Angewandte

Supporting Information
 © Wiley-VCH 2015

69451 Weinheim, Germany

Remote Enantioselective Friedel-Crafts Alkylations of Furans through HOMO Activation**
Jun-Long Li, Cai-Zhen Yue, Peng-Qiao Chen, You-Cai Xiao, and Ying-Chun Chen*
anie_201403082_sm_miscellaneous_information.pdf

Supporting Information

Table of Contents

1. General methods S2
2. Procedure for the preparation of ketone substrates S2-S4
3. More screening conditions for enantioselective Friedel-Crafts alkylation S4-S5
4. General procedure for catalytic asymmetric Friedel-Crafts alkylation S5-S13
5. More explorations of activated alkenes and heterocyclic ketones S14-S18
6. Synthetic transformations of the chiral product S19
7. Crystal data and structure refinement for enantiopure 16 S20
8. Proposed catalytic mechanism for the remote Friedel-Crafts reaction S21-S22
9. NMR spectra and HPLC chromatograms S23-S86

1. General methods

NMR data were obtained for ${ }^{1} \mathrm{H}$ at 400 MHz , and for ${ }^{13} \mathrm{C}$ at 100 or 150 MHz . Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl_{3} solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralcel OD-H Column ($250 \times 4.6 \mathrm{~mm}$), Chiralpak AD-H Column ($250 \times 4.6 \mathrm{~mm}$) or Chiralpak IC Column ($250 \times 4.6 \mathrm{~mm}$). UV detection was monitored at 220 nm or 254 nm . Optical rotation was examined in CHCl_{3} solution at $20^{\circ} \mathrm{C}$. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I_{2} were used to visualize products. All chemicals including 2-furylacetone 1a were used without purification as commercially available unless otherwise noted. Alkylidenemalononitriles were prepared according to the literature procedures. ${ }^{[1]}$ The primary amines were also synthesized according to the literature procedures. ${ }^{[2]}$
[1] K. M. Guo, J. Thompson, B. Chen, J. Org. Chem. 2009, 74, 6999.
[2] a) H. Brunner, J. Bügler, B. Nuber, Tetrahedron: Asymmetry 1995, 6, 1699; b) T. He, J.-Y. Qian, H.-L. Song, X.-Y. Wu, Synlett 2009, 3195; c) K. Mei, S. Zhang, S. He, P. Li, M. Jin, F. Xue, G. Luo, H. Zhang, L. Song, W. Duan, W. Wang, Tetrahedron Lett. 2008, 49, 2681.

2. Procedure for the preparation of ketone substrates

The ketone substrates 1 were synthesized according to the literature procedures. ${ }^{[3]}$
[3] A. S. K. Hashmi, M. Wölfle, Tetrahedron 2009, 65, 9021.

To the solution of furan in THF was added $n-\operatorname{BuLi}\left(2.4 \mathrm{M}\right.$ solution in hexane) at $0^{\circ} \mathrm{C}$ under Ar atmosphere. Then the solution was warmed to room temperature and stirred for 3 h . The solution was cooled to $0^{\circ} \mathrm{C}$ again and the corresponding epoxide was added slowly. After completion, the solution was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with DCM. The combined organic layers were washed with brine and dried with MgSO_{4}, filtered and concentrated. The obtained alcohol was dissolved in DMSO and IBX was added at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred for about 2 h . After completion, the reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were washed with brine and dried with MgSO_{4}, filtered and concentrated. The desired ketone $\mathbf{1}$ was obtained as a colorless oil after
purification by flash chromatography.

1-(Furan-2-yl)butan-2-one (1b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36$ ($\mathrm{s}, 1 \mathrm{H}$), 6.34 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

1-(Furan-2-yl)dodecan-2-one (1c): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.35$ ($\mathrm{d}, \mathrm{J}=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.34-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.43$ (d, J=7.6 Hz, $2 \mathrm{H}), 1.57-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.

1-(Furan-2-yl)-3-phenylpropan-2-one (1d): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.37-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$.

1-(Furan-2-yl)hex-5-en-2-one (1e): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36(\mathrm{~d}, \mathrm{~J}=$ $0.8,1 \mathrm{H}), 6.35-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.95$ $(\mathrm{m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.2,2 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

1-(4-(((tert-Butyldimethylsilyl)oxy)methyl)furan-2-yl)propan-2-one (1g): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}$, $2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm}$.
 1-(3-Bromofuran-2-yl)propan-2-one (1h): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34$ (d, J $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

1-(3-(2-Butyl-1,3-dithian-2-yl)furan-2-yl)propan-2-ol (alcohol of 1i): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.16(\mathrm{~m}$, $1 \mathrm{H}), 3.21-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.26(\mathrm{~m}, 7 \mathrm{H})$, $0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. The alcohol of 1 i was oxidized by IBX and the corresponding ketone 1i, which was not stable enough, was directly used in the aminocatalytic reaction.

1-(4-(2-butyl-1,3-dithian-2-yl)furan-2-yl)propan-2-one (1k): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.89-2.82(\mathrm{~m}, 2 \mathrm{H})$, 2.70-2.65 (m, 2H), $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. This substrate is inert in the current catalytic system due to steric hindrance.

1-(5-Methylfuran-2-yl)propan-2-one (11): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.03$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. No reaction was observed for the combination of 1I and acceptor 2 a under current catalytic conditions.

1-(Thiophen-2-yl)propan-2-one (12): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-7.21$ (m, 1H), 6.98-6.96 (m, 1H), 6.89-6.88 (m, 1H), 3.89 (s, 2H), $2.19(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.

1-(1-Methyl-1H-pyrrol-2-yl)butan-2-one: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.59$ (s, $1 \mathrm{H}), 6.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
3. More screening conditions for enantioselective Friedel-Crafts alkylation

Table 1. More bifunctional catalyst screenings ${ }^{[a]}$

Entry	Catalyst	${\text { Yield }(\%)^{[b]}}^{\text {[be }(\%)^{[\mathrm{c}]}}$	
1	C5	81	27
2	C6	85	83
3	C7	78	54
4	C8	70	60
5	C9	59	48
6	C10	70	-9
7	C11	56	-37
8	$\mathbf{C 1 2}$	81	78

9	$\mathbf{C 1 3}$	74	58
10	$\mathbf{C 1 4}$	<10	$\mathrm{ND}^{[\mathrm{d}]}$

[a] Reactions were conducted with $\mathbf{1 a}(0.3 \mathrm{mmol}), \mathbf{2 a}(0.1 \mathrm{mmol})$, catalyst $\mathbf{C}(0.02 \mathrm{mmol})$, benzoic acid $(0.02 \mathrm{mmol})$ in toluene at rt for 12 h . [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Not determined.

Table 2. More acid additive screenings ${ }^{[a]}$

[a] Reactions were conducted with 1a (0.3 mmol), 2a (0.1 mmol), catalyst $\mathbf{C} 2(0.02 \mathrm{mmol})$, acid A $(0.02 \mathrm{mmol})$ in toluene at rt for 12 h . [b] Isolated yield. [c] Determined by chiral HPLC analysis.

4. General procedure for catalytic asymmetric Friedel-Crafts alkylation

The reaction was carried out with α, α-dicyanoolefin $2(0.1 \mathrm{mmol})$ and 2-furfuryl ketone $\mathbf{1}$ (0.3 $\mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ in the presence of primary amine catalyst $\mathbf{C} 2(9.7 \mathrm{mg}, 0.02 \mathrm{mmol})$, benzoic acid ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ or $-10^{\circ} \mathrm{C}$ for 24 h or 48 h . After completion, the solution was concentrated and the residue was purified by flash chromatography on silica gel (petroleum
ether/ethyl acetate $=10: 1$ to $6: 1$) to afford the chiral product 3.
The racemic products were generally obtained by the catalysis of racemic ethyl phenylglycinate. Benzylamine also could promote the FC reaction but more complex reactions were observed.

(S)-2-((5-(2-Oxopropyl)furan-2-yl)(phenyl)methyl)malononitrile (3a) was obtained in 85% yield and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IC column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=9.43 \mathrm{~min}, \mathrm{t}_{\text {major }}=10.73 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=20.8\left(c=0.75 \mathrm{in} \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 6.30(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=203.4,149.3,149.0,134.6,129.3,128.2,111.4,110.7,109.6$, 46.0, 43.1, 29.2, 28.7 ppm; ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}$301.0947, found 301.0951.

(S)-2-((5-(2-Oxopropyl)furan-2-yl)(m-tolyl)methyl)malononitrile (3b) was obtained in 88% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralcel OD column (30\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=17.75 \mathrm{~min}, \mathrm{t}_{\text {minor }}=19.67 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=21.5(\mathrm{c}$ $=0.72$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.29$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (s, 2H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.5$, 149.3, 149.1, 139.1, 134.5, 130.1, 129.2, 128.8, 125.1, 111.4, 110.7, 109.6, 46.0, 43.1, 29.2, 28.7, 21.4 ppm; ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}$315.1104, found 315.1109.

(S)-2-((5-(2-Oxopropyl)furan-2-yl)(p-tolyl)methyl)malononitrile (3c) was obtained in 89% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak AD column (10\% 2-propanol/ n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {major }}=16.99 \mathrm{~min}, \mathrm{t}_{\text {minor }}=19.36 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=19.5$ $\left(c=0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=203.5,149.3,139.3,131.5,130.0,128.1,111.4,110.6,109.6,45.8,43.1,29.2,28.8$, 21.1 ppm; ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}$315.1104, found 315.1109.
(S)-2-((3-Methoxyphenyl)(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3d) was obtained in 82% yield and the enantiomeric excess was determined to be 86% by HPLC analysis on Chiralpak IC column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=14.08 \mathrm{~min}, \mathrm{t}_{\text {major }}=16.25$

$\min .[\alpha]_{\mathrm{D}}{ }^{20}=11.6\left(c=0.75\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, 3 H), $3.73(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 203.4, 160.1, 149.4, 148.9, 136.0, 130.4, 120.3, 114.5, 114.0, 111.4, 111.3, 110.7, 109.6, 55.3, 46.0, 43.1, 29.2, 28.6 ppm; ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}^{+}$331.1053, found 331.1059 .

(S)-2-((3-Chlorophenyl)(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile
(3e) was obtained in 89% yield and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IC column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=11.37 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $12.92 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=14.0\left(c=0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=7.41-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.2$, 149.7, 148.2, 136.5, 135.1, 130.6, 129.6, 128.4, 126.4, 111.1, 111.0, 109.7, 45.6, 43.0, 29.2, 28.5 ppm; ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}$335.0558, found 335.0563.

(S)-2-((3-Nitrophenyl)(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3f) was obtained in 92% yield and the enantiomeric excess was determined to be 86% by HPLC analysis on Chiralcel OD column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=29.23 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $33.93 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=6.6\left(c=0.65\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=8.32-8.29(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.77 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.0,150.1,147.3,136.6,134.4,130.6,124.4,123.4$, 111.4, 110.8, 109.8, 45.5, 42.9, 29.4, 28.4 ppm; ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}^{+} 346.0798$, found 346.0791 .

(S)-2-((5-(2-Oxopropyl)furan-2-yl)(4-(trifluoromethyl)phenyl)methyl)m alononitrile (3 g) was obtained in 90% yield and the enantiomeric excess was determined to be 88% by HPLC analysis on Chiralpak AD column (10% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=17.48 \mathrm{~min}, \mathrm{t}_{\text {major }}$ $=20.04 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=7.7\left(c=0.35\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.2,149.8,147.9,138.4,131.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.0 \mathrm{~Hz}\right), 128.8,126.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $3.0 \mathrm{~Hz}), 123.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.5 \mathrm{~Hz}\right), 111.1,111.0,110.9$, 109.7, 45.6, 42.9, 29.3, 28.4 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}$369.0821, found 369.0829.

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)(5-(2-oxopropyl)furan-2-yl)meth $\mathbf{y l}$)malononitrile ($\mathbf{3 h}$) was obtained in 92% yield and the enantiomeric excess was determined to be 84% by HPLC analysis on Chiralcel OD column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=10.49$ $\min , \mathrm{t}_{\text {major }}=11.65 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=9.8\left(c=0.70\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{~s}, 1 \mathrm{H}), 7.91$ (br s, 2H), $6.39(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.27(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.0,150.3,146.9,137.2,132.7$ (q, $J_{\mathrm{C}-\mathrm{F}}=34.5 \mathrm{~Hz}$), 128.7, $128.6,123.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 122.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.5 \mathrm{~Hz}\right), 111.6,110.7,110.6,109.9,45.4,42.9$, 29.2, 28.4 ppm; ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 437.0695$, found 437.0702.

(S)-2-(Naphthalen-1-yl(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3i) was obtained in 75% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak AD column (20% 2-propanol/ n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=14.62 \mathrm{~min}, \mathrm{t}_{\text {major }}=19.76 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=12.1(c=$ 0.65 in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.00-7.89(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.50$ $(\mathrm{m}, 4 \mathrm{H}), 6.38(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.73(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.4$, 149.4, 149.0, $134.0,130.5,130.4,129.9,129.5,127.4,126.3,125.8,125.4,121.4,111.6,111.4,111.1,109.7,43.1$, 40.9, 29.2, 27.8 ppm; ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 351.1104$, found 351.1109.

(S)-2-(Naphthalen-2-yl(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile
(3j) was obtained in 84% yield and the enantiomeric excess was determined to be 91% by HPLC analysis on Chiralpak IC column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=20.95 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $22.37 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=13.0\left(c=0.98\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.91-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=203.4,149.5,149.0,133.4,133.2,131.9,129.4,128.2,128.0,127.7,127.0,126.7$, $125.0,111.4,110.9$, 109.7, 46.3, 43.1, 29.3, 28.7 ppm; ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}$ 351.1104, found 351.1115 .

(S)-2-(Furan-2-yl(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3k) was obtained in 77% yield and the enantiomeric excess was determined to be 75% by HPLC analysis on Chiralpak AD column (40% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=5.41 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.61 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=6.4\left(c=0.50\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.47(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.46-6.42 (m, 2H), 6.25-6.24 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.4,149.6,146.9,146.6,143.6$, 111.0, 110.9, 110.8, 110.2, 109.7, 43.1, 40.3, 29.3, 27.7 ppm; ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}^{+}$291.0740, found 291.0746.

(R)-2-((5-(2-Oxopropyl)furan-2-yl)(thiophen-2-yl)methyl)malononitrile (31) was obtained in 81% yield and the enantiomeric excess was determined to be 80% by HPLC analysis on Chiralpak IC column (20% 2-propanol $/ n$-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=17.53 \mathrm{~min}, \mathrm{t}_{\text {major }}=23.07 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=5.7(c=$ 0.60 in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 203.3, 149.6, 148.3, 135.9, 128.0, 127.5, 126.9, 111.2, 111.1, 111.0, 109.7, 43.1, 41.7, 30.1, 29.3 ppm; ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}^{+}$307.0512, found 307.0519.

(S)-2-((5-(2-Oxopropyl)furan-2-yl)(pyridin-3-yl)methyl)malononitrile (3m) was obtained in 83% yield and the enantiomeric excess was determined to be 82% by HPLC analysis on Chiralcel OD column (40% 2-propanol/ n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=18.40 \mathrm{~min}, \mathrm{t}_{\text {major }}=21.86 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-14.1(c=$ 0.85 in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.69-8.66(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.82$ (m, 1H), 7.40-7.37 (m, 1H), 6.32 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $203.1,150.6,149.8,149.5,147.7,135.8,130.6,124.0,111.2,111.0,110.9,109.7,43.6,42.9,29.3$, 28.5 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}^{+}$280.1081, found 280.1086.

(R)-2-(1-(5-(2-Oxopropyl)furan-2-yl)propyl)malononitrile (3n) was obtained in 86% yield and the enantiomeric excess was determined to be 89% by HPLC analysis on Chiralpak IC column (20\% 2-propanol/ n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 220 $\mathrm{nm}, \mathrm{t}_{\text {minor }}=23.94 \mathrm{~min}, \mathrm{t}_{\text {major }}=26.34 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=23.7\left(c=0.35\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.29-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J$
$=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.6,149.3,149.1,111.5,111.4,110.4$, 109.4, 43.1, 42.1, 29.2, 28.1, 24.2, 11.5 ppm; ESI HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{K}^{+}$269.0687, found 269.0692.

(R)-2-(1-(5-(2-Oxopropyl)furan-2-yl)-3-phenylpropyl)malononitrile
was obtained in 87% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak IC column (20\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=15.77 \mathrm{~min}, \mathrm{t}_{\text {major }}=19.30 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=30.8(c=$ 0.70 in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.12$ (m, 2H), $6.38(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H})$, 3.35-3.29 (m, 1H), 2.76-2.70 (m, 1H), 2.59-2.51 (m, 1H), 2.33-2.23(m, 2H), 2.21 ($\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=203.4,149.3,148.9,139.5,128.7,128.3,126.6,111.3,110.9,109.5$, 43.1, 39.6, 32.7, 32.2, 29.3, 28.5 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 329.1260$, found 329.1267 .

(R)-2-(4-(Benzyloxy)-1-(5-(2-oxopropyl)furan-2-yl)butyl)malononitrile (3p) was obtained in 82% yield and the enantiomeric excess was determined to be 81% by HPLC analysis on Chiralpak IC column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=16.99 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $18.20 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=8.5\left(c=0.55\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.31(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.49-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 2 \mathrm{H})$, 1.70-1.59 (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.5,149.4,149.1,138.0,128.4,127.7$, 127.6, 111.5, 111.4, 110.5, 109.4, 73.1, 69.0, 43.1, 40.2, 29.2, 28.2, 28.0, 26.9 ppm; ESI HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}^{+}$373.1523, found 373.1529.

(R)-2-(Cyclohexyl(5-(2-oxopropyl)furan-2-yl)methyl)malononitrile (3q) was obtained in 90% yield and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IC column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=15.35 \mathrm{~min}, \mathrm{t}_{\text {major }}=25.96 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=12.0(c=0.55 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.32(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.81-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.13-0.86(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3} : $\delta=203.7,149.2,148.9,111.9,111.6,110.8,109.3,46.1,43.2,38.8,31.0,29.7,29.1,25.7$, 25.6, 25.5 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 307.1422$, found 307.1421.

(S)-2-(2,2-Dimethyl-1-(5-(2-oxopropyl)furan-2-yl)propyl)malononitrile
was obtained in 80% yield and the enantiomeric excess was determined to be 86% by HPLC analysis on Chiralpak IC column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=9.50 \mathrm{~min}, \mathrm{t}_{\text {major }}=11.47 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-15.1\left(c=0.41 \mathrm{in} \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.41(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.7,149.3,148.8,112.8,112.4,111.3,109.2,50.8,43.2,35.0$, 29.1, 28.1, 23.9 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+}$281.1260, found 281.1266.

(S)-2-((5-(2-Oxobutyl)furan-2-yl)(phenyl)methyl)malononitrile (3s) was obtained in 79% yield and the enantiomeric excess was determined to be 94% by HPLC analysis on Chiralpak IC column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=15.80 \mathrm{~min}, \mathrm{t}_{\text {major }}=18.82 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=11.6(c=1.15 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 6.29(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.0,149.5,148.9$, 134.6, 129.3, 128.2, 111.4, 110.8, 109.5, 46.1, 42.0, 35.3, 28.7, 7.6 ppm; ESI HRMS: calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 315.1104$, found 315.1110.

(S)-2-((5-(2-Oxododecyl)furan-2-yl)(phenyl)methyl)malononitrile
was obtained in 84% yield and the enantiomeric excess was determined to be 93\% by HPLC analysis on Chiralpak IC column (30\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=6.86 \mathrm{~min}, \mathrm{t}_{\text {major }}=7.51 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-10.4(c$ $=0.50$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 6.30(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $2 \mathrm{H}), 2.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.7,149.6,148.9,134.6,129.3,128.2,111.3,110.8,109.5$, 46.2, 42.3, 42.1, 31.9, 29.5, 29.4, 29.3, 29.2, 29.1, 28.8, 23.6, 22.7, 14.1 ppm; ESI HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 427.2356$, found 427.2361.

(S)-2-((5-(2-Oxo-3-phenylpropyl)furan-2-yl)(phenyl)methyl)malononitrile (3u) was obtained in 79% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak IC column (30% 2-propanol $/ n$-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=9.29 \mathrm{~min}, \mathrm{t}_{\text {major }}=10.72 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=17.6(c=0.55$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41$ (br s, 5 H), 7.34-7.26 (m, 3 H), 7.16-7.14 (m, 2H), $6.28(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$
(d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.8,149.0$, 148.9, 134.6, 133.4, 129.4, 129.3, 129.2, 128.8, 128.2, 127.2, 111.4, 111.3, 110.7, 109.8, 49.1, 46.1, 41.4, 28.7 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 377.1260$, found 377.1267.

(S)-2-((5-(2-Oxohex-5-en-1-yl)furan-2-yl)(phenyl)methyl)malononitrile
was obtained in 81% yield and the enantiomeric excess was determined to be 92% by HPLC analysis on Chiralpak IC column (30% 2-propanol/ n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=7.55 \mathrm{~min}, \mathrm{t}_{\text {major }}=8.65 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=4.1(c=0.75 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 6.30(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.29$ (m, 2H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.6,149.3,149.0,136.6,134.6,133.6,130.1$, 129.3, 128.4, 128.2, 115.5, 111.3, 110.8, 109.6, 46.1, 42.4, 41.0, 28.7, 27.4 ppm; ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 341.1260$, found 341.1275.

(S)-2-((5-(2-Cyclohexyl-2-oxoethyl)furan-2-yl)(phenyl)methyl)malononitrile
(3w) was obtained in 78% yield and the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralpak IC column (30\% 2-propanol/ n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=8.12 \mathrm{~min}, \mathrm{t}_{\text {major }}=9.42 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=15.1(c=1.1 \mathrm{in}$ $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42(\mathrm{~s}, 5 \mathrm{H}), 6.29(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.20(\mathrm{~s}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $2 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H})$ 1.83-1.75 (m, 4H), 1.67-1.65 (m, 1H), 1.42-1.46 (m, 5H) ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.3,149.6,148.7,134.6,129.3,128.2,111.4,110.7,110.2,109.4,49.9$, 46.1, 40.3, 28.7, 28.3, 25.7, 25.4 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 369.1573$, found 369.1577.

(S)-2-((3-(((tert-Butyldimethylsilyl)oxy)methyl)-5-(2-oxopropyl)furan-2$\mathbf{y l}$ (phenyl)methyl)malononitrile (3x) was obtained in 83% yield and the enantiomeric excess was determined to be 93% by HPLC analysis on Chiralcel OD column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 220 nm , $\mathrm{t}_{\text {minor }}=9.45 \mathrm{~min}, \mathrm{t}_{\text {major }}=10.64 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=13.1\left(c=0.12\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.4,148.5,144.5,135.2,129.5,129.2,128.9,128.1$, 124.3, 111.6, 111.5, 109.9, 57.5, 44.6, 43.2, 29.2, 28.4, 25.9, 25.8, 18.3, -5.57 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}^{+}+\mathrm{Na}^{+} 445.1918$, found 445.1923.

(S)-2-((4-Bromo-5-(2-oxopropyl)furan-2-yl)(phenyl)methyl)malononitrile (3y) was obtained in 81% yield and the enantiomeric excess was determined to be 90% by HPLC analysis on Chiralpak IC column (30% 2-propanol/ n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=7.47 \mathrm{~min}, \mathrm{t}_{\text {major }}=8.68 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=10.0(c=0.65$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.1,149.6,147.2,133.8,129.6,129.5,128.2,113.8,111.1,100.1,46.0,41.3$, 29.3, 28.4 ppm; ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}+\mathrm{Na}^{+} 379.0058\left({ }^{79} \mathrm{Br}\right), 381.0038\left({ }^{81} \mathrm{Br}\right)$, found 379.0060, 381.0040.

(S)-2-((4-(2-Butyl-1,3-dithian-2-yl)-5-(2-oxopropyl)furan-2-yl)(phenyl)met hyl)malononitrile ($\mathbf{3 z}$) was obtained in 75% yield and the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak IC column (20% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $220 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=9.22 \mathrm{~min}, \mathrm{t}_{\text {major }}=11.02$ $\min .[\alpha]_{\mathrm{D}}{ }^{20}=13.9\left(c=0.80\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45$ (br s, 5 H$), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 2.82-2.75$ (m, 2H), 2.68-2.64 (m, 2H), 2.20 ($\mathrm{s}, 3 \mathrm{H}$), 1.99-1.86 (m, 4H), 1.37-1.23 (m, 4H), $0.86(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.5,147.2,147.0,134.4,129.4,129.1,128.3,126.5$, $125.8,114.1,111.3,51.8,46.1,43.5,43.1,29.7,28.9,28.0,26.3,25.1,22.7,13.8 \mathrm{ppm}$; ESI HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}+\mathrm{Na}^{+} 475.1484$, found 475.1490.

Procedure for the asymmetric three-component reaction

The reaction was carried out with benzaldehyde (0.1 mmol), malononitrile (0.1 mmol) and 2-furylacetone $\mathbf{1 a}(0.3 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ in the presence of amine catalyst $\mathbf{C} 2(0.02 \mathrm{mmol})$, benzoic acid $(0.02 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 24 h . Then the solution was concentrated and the residue was purified by flash chromatography on silica gel to afford the chiral product $\mathbf{3 a}$ in 85% yield and with 82% ee. In another reaction, $4 \AA \mathrm{MS}(15 \mathrm{mg})$ was simultaneously added. Product 3 a was obtained in 78% yield and with 91% ee after 24 h .

5. More explorations of activated alkenes and heterocyclic ketones

For further study, a diversity of activated alkenes and heterocyclic ketones were explored in the potential Friedel-Crafts alkylations via HOMO activation.

Table 3. Catalyst screenings of remote Friedel-Crafts alkylation of 2-furylacetone 1a with 2-oxoindolin-3-ylidenemalononitrile $4^{[a]}$

| | |
| :--- | :--- | :--- |
| Entry | |
| 1 | |
| 2 | |

Table 4. More acid additive screenings ${ }^{[a]}$

Entry	Acid	Yield $(\%)^{[b]}$	$e e(\%)^{[\mathrm{cc}]}$
1	A6	56	20
2	A10	30	12
3	A14	31	13
4	A15	72	38
5	A16	89	25
6	A17	<10	ND $^{[d]}$
7	A2	$\mathbf{8 4}$	$\mathbf{4 1}$

[a] Reactions were conducted with $\mathbf{1 a}(0.3 \mathrm{mmol}), \mathbf{4}(0.1 \mathrm{mmol})$, catalyst $\mathbf{C 1}(0.02 \mathrm{mmol})$, acid $(0.04 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ at ambient temperature for 24 h . [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Not determined.

2-Oxoindolin-3-ylidenemalononitrile 4 showed good reactivity with ketone 1a, affording the desired remote Friedel-Crafts product 5 with a quaternary chiral center. After extensive explorations with a number of amine catalysts and reaction conditions, as outlined in Tables 3 and 4, only a fair $e e$ value could be attained.

Table 5. Catalyst screenings of remote FC alkylation of 2-furylacetone 1a with activated alkene $\mathbf{6}^{[\mathrm{ax}}$

[a] Unless noted otherwise, reactions were performed with 2-furylacetone 1a (0.3 mmol), activated alkene $6(0.1 \mathrm{mmol})$, amine C ($20 \mathrm{~mol} \%$) and salicylic acid (SA) ($40 \mathrm{~mol} \%$) in solvent (1.0 mL) at ambient temperature for 24 h . [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Benzoic acid ($20 \mathrm{~mol} \%$) was used. [e] At $0^{\circ} \mathrm{C}$.

Table 6. More acid additive screenings ${ }^{[a]}$

[a] Reactions were conducted with 1a $(0.3 \mathrm{mmol}), 6(0.1 \mathrm{mmol})$, catalyst $\mathbf{C 4}(0.02 \mathrm{mmol})$, acid $(0.04 \mathrm{mmol})$ in mesitylene $(1.0 \mathrm{~mL})$ at ambient temperature for 24 h . [b] Isolated yield. [c] Determined by chiral HPLC analysis. [d] Not determined.

Activated alkene 6 derived from Meldrum's acid also smoothly gave the desired remote FC product 7a in the reactions with ketone 1a catalyzed by chiral amine, as outlined in Tables 5 and 6, while the enantioselectivity was still unsatisfactory after extensive screenings.

Completely different reaction patterns of other heterocyclic ketones and activated alkenes

In contrast, completely different reaction patterns were observed for other electrophiles. α-Regioselective Michael addition of ketone 1a to less electrophilic β-nitrostyrene $\mathbf{8}$ was noticed,
as illustrated above scheme, in the presence of amine C2 and benzoic acid, and adduct $\mathbf{9}$ was isolated as a inseparable diastereomeric mixture. A Diels-Alder cycloaddition reaction of ketone 1a was noticed in reaction with maleimide $\mathbf{1 0}$ catalyzed by chiral amine $\mathbf{C} 2$ and $\mathbf{S A}$ in toluene at $60^{\circ} \mathrm{C}$, delivering aromatic product $\mathbf{1 1}$ in a good yield. Moreover, we also successfully synthesized 2-thienylacetone 12, and α^{\prime}-regioselective Michael addition product 13 was obtained in reaction with the activated alkene 6. However, 2-pyrrolylacetone was unstable under the catalytic conditions.

2-(1-Methyl-2-oxo-3-(5-(2-oxopropyl)furan-2-yl)indolin-3-yl)malononitrile (5) was obtained in 84% yield and the enantiomeric excess was determined to be 41% by HPLC analysis on Chiralpak IC column (30% 2-propanol/ n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=12.15 \mathrm{~min}, \mathrm{t}_{\text {major }}=13.81 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-17(c=$ 0.50 in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.19$ $(\mathrm{m}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=203.0,170.2,151.2,144.8,143.8,131.4,125.2,124.0,123.1,112.2,110.4,109.7,109.5,109.4$, 52.6, 43.1, 29.8, 29.2, 27.0 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{Na}^{+} 356.1006$, found 356.1010.

2,2-Dimethyl-5-((5-(2-oxopropyl)furan-2-yl)(phenyl)methyl)-1,3-dioxane-4,6dione (7a) was obtained in 87% yield and the enantiomeric excess was determined to be 62% after methylation with $\mathrm{CH}_{3} \mathrm{I}$ (acetone, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, rt) by HPLC analysis on Chiralpak IC column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=8.89 \mathrm{~min}, \mathrm{t}_{\text {minor }}=11.34 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-10\left(c=0.75 \mathrm{in} \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.4,164.2,152.8,147.2$, 137.1, 129.8, 128.6, 128.1, 109.5, 109.1, 105.2, 50.4, 44.0, 43.4, 28.8, 28.1, 27.7 ppm; ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}+\mathrm{Na}^{+} 379.1152$, found 379.1153 .

2,2-Dimethyl-5-((5-(2-oxo-2-phenylethyl)furan-2-yl)(phenyl)methyl)-1,3-diox ane-4,6-dione (7b) was obtained in 80% yield and the enantiomeric excess was determined to be 37% after methylation with $\mathrm{CH}_{3} \mathrm{I}$ (acetone, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, rt) by HPLC analysis on Chiralpak AD column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=9.66 \mathrm{~min}, \mathrm{t}_{\text {minor }}=11.81 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-14\left(c=0.35 \mathrm{in} \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
7.49-7.42 (m, 4H), 7.34-7.27 (m, 3H), $6.18(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~m}$, $1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $194.8,164.2,164.0,152.5,147.2,137.1,136.1,133.3,129.7,128.7,128.6,128.5,128.0,109.4$, 109.3, 105.1, 50.3, 44.0, 38.6, 28.1, 27.7 ppm; ESI HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{6}+\mathrm{Na}^{+} 441.1309$, found 441.1300 .

3-(furan-2-yl)-5-nitro-4-phenylpentan-2-one (9) was obtained in 84% yield after flash chromatography. $\mathrm{dr}=2: 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.47-7.46 (m, 0.67H), 7.33-7.19 (m, 4.66H), 7.10-7.08 (m, 0.67H), 6.42-6.41 (m, $0.67 \mathrm{H}), 6.32(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.20-6.19(\mathrm{~m}, 0.33 \mathrm{H}), 6.03(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $0.33 \mathrm{H}), 4.90-4.76(\mathrm{~m}, 0.67 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 1.33 \mathrm{H}), 4.38-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}$, $1 \mathrm{H}), 1.98(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$; ESI HRMS: calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}+\mathrm{Na}^{+}$296.0893, found 296.0900. In addition, attempts to determine the ee values of the diastereomers were unsuccessful.

2-(4-Bromophenyl)-4-(2-oxopropyl)isoindoline-1,3-dione (11) was obtained in 79% yield after flash chromatography; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), $4.27(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 204.1, 137.2, 134.4, 134.1, 132.2, 132.0, 128.9, 128.0, 122.8, 121.8, 45.7, 30.3 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrNO}_{3}+\mathrm{Na}^{+} 379.9898\left({ }^{79} \mathrm{Br}\right)$, $381.9878\left({ }^{81} \mathrm{Br}\right)$, found 379.9893, 381.9872.

2,2-Dimethyl-5-(3-oxo-1-phenyl-4-(thiophen-2-yl)butyl)-1,3-dioxane-4,6-dio ne (13) was obtained in 63% yield and the enantiomeric excess was determined to be 88% after methylation with $\mathrm{CH}_{3} \mathrm{I}$ (acetone, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, rt) by HPLC analysis on Chiralpak IC column (40% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , $\mathrm{t}_{\text {minor }}=9.04 \mathrm{~min}, \mathrm{t}_{\text {major }}=20.17 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{20}=-20.9\left(c=0.75\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30-7.22(\mathrm{~m}, 6 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.89(\mathrm{~m}, 1 \mathrm{H})$, 4.30-4.25 (m, 1H), $4.20(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.10(\mathrm{~m}, 1 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.1,165.3,165.0,139.3,136.6$, 134.4, 130.7, 128.8, 128.7, 127.8, 127.1, 125.3, 119.4, 117.6, 105.3, 48.8, 43.8, 43.7, 28.0, 27.8, 27.6 ppm ; ESI HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~S}+\mathrm{Na}^{+}$395.0924, found 395.0920.

6. Synthetic transformations of the chiral product

To an anhydrous toluene solution of product $3 \mathbf{e}(32 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added 1,3-propanedithiol ($11 \mathrm{mg}, 0.1 \mathrm{mmol}$) and a catalytic amount of $\mathrm{TsOH}(2 \mathrm{mg}, 0.01 \mathrm{mmol})$ at ambient temperature. Then the solution was stirred overnight at $60^{\circ} \mathrm{C}$. After completion, the solution was evaporated and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$) to afford product 14 which was directly dissolved by dichloromethane and reacted with acrolein ($8.4 \mathrm{mg}, 0.15 \mathrm{mmol}$) and DIPEA ($19 \mathrm{mg}, 0.15 \mathrm{mmol}$) at room temperature. After 10 min , diluted hydrochloric acid was added. Then the mixture was extracted by DCM. The organic solvent was evaporated and purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=8: 1$) to afford product 15 . To the solution of EtOH of product 15 was added 2,4-dinitrophenylhydrazine ($29 \mathrm{mg}, 0.15 \mathrm{mmol}$) and a catalytic amount of TsOH ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$) at ambient temperature. The mixture was stirred overnight at $60^{\circ} \mathrm{C}$. When the reaction was completed, the solution was evaporated and purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=6: 1$) to afford product 16 in 79% yield for three steps and the enantiomeric excess was determined to be 92%, determined by HPLC analysis on Chiralpak IC column (30% 2-propanol $/ n$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 220 nm , $\mathrm{t}_{\text {minor }}=47.88 \mathrm{~min}, \mathrm{t}_{\text {major }}=53.89 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{20}=23.3\left(c=0.15\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.08(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~d}, \mathrm{~J}=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.33$ (dd, $J=9.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}$, 2H), 7.41-7.35 (m, 2H), 6.39 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.0,147.0,146.9,144.8,138.3$, $136.1,135.0,130.3,130.1,129.5,129.3,127.5,123.4,116.4,114.2,114.1,111.7,110.0,51.0,48.0$, 42.3, 39.8, 33.2, 28.8, 27.9, 26.8, 26.7, 24.8 ppm; ESI HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClN}_{6} \mathrm{O}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}$ 661.1065 , found 661.1066 .

7. Crystal data and structure refinement for enantiopure 16

8. Proposed catalytic mechanism for the remote Friedel-Crafts reaction

In order to gain some insight into the catalytic mechanism for the Friedel-Crafts reaction of 2-furylacetone 1a and electron-deficient alkene, we first investigated the possible enamine intermediate between ketone 1a and a simplified primary amine catalyst 2-propylamine by computational calculations. To find out the global minimum conformation of enamines cis-A, trans-B, and interrupted-C, a conformational search was performed using Discovery Studio software ${ }^{[4]}$ with a systematic searches method. The total 74 corresponding minimum geometries were fully optimized using DFT at the B3LYP/6-31G(d) level, as implemented in the Gaussian 03 program package. ${ }^{[5]}$ All of them displayed no imaginary frequencies. It shows that the energy of enamine cis-A is lower than that of enamine trans-B by $2.63 \mathrm{kcal} / \mathrm{mol}$, which can be ascribed to the intramolecular hydrogen bonding between $\mathrm{N}-\mathrm{H}$ and O -atom of furan ring. In contrast, as outlined in the following scheme, enamine interrupted-C has much higher energy than enamine cis-A by 8.37 $\mathrm{kcal} / \mathrm{mol}$, indicating that the conjugated enamine cis-A would be favored.

cis-A

($0 \mathrm{kcal} / \mathrm{mol}$) O...H2.03 \AA

trans-B

($2.63 \mathrm{kcal} / \mathrm{mol}$)

interrupted-C

($8.37 \mathrm{kcal} / \mathrm{mol}$)

Proposed simplified enamine species and DFT computational calculations
[4] Discovery Studio, version 3.1; Accelrys Inc.: San Diego, CA, 2011
[5] Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.

Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

Based on the preliminary computational studies on enamine intermediates and the absolute configuration of product $3 \mathbf{e}$, a plausible catalytic mechanism was proposed. As outlined in the following scheme, a conjugated cis-enamine is formed between primary amine group and 2-furylacetone 1a. Owing to the interesting intramolecular hydrogen-bonding interaction between NH group and furan ring, the remote 5 -site would be closer to alkylidenemalononitrile which is concertedly activated by bifunctional thiourea group of catalyst C2. Subsequently, Re-face attack by HOMO-raised furan ring would give the observed enantioenriched product (S)-3e.

Proposed catalytic transition state
9. NMR spectra and HPLC chromatograms

$3 a$
(

3a

	RT (min)	Area *sec)	\% Area	Height (\quad)	\% Height
1	8.685	33366040	48.56	2238942	51.46
2	9.781	35349009	51.44	2112074	48.54

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	9.434	2583597	4.15	176472	6.38
2	10.726	59655940	95.85	2591379	93.62

	RT (min)	Area $\left(\begin{array}{c}\text { *sec })\end{array}\right.$	\% Area	Height (\quad)	\% Height
1	17.746	91914534	95.02	1972122	94.62
2	19.672	4816481	4.98	112053	5.38

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	$\%$ Height
1	16.992	49261897	49.98	1353949	50.93
2	19.001	49292663	50.02	1304616	49.07

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height ()	$\%$ Height
1	16.988	145331802	95.13	3255603	94.49
2	19.353	7433978	4.87	189834	5.51

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	$\%$ Height
1	14.381	34535619	49.86	664387	51.37
2	16.656	34733431	50.14	628831	48.63

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	\% Height
1	14.084	663932	6.91	13699	7.79
2	16.253	8949366	93.09	162251	92.21

3e

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	11.377	54368072	50.30	1587994	50.44
2	13.142	53713916	49.70	1560043	49.56

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	11.366	1049438	3.95	63558	5.74
2	12.921	25487123	96.05	1044453	94.26

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	$\%$ Height
1	30.737	16259347	50.06	188712	53.60
2	36.749	16219491	49.94	163342	46.40

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	29.230	6905322	7.11	91924	9.13
2	33.930	90284086	92.89	915220	90.87

3 g

g
ब
i

8R
KN
4
$\begin{array}{ll}8 \pi & 88 \\ 10 & 88 \\ 10\end{array}$

$3 g$

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	$\%$ Height
1	16.372	18173660	49.89	391017	52.76
2	19.380	18253428	50.11	350166	47.24

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (r)	\% Height
1	17.474	5565690	5.89	140794	10.13
2	20.035	88965251	94.11	1249069	89.87

8
\%

ब88
年
$\begin{array}{ll}288 \\ 11 & 88 \\ 18\end{array}$

3h

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	$\%$ Height
1	10.504	22524638	49.95	859394	52.95
2	11.774	22567422	50.05	763654	47.05

	RT (min)	Area $\left({ }^{*}\right.$ sec $)$	\% Area	Height (\quad)	\% Height
1	10.492	3408326	8.19	136302	9.60
2	11.647	38187860	91.81	1283886	90.40

(
|
|

(10,
$\longrightarrow 203.441$

¢	
¢ ¢ ${ }_{\text {¢ }}$	
4	

"

31

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	23.281	15219408	49.53	349852	51.58
2	24.969	15511303	50.47	328426	48.42

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	20.949	3478106	4.31	98406	5.26
2	22.365	77183448	95.69	1771133	94.74

	RT (min)	Area $\left({ }^{* s e c}\right)$	\% Area	Height (\quad)	\% Height
1	5.417	19609038	45.54	1752525	50.80
2	6.605	23449654	54.46	1697283	49.20

	RT (min)	Area $(* s e c)$	\% Area	Height $(~)$	\% Height
1	5.412	3800591	87.53	507705	89.81
2	6.610	541466	12.47	57585	10.19

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	16.378	18274933	49.63	715196	56.84
2	21.431	18547359	50.37	542956	43.16

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	$\%$ Height
1	17.529	2057675	10.02	77380	14.59
2	23.068	18470750	89.98	452823	85.41

	RT (min)	Area *sec)	\% Area	Height (\quad)	\% Height
1	18.409	31295162	50.02	591043	55.96
2	22.245	31267881	49.98	465186	44.04

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	18.400	5964908	9.01	118914	12.00
2	21.864	60272239	90.99	871874	88.00

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	23.556	56961716	49.74	891382	52.93
2	26.521	57567335	50.26	792543	47.07

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	23.938	12512593	5.43	226324	8.38
2	26.344	217846948	94.57	2475873	91.62

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height $(\mathrm{r}$	\% Height
1	15.340	22501333	50.03	841462	56.01
2	18.996	22470040	49.97	660849	43.99

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	15.770	3875190	4.99	147093	6.96
2	19.302	73745014	95.01	1967498	93.04

$3 p$

3p

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (r)	$\%$ Height
1	16.995	33307228	49.60	1099824	51.70
2	18.231	33850268	50.40	1027661	48.30

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	16.994	1970959	9.52	76597	11.12
2	18.196	18725605	90.48	612084	88.88

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (r)	\% Height
1	15.346	4792005	3.82	189509	8.29
2	25.955	120688766	96.18	2095141	91.71

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	9.509	30391024	49.69	1747245	52.90
2	11.531	30765667	50.31	1555655	47.10

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	9.502	2108016	7.13	156230	9.89
2	11.467	27449696	92.87	1423261	90.11

3s

$3 s$

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	16.078	39230660	49.76	826874	52.46
2	19.412	39609225	50.24	749187	47.54

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	15.800	2750312	3.14	60872	3.61
2	18.818	84835774	96.86	1623642	96.39

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	5.973	9926955	50.45	1053126	53.52
2	6.638	9751779	49.55	914765	46.48

	RT (min)	Area *sec)	\% Area	Height $(~)$	\% Height
1	6.861	524749	3.60	50813	4.74
2	7.507	14036547	96.40	1021056	95.26

$3 u$

	RT (min)	Area *sec)	\% Area	Height (\quad)	\% Height
1	8.472	19244113	49.65	1308505	53.07
2	9.624	19514263	50.35	1157287	46.93

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	9.286	531105	4.88	33073	5.77
2	10.716	10345537	95.12	540106	94.23

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	7.493	3932633	51.41	265695	53.35
2	8.658	3717658	48.59	232370	46.65

	RT (min)	Area $($ *sec $)$	\% Area	Height (\quad)	\% Height
1	7.550	284314	4.03	23496	5.18
2	8.648	6772867	95.97	429890	94.82

(

Li」

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	10.886	2721161	48.03	109909	54.78
2	12.452	2943878	51.97	90745	45.22

	RT (min)	Area (*sec)	\% Area	Height (\quad)	\% Height
1	9.450	1659566	3.53	93571	4.53
2	10.639	45381130	96.47	1974183	95.47

(10,

	RT (min)	Area (*sec)	\% Area	Height ()	\% Height
1	7.614	8585861	50.53	682739	55.56
2	8.917	8405217	49.47	546166	44.44

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	7.469	1523792	5.11	128615	5.78
2	8.682	28279611	94.89	2095019	94.22

	RT (min)	Area $\left({ }^{*} \mathrm{sec}\right)$	\% Area	Height (\quad)	\% Height
1	9.193	46918182	49.07	2186488	52.57
2	10.977	48704569	50.93	1972882	47.43

	RT (min)	Area $\left({ }^{*}\right.$ sec $)$	\% Area	Height (\quad)	$\%$ Height
1	9.219	588993	2.55	33115	3.26
2	11.019	22501620	97.45	983364	96.74

5

(

	RT (min)	Area $\left({ }^{*}\right.$ sec) $)$	\% Area	Height (\quad)	\% Height
1	8.574	6747053	49.94	467646	56.63
2	10.654	6763364	50.06	358090	43.37

$\stackrel{\circ}{\stackrel{\circ}{\sim}} \underset{\sim}{\circ}$

11

品

11

	RT (min)	Area $\left({ }^{*}\right.$ sec $)$	\% Area	Height (\quad)	\% Height
1	47.876	2201959	4.17	15703	4.87
2	53.868	50571860	95.83	306459	95.13

