	A13		63	80
12	A1		85	88
13	/		44	23

[a] Reactions were conducted with **1a** (0.3 mmol), **2a** (0.1 mmol), catalyst **C2** (0.02 mmol), acid **A** (0.02 mmol) in toluene at rt for 12 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis.

4. General procedure for catalytic asymmetric Friedel–Crafts alkylation

The reaction was carried out with α,α -dicyanoolefin 2 (0.1 mmol) and 2-furfuryl ketone 1 (0.3 mmol) in toluene (1.0 mL) in the presence of primary amine catalyst C2 (9.7 mg, 0.02 mmol), benzoic acid (2.8 mg, 0.02 mmol) at 0 °C or -10 °C for 24 h or 48 h. After completion, the solution was concentrated and the residue was purified by flash chromatography on silica gel (petroleum

ether/ethyl acetate = 10:1 to 6:1) to afford the chiral product **3**.

The racemic products were generally obtained by the catalysis of racemic ethyl phenylglycinate. Benzylamine also could promote the FC reaction but more complex reactions were observed.

Me (S)-2-((5-(2-Oxopropyl)furan-2-yl)(phenyl)methyl)malononitrile (3a) was obtained in 85% yield and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, t_{minor} = 9.43 min, t_{major} = 10.73 min. $[\alpha]_D^{20} = 20.8$ (c = 0.75 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43$ (br s, 5H), 6.30 (d, J = 3.2 Hz, 1H), 6.22 (d, J = 3.2 Hz, 1H), 4.61 (d, J = 7.2 Hz, 1H), 4.44 (d, J = 7.2 Hz, 1H), 3.73 (s, 2H), 2.18 (s, 3H) ppm;

¹³C NMR (100 MHz, CDCl₃): δ = 203.4, 149.3, 149.0, 134.6, 129.3, 128.2, 111.4, 110.7, 109.6, 46.0, 43.1, 29.2, 28.7 ppm; ESI HRMS: calcd. for C₁₇H₁₄N₂O₂+Na⁺ 301.0947, found 301.0951.

(S)-2-((5-(2-Oxopropyl)furan-2-yl)(*m*-tolyl)methyl)malononitrile (3b) was obtained in 88% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralcel OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{major} = 17.75$ min, $t_{minor} = 19.67$ min. $[\alpha]_D^{20} = 21.5$ (*c* = 0.72 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.33-7.21$ (m, 4H), 6.29

(d, J = 3.2 Hz, 1H), 6.21 (d, J = 3.2 Hz, 1H), 4.57 (d, J = 7.2 Hz, 1H), 4.43 (d, J = 7.2 Hz, 1H), 3.73 (s, 2H), 2.37 (s, 3H), 2.18 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.5$, 149.3, 149.1, 139.1, 134.5, 130.1, 129.2, 128.8, 125.1, 111.4, 110.7, 109.6, 46.0, 43.1, 29.2, 28.7, 21.4 ppm; ESI HRMS: calcd. for C₁₈H₁₆N₂O₂+Na⁺ 315.1104, found 315.1109.

(S)-2-((5-(2-Oxopropyl)furan-2-yl)(*p*-tolyl)methyl)malononitrile (3c) was obtained in 89% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak AD column (10% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{major} = 16.99$ min, $t_{minor} = 19.36$ min. $[\alpha]_D^{20} = 19.5$ (*c* = 0.65 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (d, *J* = 8.0 Hz,

2H), 7.22 (d, J = 8.0 Hz, 2H), 6.28 (d, J = 3.2 Hz, 1H), 6.22 (d, J = 3.2 Hz, 1H), 4.57 (d, J = 7.6 Hz, 1H), 4.41 (d, J = 7.6 Hz, 1H), 3.72 (s, 2H), 2.36 (s, 3H), 2.18 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.5$, 149.3, 139.3, 131.5, 130.0, 128.1, 111.4, 110.6, 109.6, 45.8, 43.1, 29.2, 28.8, 21.1 ppm; ESI HRMS: calcd. for C₁₈H₁₆N₂O₂+Na⁺ 315.1104, found 315.1109.

(S)-2-((3-Methoxyphenyl)(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3d) was obtained in 82% yield and the enantiomeric excess was determined to be 86% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 14.08$ min, $t_{major} = 16.25$

min. $[\alpha]_D^{20} = 11.6$ (c = 0.75 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34$ (t, J = 8.0 Hz, 1H),7.01-6.92 (m, 3H), 6.31 (d, J = 3.2 Hz, 1H), 6.22 (d, J = 3.2 Hz, 1H), 4.57 (d, J = 7.6 Hz, 1H), 4.42 (d, J = 7.6 Hz, 1H), 3.82 (s, 3H), 3.73 (s, 2H), 2.18 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.4$, 160.1, 149.4, 148.9, 136.0, 130.4, 120.3, 114.5, 114.0, 111.4, 111.3,

110.7, 109.6, 55.3, 46.0, 43.1, 29.2, 28.6 ppm; ESI HRMS: calcd. for $C_{18}H_{16}N_2O_3+Na^+$ 331.1053, found 331.1059.

(S)-2-((3-Chlorophenyl)(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3e) was obtained in 89% yield and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 11.37$ min, $t_{major} = 12.92$ min. $[\alpha]_D^{20} = 14.0$ (c = 0.65 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ

= 7.41-7.33 (m, 4H), 6.33 (d, J = 3.2 Hz, 1H), 6.23 (d, J = 3.2 Hz, 1H), 4.59 (d, J = 7.2 Hz, 1H), 4.46 (d, J = 7.2 Hz, 1H), 3.74 (s, 2H), 2.19 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 203.2, 149.7, 148.2, 136.5, 135.1, 130.6, 129.6, 128.4, 126.4, 111.1, 111.0, 109.7, 45.6, 43.0, 29.2, 28.5 ppm; ESI HRMS: calcd. for C₁₇H₁₃ClN₂O₂+Na⁺ 335.0558, found 335.0563.

(*S*)-2-((3-Nitrophenyl)(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3f) was obtained in 92% yield and the enantiomeric excess was determined to be 86% by HPLC analysis on Chiralcel OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 29.23$ min, $t_{major} =$ 33.93 min. $[\alpha]_D^{20} = 6.6$ (c = 0.65 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ

= 8.32-8.29 (m, 2H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.66 (t, *J* =8.0 Hz, 1H), 6.38 (d, *J* = 3.2 Hz, 1H), 6.27 (d, *J* = 3.2 Hz, 1H), 4.77 (d, *J* = 7.2 Hz, 1H), 4.54 (d, *J* = 7.2 Hz, 1H), 3.77 (s, 2H), 2.21 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 203.0, 150.1, 147.3, 136.6, 134.4, 130.6, 124.4, 123.4, 111.4, 110.8, 109.8, 45.5, 42.9, 29.4, 28.4 ppm; ESI HRMS: calcd. for C₁₇H₁₃N₃O₄+Na⁺ 346.0798, found 346.0791.

Me (S)-2-((5-(2-Oxopropyl)furan-2-yl)(4-(trifluoromethyl)phenyl)methyl)m alononitrile (3g) was obtained in 90% yield and the enantiomeric excess was determined to be 88% by HPLC analysis on Chiralpak AD column (10% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, t_{minor} = 17.48 min, t_{major} = 20.04 min. $[\alpha]_D^{20} = 7.7$ (c = 0.35 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.71$ (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 6.33 (d, J = 3.2 Hz, 1H), 6.24 (d, J = 3.2 Hz,

1H), 4.68 (d, J = 7.2 Hz, 1H), 4.47 (d, J = 7.2 Hz, 1H), 3.75 (s, 2H), 2.20 (s, 3H) ppm; ¹³C NMR

(150 MHz, CDCl₃): δ = 203.2, 149.8, 147.9, 138.4, 131.5 (q, J_{C-F} = 33.0 Hz), 128.8, 126.3 (q, J_{C-F} = 3.0 Hz), 123.6 (q, J_{C-F} = 271.5 Hz), 111.1, 111.0, 110.9, 109.7, 45.6, 42.9, 29.3, 28.4 ppm; ESI HRMS: calcd. for C₁₈H₁₃F₃N₂O₂+Na⁺ 369.0821, found 369.0829.

Me

CN

ĊN

(*S*)-2-((3,5-Bis(trifluoromethyl)phenyl)(5-(2-oxopropyl)furan-2-yl)meth yl)malononitrile (3h) was obtained in 92% yield and the enantiomeric excess was determined to be 84% by HPLC analysis on Chiralcel OD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 10.49$ min, $t_{major} = 11.65$ min. $[\alpha]_D^{20} = 9.8$ (c = 0.70 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (s, 1H), 7.91 (br s, 2H), 6.39 (d, J = 3.2 Hz, 1H),

6.27 (d, J = 3.2 Hz, 1H), 4.78 (d, J = 7.2 Hz, 1H), 4.53 (d, J = 7.2 Hz, 1H), 3.76 (s, 2H), 2.19 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 203.0$, 150.3, 146.9, 137.2, 132.7 (q, $J_{C-F} = 34.5$ Hz), 128.7, 128.6, 123.4 (q, $J_{C-F} = 3.0$ Hz), 122.7 (q, $J_{C-F} = 271.5$ Hz), 111.6, 110.7, 110.6, 109.9, 45.4, 42.9, 29.2, 28.4 ppm; ESI HRMS: calcd. for C₁₉H₁₂F₆N₂O₂+Na⁺ 437.0695, found 437.0702.

(*S*)-2-(Naphthalen-1-yl(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3i) was obtained in 75% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak AD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 14.62$ min, $t_{major} = 19.76$ min. $[\alpha]_D^{20} = 12.1$ (*c* = 0.65 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ -7.89 (m, 3H), 7.63-7.50

(m, 4H), 6.38 (d, J = 3.2 Hz, 1H), 6.23 (d, J = 3.2 Hz, 1H), 5.57 (d, J = 6.8 Hz, 1H), 4.60 (d, J = 6.8 Hz, 1H), 3.73 (s, 2H), 2.17 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.4$, 149.4, 149.0, 134.0, 130.5, 130.4, 129.9, 129.5, 127.4, 126.3, 125.8, 125.4, 121.4, 111.6, 111.4, 111.1, 109.7, 43.1, 40.9, 29.2, 27.8 ppm; ESI HRMS: calcd. for C₂₁H₁₆N₂O₂+Na⁺ 351.1104, found 351.1109.

(S)-2-(Naphthalen-2-yl(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile

(3j) was obtained in 84% yield and the enantiomeric excess was determined to be 91% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 20.95$ min, $t_{major} = 22.37$ min. $[\alpha]_D^{20} = 13.0$ (c = 0.98 in CHCl₃); ¹H NMR (400 MHz, CDCl₃):

δ = 7.91-7.85 (m, 4H), 7.55-7.49 (m, 3H), 6.33 (d, J = 3.2 Hz, 1H), 6.23 (d, J = 3.2 Hz, 1H), 4.78 (d, J = 7.2 Hz, 1H), 4.53 (d, J = 7.2 Hz, 1H), 3.74 (s, 2H), 2.18 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 203.4, 149.5, 149.0, 133.4, 133.2, 131.9, 129.4, 128.2, 128.0, 127.7, 127.0, 126.7, 125.0, 111.4, 110.9, 109.7, 46.3, 43.1, 29.3, 28.7 ppm; ESI HRMS: calcd. for C₂₁H₁₆N₂O₂+Na⁺ 351.1104, found 351.1115.

(S)-2-(Furan-2-yl(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3k) was obtained in 77% yield and the enantiomeric excess was determined to be 75% by HPLC analysis on Chiralpak AD column (40% 2-propanol/*n*-hexane, 1 mL/min), UV 254nm, $t_{major} = 5.41$ min, $t_{minor} = 6.61$ min. [α]_D²⁰ = 6.4 (*c* = 0.50 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.47$ (m, 1H), 6.46 (d, *J* = 3.2 Hz, 1H),

6.46-6.42 (m, 2H), 6.25-6.24 (d, J = 3.2 Hz, 1H), 4.81 (d, J = 6.8 Hz, 1H), 4.46 (d, J = 6.8 Hz, 1H), 3.74 (s, 2H), 2.20 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.4$, 149.6, 146.9, 146.6, 143.6, 111.0, 110.9, 110.8, 110.2, 109.7, 43.1, 40.3, 29.3, 27.7 ppm; ESI HRMS: calcd. for C₁₅H₁₂N₂O₃+Na⁺ 291.0740, found 291.0746.

Me (R)-2-((5-(2-Oxopropyl)furan-2-yl)(thiophen-2-yl)methyl)malononitrile (3)

was obtained in 81% yield and the enantiomeric excess was determined to be 80% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 17.53$ min, $t_{major} = 23.07$ min. $[\alpha]_D^{20} = 5.7$ (c = 0.60 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.36$ (m, 1H), 7.25-7.24

(m, 1H), 7.07-7.05 (m, 1H), 6.40 (d, J = 3.2 Hz, 1H), 6.23 (d, J = 3.2 Hz, 1H), 4.95 (d, J = 6.8 Hz, 1H), 4.42 (d, J = 6.8 Hz, 1H), 3.74 (s, 2H), 2.20 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.3$, 149.6, 148.3, 135.9, 128.0, 127.5, 126.9, 111.2, 111.1, 111.0, 109.7, 43.1, 41.7, 30.1, 29.3 ppm; ESI HRMS: calcd. for C₁₅H₁₂N₂O₂S+Na⁺ 307.0512, found 307.0519.

(S)-2-((5-(2-Oxopropyl)furan-2-yl)(pyridin-3-yl)methyl)malononitrile (3m) was obtained in 83% yield and the enantiomeric excess was determined to be 82% by HPLC analysis on Chiralcel OD column (40% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 18.40$ min, $t_{major} = 21.86$ min. $[\alpha]_D^{20} = -14.1$ (c = 0.85 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.69-8.66$ (m, 2H), 7.84-7.82

(m, 1H), 7.40-7.37 (m, 1H), 6.32 (d, J = 3.2 Hz, 1H), 6.23 (d, J = 3.2 Hz, 1H), 4.67 (d, J = 7.6 Hz, 1H), 4.54 (d, J = 7.6 Hz, 1H), 3.74 (s, 2H), 2.18 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.1$, 150.6, 149.8, 149.5, 147.7, 135.8, 130.6, 124.0, 111.2, 111.0, 110.9, 109.7, 43.6, 42.9, 29.3, 28.5 ppm; ESI HRMS: calcd. for C₁₆H₁₃N₃O₂+H⁺ 280.1081, found 280.1086.

CN CN (*R*)-2-(1-(5-(2-Oxopropyl)furan-2-yl)propyl)malononitrile (3n) was obtained in 86% yield and the enantiomeric excess was determined to be 89% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 23.94$ min, $t_{major} = 26.34$ min. $[\alpha]_D^{20} = 23.7$ (c = 0.35 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.33$ (d, J = 3.2 Hz, 1H), 6.20 (d, J = 3.2 Hz, 1H),

4.00 (d, J = 6.0 Hz, 1H), 3.70 (s, 2H), 3.29-3.23 (m, 1H), 2.17 (s, 3H), 2.01-1.93 (m, 2H), 0.99 (t, J

= 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 203.6, 149.3, 149.1, 111.5, 111.4, 110.4, 109.4, 43.1, 42.1, 29.2, 28.1, 24.2, 11.5 ppm; ESI HRMS: calcd. for C₁₃H₁₄N₂O₂+K⁺ 269.0687, found 269.0692.

(*R*)-2-(1-(5-(2-Oxopropyl)furan-2-yl)-3-phenylpropyl)malononitrile (30) was obtained in 87% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 15.77 \text{ min}$, $t_{major} = 19.30 \text{ min}$. [α]_D²⁰ = 30.8 (*c* = 0.70 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.33-7.22$ (m, 3H), 7.14-7.12

(m, 2H), 6.38 (d, J = 3.2 Hz, 1H), 6.24 (d, J = 3.2 Hz, 1H), 3.94 (d, J = 6.4 Hz, 1H), 3.74 (s, 2H), 3.35-3.29 (m, 1H), 2.76-2.70 (m, 1H), 2.59-2.51 (m, 1H), 2.33-2.23 (m, 2H), 2.21 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.4$, 149.3, 148.9, 139.5, 128.7, 128.3, 126.6, 111.3, 110.9, 109.5, 43.1, 39.6, 32.7, 32.2, 29.3, 28.5 ppm; ESI HRMS: calcd. for C₁₉H₁₈N₂O₂+Na⁺ 329.1260, found 329.1267.

BnO CN (R)-2-(3p) w determine CN 2-propa 18.20 m

(*R*)-2-(4-(Benzyloxy)-1-(5-(2-oxopropyl)furan-2-yl)butyl)malononitrile (3p) was obtained in 82% yield and the enantiomeric excess was determined to be 81% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 16.99$ min, $t_{major} = 18.20$ min. [α]_D²⁰ = 8.5 (*c* = 0.55 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ

= 7.38-7.31 (m, 5H), 6.31 (d, J = 1.6 Hz, 1H), 6.18 (d, J = 1.6 Hz, 1H), 4.48-4.45 (m, 2H), 4.03 (d, J = 6.4 Hz, 1H), 3.68 (s, 2H), 3.49-3.47 (m, 2H), 3.41-3.36 (m, 1H), 2.16 (s, 3H), 2.07-2.01 (m, 2H), 1.70-1.59 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 203.5, 149.4, 149.1, 138.0, 128.4, 127.7, 127.6, 111.5, 111.4, 110.5, 109.4, 73.1, 69.0, 43.1, 40.2, 29.2, 28.2, 28.0, 26.9 ppm; ESI HRMS: calcd. for C₂₁H₂₂N₂O₃+Na⁺ 373.1523, found 373.1529.

(R)-2-(Cyclohexyl(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3q) was obtained in 90% yield and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 15.35$ min, $t_{major} = 25.96$ min. [α]_D²⁰ = 12.0 (*c* = 0.55 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.32$ (d, J = 2.8 Hz, 1H), 6.21 (d, J = 2.8 Hz,

2.8 Hz, 1H), 4.17 (d, J = 6.8 Hz, 1H), 3.71 (s, 2H), 3.12 (t, J = 7.2 Hz, 1H), 2.18 (s, 3H), 2.00-1.92 (m, 1H), 1.81-1.58 (m, 5H), 1.36-1.20 (m, 2H), 1.13-0.86 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.7$, 149.2, 148.9, 111.9, 111.6, 110.8, 109.3, 46.1, 43.2, 38.8, 31.0, 29.7, 29.1, 25.7, 25.6, 25.5 ppm; ESI HRMS: calcd. for C₁₇H₂₀N₂O₂+Na⁺ 307.1422, found 307.1421.

(*S*)-2-(2,2-Dimethyl-1-(5-(2-oxopropyl)furan-2-yl)propyl)malononitrile (3r) was obtained in 80% yield and the enantiomeric excess was determined to be 86% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 9.50$ min, $t_{major} = 11.47$ min. $[\alpha]_D^{20} = -15.1$ (c = 0.41 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 6.41$ (d, J = 3.2 Hz, 1H), 6.23 (d, J = 3.2 Hz, 1H),

4.16 (d, J = 5.2 Hz, 1H), 3.72 (s, 2H), 3.16 (d, J = 5.2 Hz, 1H), 2.19 (s, 3H), 1.10 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.7$, 149.3, 148.8, 112.8, 112.4, 111.3, 109.2, 50.8, 43.2, 35.0, 29.1, 28.1, 23.9 ppm; ESI HRMS: calcd. for C₁₅H₁₈N₂O₂+Na⁺ 281.1260, found 281.1266.

Find (S)-2-((5-(2-Oxobutyl)furan-2-yl)(phenyl)methyl)malononitrile (3s) was obtained in 79% yield and the enantiomeric excess was determined to be 94% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 15.80$ min, $t_{major} = 18.82$ min. $[\alpha]_D^{20} = 11.6$ (c = 1.15 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ (br s, 5H), 6.29 (d, J = 3.2 Hz, 1H),

6.20 (d, J = 3.2 Hz, 1H), 4.60 (d, J = 7.2 Hz, 1H), 4.43 (d, J = 7.2 Hz, 1H), 3.72 (s, 2H), 2.48 (q, J = 7.6 Hz, 2H), 1.05 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 206.0$, 149.5, 148.9, 134.6, 129.3, 128.2, 111.4, 110.8, 109.5, 46.1, 42.0, 35.3, 28.7, 7.6 ppm; ESI HRMS: calcd. for C₁₈H₁₆N₂O₂+Na⁺ 315.1104, found 315.1110.

(*S*)-2-((5-(2-Oxododecyl)furan-2-yl)(phenyl)methyl)malononitrile (3t) was obtained in 84% yield and the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 6.86 \text{ min}$, $t_{major} = 7.51 \text{ min}$. [α]_D²⁰ = -10.4 (*c* = 0.50 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ (br s, 5H), 6.30 (d,

J = 3.2 Hz, 1H), 6.20 (d, J = 3.2 Hz, 1H), 4.60 (d, J = 7.6 Hz, 1H), 4.42 (d, J = 7.6 Hz, 1H), 3.71 (s, 2H), 2.44 (t, J = 7.2 Hz, 2H), 1.57-1.55 (m, 2H), 1.30-1.24 (m, 14H), 0.88 (t, J = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 205.7$, 149.6, 148.9, 134.6, 129.3, 128.2, 111.3, 110.8, 109.5, 46.2, 42.3, 42.1, 31.9, 29.5, 29.4, 29.3, 29.2, 29.1, 28.8, 23.6, 22.7, 14.1 ppm; ESI HRMS: calcd. for C₂₆H₃₂N₂O₂+Na⁺ 427.2356, found 427.2361.

(S)-2-((5-(2-Oxo-3-phenylpropyl)furan-2-yl)(phenyl)methyl)malononitrile (3u)

was obtained in 79% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 9.29$ min, $t_{major} = 10.72$ min. $[\alpha]_D^{20} = 17.6$ (c = 0.55 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41$ (br s, 5H), 7.34-7.26 (m, 3H),

7.16-7.14 (m, 2H), 6.28 (d, J = 3.2 Hz, 1H), 6.18 (d, J = 3.2 Hz, 1H), 4.56 (d, J = 7.2 Hz, 1H), 4.37

(d, J = 7.2 Hz, 1H), 3.75 (d, J = 6.4 Hz, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.8$, 149.0, 148.9, 134.6, 133.4, 129.4, 129.3, 129.2, 128.8, 128.2, 127.2, 111.4, 111.3, 110.7, 109.8, 49.1, 46.1, 41.4, 28.7 ppm; ESI HRMS: calcd. for C₂₃H₁₈N₂O₂+Na⁺ 377.1260, found 377.1267.

(*S*)-2-((5-(2-Oxohex-5-en-1-yl)furan-2-yl)(phenyl)methyl)malononitrile (3v) was obtained in 81% yield and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 7.55$ min, $t_{major} = 8.65$ min. $[\alpha]_D^{20} = 4.1$ (*c* = 0.75 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ (br s, 5H), 6.30 (d, *J* = 2.8 Hz, 1H), 6.21 (d, *J* = 2.8 Hz, 1H), 5.77-5.73 (m, 1H), 5.03-4.96 (m, 2H), 4.60 (d, *J* = 7.6 Hz, 1H), 4.43 (d, *J* = 7.6 Hz, 1H), 3.72 (s, 2H), 2.58-2.54 (m, 2H), 2.34-2.29

(m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 204.6$, 149.3, 149.0, 136.6, 134.6, 133.6, 130.1, 129.3, 128.4, 128.2, 115.5, 111.3, 110.8, 109.6, 46.1, 42.4, 41.0, 28.7, 27.4 ppm; ESI HRMS: calcd. for C₂₀H₁₈N₂O₂+Na⁺ 341.1260, found 341.1275.

(S)-2-((5-(2-Cyclohexyl-2-oxoethyl)furan-2-yl)(phenyl)methyl)malononitrile (3w) was obtained in 78% yield and the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 8.12$ min, $t_{major} = 9.42$ min. $[\alpha]_D^{20} = 15.1$ (c = 1.1 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.42$ (s, 5H), 6.29 (d, J = 2.8 Hz, 1H), 6.20 (s, J = 2.8 Hz, 1H), 4.60 (d, J = 7.2 Hz, 1H), 4.46 (d, J = 7.2 Hz, 1H), 3.76 (s,

2H), 2.46-2.40 (m, 1H) 1.83-1.75 (m, 4H), 1.67-1.65 (m, 1H), 1.42-1.46 (m, 5H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 208.3, 149.6, 148.7, 134.6, 129.3, 128.2, 111.4, 110.7, 110.2, 109.4, 49.9, 46.1, 40.3, 28.7, 28.3, 25.7, 25.4 ppm; ESI HRMS: calcd. for C₂₂H₂₂N₂O₂+Na⁺ 369.1573, found 369.1577.

P٢

ĊN

(S)-2-((3-(((tert-Butyldimethylsilyl)oxy)methyl)-5-(2-oxopropyl)furan-2yl)(phenyl)methyl)malononitrile (3x) was obtained in 83% yield and the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralcel OD column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 9.45 \text{ min}, t_{major} = 10.64 \text{ min}. [\alpha]_D^{20} = 13.1 (c = 0.12 \text{ in CHCl}_3); {}^1\text{H}$

NMR (400 MHz, CDCl₃): δ = 7.40-7.35 (m, 5H), 6.15 (s, 1H), 4.96 (d, *J* = 7.2 Hz, 1H), 4.53 (d, *J* = 2.8 Hz, 2H), 4.46 (d, *J* = 7.2 Hz, 1H), 3.71 (s, 2H), 2.18 (s, 3H), 0.90 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 203.4, 148.5, 144.5, 135.2, 129.5, 129.2, 128.9, 128.1, 124.3, 111.6, 111.5, 109.9, 57.5, 44.6, 43.2, 29.2, 28.4, 25.9, 25.8, 18.3, -5.57 ppm; ESI HRMS: calcd. for C₂₄H₃₀N₂O₃Si+Na⁺ 445.1918, found 445.1923.

(S) - 2 - ((4 - Bromo - 5 - (2 - oxopropyl) furan - 2 - yl) (phenyl) methyl) malononitrile

(3y) was obtained in 81% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 7.47$ min, $t_{major} = 8.68$ min. $[\alpha]_D^{20} = 10.0$ (c = 0.65 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43-7.40$ (m, 5H), 6.38 (s, 1H),

4.59 (d, J = 7.2 Hz, 1H), 4.44 (d, J = 7.2 Hz, 1H), 3.75 (s, 2H), 2.18 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 202.1$, 149.6, 147.2, 133.8, 129.6, 129.5, 128.2, 113.8, 111.1, 100.1, 46.0, 41.3, 29.3, 28.4 ppm; ESI HRMS: calcd. for C₁₇H₁₃BrN₂O₂+Na⁺ 379.0058 (⁷⁹Br), 381.0038 (⁸¹Br), found 379.0060, 381.0040.

(*S*)-2-((4-(2-Butyl-1,3-dithian-2-yl)-5-(2-oxopropyl)furan-2-yl)(phenyl)met hyl)malononitrile (3z) was obtained in 75% yield and the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak IC column (20% 2-propanol/*n*-hexane, 1 mL/min), UV 220 nm, $t_{minor} = 9.22$ min, $t_{major} = 11.02$ min. [α]_D²⁰ = 13.9 (*c* = 0.80 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.45$

(br s, 5H), 6.58 (s, 1H), 4.58 (d, J = 7.2 Hz, 1H), 4.41 (d, J = 7.2 Hz, 1H), 4.16 (s, 2H), 2.82-2.75 (m, 2H), 2.68-2.64 (m, 2H), 2.20 (s, 3H), 1.99-1.86 (m, 4H), 1.37-1.23 (m, 4H), 0.86 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 203.5$, 147.2, 147.0, 134.4, 129.4, 129.1, 128.3, 126.5, 125.8, 114.1, 111.3, 51.8, 46.1, 43.5, 43.1, 29.7, 28.9, 28.0, 26.3, 25.1, 22.7, 13.8 ppm; ESI HRMS: calcd. for C₂₅H₂₈N₂O₂S₂+Na⁺ 475.1484, found 475.1490.

Procedure for the asymmetric three-component reaction

The reaction was carried out with benzaldehyde (0.1 mmol), malononitrile (0.1 mmol) and 2-furylacetone **1a** (0.3 mmol) in toluene (1.0 mL) in the presence of amine catalyst **C2** (0.02 mmol), benzoic acid (0.02 mmol) at 0 °C for 24 h. Then the solution was concentrated and the residue was purified by flash chromatography on silica gel to afford the chiral product **3a** in 85% yield and with 82% *ee*. In another reaction, 4 Å MS (15 mg) was simultaneously added. Product **3a** was obtained in 78% yield and with 91% *ee* after 24 h.

5. More explorations of activated alkenes and heterocyclic ketones

For further study, a diversity of activated alkenes and heterocyclic ketones were explored in the potential Friedel–Crafts alkylations via HOMO activation.

 Table 3. Catalyst screenings of remote Friedel–Crafts alkylation of 2-furylacetone 1a with

 2-oxoindolin-3-ylidenemalononitrile 4^[a]

Entry	Cat.	Solvent	<i>t</i> (h)	Yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	C4	DCM	24	75	-24
2	C4	Toluene	24	74	-30
3	C4	CHCl ₃	24	87	-36
4	C4	CH ₃ CN	24	53	-16
5	C4	THF	24	53	-16
6	C4	1,4-Dioxane	24	66	-20
7	C1	CHCl ₃	24	84	41
8 ^[d]	C2	CHCl ₃	24	66	-24
9	C15	CHCl ₃	24	77	-2
10 ^[e]	C1	CHCl ₃	24	86	32

[a] Unless noted otherwise, reactions were performed with 2-furylacetone **1a** (0.3 mmol), 2-oxoindolin-3-ylidenemalononitrile **4** (0.1 mmol), amine **C** (20 mol%) and salicylic acid (**SA**) (40 mol%) in solvent (1.0 mL) at ambient temperature for 24 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Benzoic acid (20 mol%) was used. [e] At 0 $^{\circ}$ C.

Entry	Acid	Yield (%) ^[b]	$ee (\%)^{[c]}$
1	A6	56	20
2	A10	30	12
3	A14	31	13
4	A15	72	38
5	A16	89	25
6	A17	<10	$ND^{[d]}$
7	A2	84	41

[a] Reactions were conducted with **1a** (0.3 mmol), **4** (0.1 mmol), catalyst **C1** (0.02 mmol), acid (0.04 mmol) in CHCl₃ (1.0 mL) at ambient temperature for 24 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Not determined.

2-Oxoindolin-3-ylidenemalononitrile **4** showed good reactivity with ketone **1a**, affording the desired remote Friedel–Crafts product **5** with a quaternary chiral center. After extensive explorations with a number of amine catalysts and reaction conditions, as outlined in Tables 3 and 4, only a fair *ee* value could be attained.

Table 5. Catalyst screenings of remote FC alkylation of 2-furylacetone 1a with activated alkene 6^[a]

		+ Ph 0	C (20 mol% SA (40 mol Solvnet, RT	6) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	
	1a	6			
	OMe N N C1	$ \begin{array}{ccc} Ph & Ph \\ S & S \\ H_2N & HN \\ 2 & HN \\ 2 \\ C2 \end{array} $	CF ₃ CF ₃		NH ₂ C15
Entry	Cat.	Solvent	<i>t</i> (h)	Yield (%) ^[b]	<i>ee</i> (%) ^[c]
1	C4	Toluene	24	79	49
2	C4	o-Xylene	24	92	60
3	C4	<i>m</i> -Xylene	24	86	48
4	C4	Mesitylene	24	87	62
5	C1	Mesitylene	24	83	-34
6 ^[d]	C2	Mesitylene	24	80	-1
7	C15	Mesitylene	24	78	4
8 ^[e]	C4	Mesitylene	48	36	2

[a] Unless noted otherwise, reactions were performed with 2-furylacetone **1a** (0.3 mmol), activated alkene **6** (0.1 mmol), amine **C** (20 mol%) and salicylic acid (SA) (40 mol%) in solvent (1.0 mL) at ambient temperature for 24h. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Benzoic acid (20 mol%) was used. [e] At 0 °C.

Table 6. More acid additive screenings^[a]

Ja Contraction of the second s	0 + Ph 0 6	C4 (20 r O SA (40 r √ Mesityler	nol%) nol%) le, RT, 24 h Ph		OMe HIII NH ₂ C4	
F ₃ C COO CF ₃ A6	H COOH A12	COOH OH A15	HO NO ₂ A16	COOH OH A18	OH COOH A2	
 Entry	Acid		Yield (‰) ^[b]	<i>ee</i> (%) ^[c]	
 1	A6		92		43	
2	A12		<1()	$ND^{[d]}$	
3	A15		<1()	ND ^[d]	
4	A16		<1()	ND ^[d]	
5	A18		<1()	ND ^[d]	
6	A2		87		62	

[a] Reactions were conducted with **1a** (0.3 mmol), **6** (0.1 mmol), catalyst **C4** (0.02 mmol), acid (0.04 mmol) in mesitylene (1.0 mL) at ambient temperature for 24 h. [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Not determined.

Activated alkene 6 derived from Meldrum's acid also smoothly gave the desired remote FC product **7a** in the reactions with ketone **1a** catalyzed by chiral amine, as outlined in Tables 5 and 6, while the enantioselectivity was still unsatisfactory after extensive screenings.

Completely different reaction patterns of other heterocyclic ketones and activated alkenes

In contrast, completely different reaction patterns were observed for other electrophiles. α -Regioselective Michael addition of ketone **1a** to less electrophilic β -nitrostyrene **8** was noticed, as illustrated above scheme, in the presence of amine C2 and benzoic acid, and adduct 9 was isolated as a inseparable diastereomeric mixture. A Diels–Alder cycloaddition reaction of ketone 1a was noticed in reaction with maleimide 10 catalyzed by chiral amine C2 and SA in toluene at 60 °C, delivering aromatic product 11 in a good yield. Moreover, we also successfully synthesized 2-thienylacetone 12, and α' -regioselective Michael addition product 13 was obtained in reaction with the activated alkene 6. However, 2-pyrrolylacetone was unstable under the catalytic conditions.

2-(1-Methyl-2-oxo-3-(5-(2-oxopropyl)furan-2-yl)indolin-3-yl)malononitrile (5)

was obtained in 84% yield and the enantiomeric excess was determined to be 41% by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 12.15$ min, $t_{major} = 13.81$ min. $[\alpha]_D^{20} = -17$ (c = 0.50 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.76$ (d, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 7.6 Hz, 1H), 6.21-6.19

(m, 2H), 4.92 (s, 1H), 3.74 (s, 2H), 3.29 (s, 3H), 2.04 (s, 3H) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 203.0, 170.2, 151.2, 144.8, 143.8, 131.4, 125.2, 124.0, 123.1, 112.2, 110.4, 109.7, 109.5, 109.4, 52.6, 43.1, 29.8, 29.2, 27.0 ppm; ESI HRMS: calcd. for C₁₉H₁₅N₃O₃+Na⁺ 356.1006, found 356.1010.

2,2-Dimethyl-5-((5-(2-oxopropyl)furan-2-yl)(phenyl)methyl)-1,3-dioxane-4,6dione (7a) was obtained in 87% yield and the enantiomeric excess was determined to be 62% after methylation with CH₃I (acetone, Na₂CO₃, rt) by HPLC analysis on Chiralpak IC column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{major} = 8.89$ min, $t_{minor} = 11.34$ min. $[\alpha]_D^{20} = -10$ (c = 0.75 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49-7.46$ (m, 2H), 7.37-7.31 (m, 3H), 6.15 (d, J

= 3.2 Hz, 1H), 6.00-5.99 (m, 1H), 5.26 (s, 1H), 4.23 (d, J = 3.2 Hz, 1H), 3.65 (s, 2H), 2.04 (s, 3H), 1.73 (s, 3H), 1.51 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 204.4, 164.2, 152.8, 147.2, 137.1, 129.8, 128.6, 128.1, 109.5, 109.1, 105.2, 50.4, 44.0, 43.4, 28.8, 28.1, 27.7 ppm; ESI HRMS: calcd. for C₂₀H₂₀O₆+Na⁺ 379.1152, found 379.1153.

Ph O O Ph O

ane-4,6-dione (7b) was obtained in 80% yield and the enantiomeric excess was determined to be 37% after methylation with CH₃I (acetone, Na₂CO₃, rt) by HPLC analysis on Chiralpak AD column (30% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, t_{major} = 9.66 min, t_{minor} = 11.81 min. [α]_D²⁰ = -14 (*c* = 0.35 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 7.6 Hz, 2H), 7.57 (t, *J* = 7.6 Hz, 1H),

2,2-Dimethyl-5-((5-(2-oxo-2-phenylethyl)furan-2-yl)(phenyl)methyl)-1,3-diox

7.49-7.42 (m, 4H), 7.34-7.27 (m, 3H), 6.18 (d, J = 3.2 Hz, 1H), 6.01 (d, J = 3.2 Hz, 1H), 5.25 (m, 1H), 4.27 (s, 2H), 4.24 (m, 1H), 1.71 (s, 3H), 1.48 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.8$, 164.2, 164.0, 152.5, 147.2, 137.1, 136.1, 133.3, 129.7, 128.7, 128.6, 128.5, 128.0, 109.4, 109.3, 105.1, 50.3, 44.0, 38.6, 28.1, 27.7 ppm; ESI HRMS: calcd. for C₂₅H₂₂O₆+Na⁺ 441.1309, found 441.1300.

3-(furan-2-yl)-5-nitro-4-phenylpentan-2-one (9) was obtained in 84% yield after flash chromatography. dr = 2:1 ; ¹H NMR (400 MHz, CDCl₃): δ = 7.47-7.46 (m, 0.67H), 7.33-7.19 (m, 4.66H), 7.10-7.08 (m, 0.67H), 6.42-6.41 (m, 0.67H), 6.32 (d, *J* = 3.2 Hz, 0.67H), 6.20-6.19 (m, 0.33H), 6.03 (d, *J* = 3.2 Hz,

0.33H), 4.90-4.76 (m, 0.67H), 4.55-4.51 (m, 1.33H), 4.38-4.30 (m, 1H), 4.25-4.21 (m, 1H), 2.15 (s, 1H), 1.98 (s, 2H) ppm; ESI HRMS: calcd. for $C_{15}H_{15}NO_4+Na^+$ 296.0893, found 296.0900. *In addition, attempts to determine the evalues of the diastereomers were unsuccessful.*

2-(4-Bromophenyl)-4-(2-oxopropyl)isoindoline-1,3-dione (11) was obtained in 79% yield after flash chromatography; ¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 7.6 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.8 Hz, 2H), 4.27 (s, 2H), 2.36 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ =

204.1, 137.2, 134.4, 134.1, 132.2, 132.0, 128.9, 128.0, 122.8, 121.8, 45.7, 30.3 ppm; ESI HRMS: calcd. for $C_{17}H_{12}BrNO_3+Na^+$ 379.9898 (⁷⁹Br), 381.9878 (⁸¹Br), found 379.9893, 381.9872.

2,2-Dimethyl-5-(3-oxo-1-phenyl-4-(thiophen-2-yl)butyl)-1,3-dioxane-4,6-dio ne (13) was obtained in 63% yield and the enantiomeric excess was determined to be 88% after methylation with CH₃I (acetone, Na₂CO₃, rt) by HPLC analysis on Chiralpak IC column (40% 2-propanol/*n*-hexane, 1 mL/min), UV 254 nm, $t_{minor} = 9.04 \text{ min}, t_{major} = 20.17 \text{ min}. [\alpha]_D^{20} = -20.9 (c = 0.75 \text{ in CHCl}_3); ^1H NMR$ (400 MHz, CDCl₃): $\delta = 7.30-7.22$ (m, 6H), 6.98-6.96 (m, 1H), 6.90-6.89 (m, 1H),

4.30-4.25 (m, 1H), 4.20 (d, J = 3.6 Hz, 1H), 3.96 (s, 2H), 3.82-3.74 (m, 1H), 3.16-3.10 (m, 1H), 1.65 (s, 3H), 1.31 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 206.1$, 165.3, 165.0, 139.3, 136.6, 134.4, 130.7, 128.8, 128.7, 127.8, 127.1, 125.3, 119.4, 117.6, 105.3, 48.8, 43.8, 43.7, 28.0, 27.8, 27.6 ppm; ESI HRMS: calcd. for C₂₀H₁₉O₅S+Na⁺ 395.0924, found 395.0920.

6. Synthetic transformations of the chiral product

To an anhydrous toluene solution of product 3e (32 mg, 0.1 mmol) was added 1,3-propanedithiol (11 mg, 0.1 mmol) and a catalytic amount of TsOH (2 mg, 0.01 mmol) at ambient temperature. Then the solution was stirred overnight at 60 °C. After completion, the solution was evaporated and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to afford product **14** which was directly dissolved by dichloromethane and reacted with acrolein (8.4 mg, 0.15 mmol) and DIPEA (19 mg, 0.15 mmol) at room temperature. After 10 min, diluted hydrochloric acid was added. Then the mixture was extracted by DCM. The organic solvent was evaporated and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8:1) to afford product 15. To the solution of EtOH of product 15 was added 2,4-dinitrophenylhydrazine (29 mg, 0.15 mmol) and a catalytic amount of TsOH (3 mg, 0.02 mmol) at ambient temperature. The mixture was stirred overnight at 60 °C. When the reaction was completed, the solution was evaporated and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to afford product 16 in 79% yield for three steps and the enantiomeric excess was determined to be 92%, determined by HPLC analysis on Chiralpak IC column (30% 2-propanol/n-hexane, 1 mL/min), UV 220nm, $t_{minor} = 47.88 \text{ min}$, $t_{maior} = 53.89 \text{ min}$. $[\alpha]_D^{20} = 23.3$ (c = 0.15 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 11.08$ (s, 1H), 9.10 (d, J = 1.6 Hz, 1H), 8.33 (dd, J = 9.6 Hz, J = 1.6 Hz, 1H), 7.81 (d, J = 9.6 Hz, 1H), 7.65 (s, 1H), 7.56-7.50 (m, 2H), 7.41-7.35 (m, 2H), 6.39 (d, J = 2.8 Hz, 1H), 6.21 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.35 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.35 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.45 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.45 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.45 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.45 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.45 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.45 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 4.41 (s, 1H), 3.45 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 3.45 (d, J = 2.8 Hz, 1H), 4.41 (s, 1H), 4.41 3.6 Hz, 2H), 3.07-3.00 (m, 2H), 2.89-2.78 (m, 4H), 2.36-2.29 (m, 2H), 2.08-2.04 (m, 1H), 1.92-1.89 (m, 1H), 1.60 (s, 3H) ppm; 13 C NMR (100 MHz, CDCl₃); $\delta = 153.0, 147.0, 146.9, 144.8, 138.3,$ 136.1, 135.0, 130.3, 130.1, 129.5, 129.3, 127.5, 123.4, 116.4, 114.2, 114.1, 111.7, 110.0, 51.0, 48.0, 42.3, 39.8, 33.2, 28.8, 27.9, 26.8, 26.7, 24.8 ppm; ESI HRMS: calcd. for C₂₉H₂₇ClN₆O₅S₂+Na⁺ 661.1065, found 661.1066.

7. Crystal data and structure refinement for enantiopure 16

Largest diff. peak/hole / e Å-3 0.720/-0.299

Absolute structure parameter

0.05(6)

8. Proposed catalytic mechanism for the remote Friedel-Crafts reaction

In order to gain some insight into the catalytic mechanism for the Friedel–Crafts reaction of 2-furylacetone **1a** and electron-deficient alkene, we first investigated the possible enamine intermediate between ketone **1a** and a simplified primary amine catalyst 2-propylamine by computational calculations. To find out the global minimum conformation of enamines *cis*-**A**, *trans*-**B**, and *interrupted*-**C**, a conformational search was performed using Discovery Studio software^[4] with a systematic searches method. The total 74 corresponding minimum geometries were fully optimized using DFT at the B3LYP/6-31G(d) level, as implemented in the Gaussian 03 program package.^[5] All of them displayed no imaginary frequencies. It shows that the energy of enamine *cis*-**A** is lower than that of enamine *trans*-**B** by 2.63 kcal/mol, which can be ascribed to the intramolecular hydrogen bonding between N-H and O-atom of furan ring. In contrast, as outlined in the following scheme, enamine *interrupted*-**C** has much higher energy than enamine *cis*-**A** by 8.37 kcal/mol, indicating that the conjugated enamine *cis*-**A** would be favored.

Proposed simplified enamine species and DFT computational calculations

[4] Discovery Studio, version 3.1; Accelrys Inc.: San Diego, CA, 2011.

[5] Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.

Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

Based on the preliminary computational studies on enamine intermediates and the absolute configuration of product 3e, a plausible catalytic mechanism was proposed. As outlined in the following scheme, a conjugated *cis*-enamine is formed between primary amine group and 2-furylacetone 1a. Owing to the interesting intramolecular hydrogen-bonding interaction between NH group and furan ring, the remote 5-site would be closer to alkylidenemalononitrile which is concertedly activated by bifunctional thiourea group of catalyst C2. Subsequently, *Re*-face attack by HOMO-raised furan ring would give the observed enantioenriched product (*S*)-**3e**.

Proposed catalytic transition state

9. NMR spectra and HPLC chromatograms

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 Minutes

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	9.434	2583597	4.15	176472	6.38
2	10.726	59655940	95.85	2591379	93.62

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	17.175	46080192	49.68	1201182	52.85
2	18.804	46673832	50.32	1071548	47.15

	RT (min)	Area (*sec)	% Area	Height	% Height
1	17.746	91914534	95.02	1972122	94.62
2	19.672	4816481	4.98	112053	5.38

S27

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	14.381	34535619	49.86	664387	51.37
2	16.656	34733431	50.14	628831	48.63

	RT (min)	Area (*sec)	% Area	Height	% Height
1	14.084	663932	6.91	13699	7.79
2	16.253	8949366	93.09	162251	92.21

S31

	(min)	(*sec)	% Area	()	Height
1	11.377	54368072	50.30	1587994	50.44
2	13.142	53713916	49.70	1560043	49.56

	RT (min)	Area (*sec)	% Area	Height	% Height
1	11.366	1049438	3.95	63558	5.74
2	12.921	25487123	96.05	1044453	94.26

	RT (min)	Area (*sec)	% Area	Height	% Height
1	29.230	6905322	7.11	91924	9.13
2	33.930	90284086	92.89	915220	90.87

1	16.372	18173660	49.89	391017	52.76
2	19.380	18253428	50.11	350166	47.24

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	17.474	5565690	5.89	140794	10.13
2	20.035	88965251	94.11	1249069	89.87

	RT (min)	Area (*sec)	% Area	Height	% Height
1	10.504	22524638	49.95	859394	52.95
2	11.774	22567422	50.05	763654	47.05

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	10.492	3408326	8.19	136302	9.60
2	11.647	38187860	91.81	1283886	90.40

1	14.656	VB	0.6544	5491.00342	131.96187	50.6149
2	20.510	BB	0.7609	5357.59814	100.63396	49.3851

1	14.622	BB	0.6165	1065.87439	27.42767	5.0675
2	19.759	VB	0.8049	1.99677e4	332.75562	94.9325

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	23.281	15219408	49.53	349852	51.58
2	24.969	15511303	50.47	328426	48.42

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	20.949	3478106	4.31	98406	5.26
2	22.365	77183448	95.69	1771133	94.74

	(min)	(*sec)	% Area	()	Height
1	5.417	19609038	45.54	1752525	50.80
2	6.605	23449654	54.46	1697283	49.20

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	5.412	3800591	87.53	507705	89.81
2	6.610	541466	12.47	57585	10.19

	RT (min)	Area (*sec)	% Area	Height	% Height
1	17.529	2057675	10.02	77380	14.59
2	23.068	18470750	89.98	452823	85.41

	RT (min)	Area (*sec)	% Area	Height	% Height
1	18.400	5964908	9.01	118914	12.00
2	21.864	60272239	90.99	871874	88.00

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	23.556	56961716	49.74	891382	52.93
2	26.521	57567335	50.26	792543	47.07

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	23.938	12512593	5.43	226324	8.38
2	26.344	217846948	94.57	2475873	91.62

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	15.340	22501333	50.03	841462	56.01
2	18.996	22470040	49.97	660849	43.99

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	15.770	3875190	4.99	147093	6.96
2	19.302	73745014	95.01	1967498	93.04

		RT (min)	Area (*sec)	% Area	Height	% Height
I	1	16.994	1970959	9.52	76597	11.12
I	2	18.196	18725605	90.48	612084	88.88

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	15.346	4792005	3.82	189509	8.29
2	25.955	120688766	96.18	2095141	91.71

			2	11.531	30765667	50.31	1555655	47.10			
									-		
	1.40-										467
	1.20-				/le						ŧ
	1.00-		/-	_0 _0)						
Þ	0.80-	\geq									
A	0.60-		3	Br							
	0.40-									0	
	0.20-									⊘9.502	
	0.00						~	~			
	l	1 1	2.	00 '	4.00 [']	1 1	6.00 6.00	s	8.00	10.00	12.00
				RT (min)	Area	% Area	Height	% Height			

	RT (min)	Area (*sec)	% Area	Height	% Height
1	9.502	2108016	7.13	156230	9.89
2	11.467	27449696	92.87	1423261	90.11

Minutes

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	15.800	2750312	3.14	60872	3.61
2	18.818	84835774	96.86	1623642	96.39

200 180 160 140 120 100 80 60 40 20 ppm

Minutes

	RT (min)	Area (*sec)	% Area	Height	% Height
1	6.861	524749	3.60	50813	4.74
2	7.507	14036547	96.40	1021056	95.26

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	8.472	19244113	49.65	1308505	53.07
2	9.624	19514263	50.35	1157287	46.93

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	9.286	531105	4.88	33073	5.77
2	10.716	10345537	95.12	540106	94.23

		RT (min)	Area (*sec)	% Area	Height ()	% Height
	1	7.550	284314	4.03	23496	5.18
	2	8.648	6772867	95.97	429890	94.82

1	8.216	vv	0.3058	2224.13037	109.97224	48.0011
2	9.580	VB	0.3809	2409.37012	95.77406	51.9989

	RT (min)	Area (*sec)	% Area	Height	% Height
1	10.886	2721161	48.03	109909	54.78
2	12.452	2943878	51.97	90745	45.22

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	9.450	1659566	3.53	93571	4.53
2	10.639	45381130	96.47	1974183	95.47

	RT (min)	Area (*sec)	% Area	Height	% Height
1	7.614	8585861	50.53	682739	55.56
2	8.917	8405217	49.47	546166	44.44

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	7.469	1523792	5.11	128615	5.78
2	8.682	28279611	94.89	2095019	94.22

	RT (min)	Area (*sec)	% Area	Height ()	% Height
1	9.193	46918182	49.07	2186488	52.57
2	10.977	48704569	50.93	1972882	47.43

		RT (min)	Area (*sec)	% Area	Height ()	% Height
I	1	9.219	588993	2.55	33115	3.26
	2	11.019	22501620	97.45	983364	96.74

0.9062 1.23825e4

207.40407 94.0730

2 20.167 BV

	RT (min)	Area (*sec)	% Area	Height	% Height
1	48.687	17807561	49.27	117602	52.91
2	54.936	18332324	50.73	104672	47.09

	RT (min)	Area (*sec)	% Area	Height	% Height
1	47.876	2201959	4.17	15703	4.87
2	53.868	50571860	95.83	306459	95.13