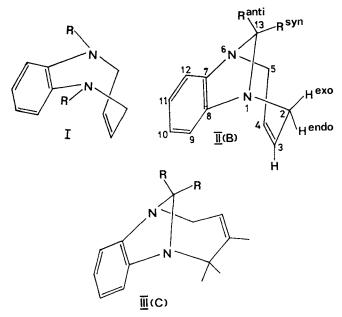
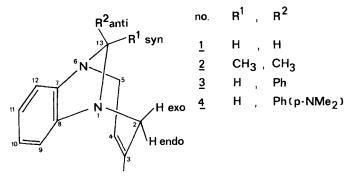
Stereochemistry of Benzannelated 1,6-Diazabicyclo[4.2.1]octadienes and the Conformation of Substituents on the Methylene Bridge


E. Kleinpeter,* J. Hartmann, B. Werner and W. Schroth Sektion Chemie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 16, DDR-4050 Halle (Saale), GDR

The stereochemistry of benzannelated 1,6-diazabicyclo[4.2.1]octa-3,7-dienes (the conformation of the eightmembered ring and of the variable substituents on the methylene bridge) was determined by means of NOE enhancements and stereospecific long-range H,H coupling constants in the relevant NMR spectra.

KEY WORDS Stereochemistry 1,6-Diheterobicyclo[4.2.1]octa-3,7-dienes W-coupling NOE

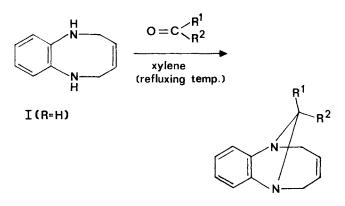
INTRODUCTION


Mono- and bis-benzannelated 1,6-dihetero-*cis,cis*cycloocta-3,7-dienes prefer the boat conformation I as the ground state of the ring inversion process.^{1,2} It is possible via the aminal formation reaction to overbridge 7,8-benzannelated 1,6-diaza-*cis,cis*-cycloocta-3,7diene (I, R = H) for example, and thus to reduce the possible stereoisomers further to II(B) and III(C).

It was the aim of this work (i) to study the stereochemistry of some 13-substituted-7,8-benzannelated-1,6diazabicyclo[4.2.1]octa-3,7-dienes 1-4 (see Scheme 1), (ii) to compare the conformational behaviour obtained ($C \rightleftharpoons B$ of the eight-membered ring) with the monocyclic relatives^{1,2} and (iii) to determine the conformation of the R substituents on the methylene bridge.

* Author to whom correspondence should be addressed.

0749-1581/90/050423-03 \$05.00 © 1990 by John Wiley & Sons, Ltd.



Scheme 1. Compounds studied.

RESULTS

Syntheses

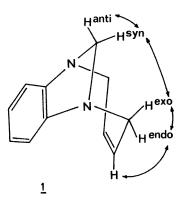
Compounds 1–4 were prepared via the aminal formation reaction of 1,2,5,6-tetrahydro-1,6-benzodiazocine (I, R = H)³ with different carbonyl compounds.⁴

<u>1-H</u>

Received 21 November 1989 Accepted 20 December 1989

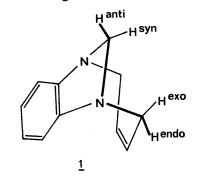
The overbridging reaction was carried out in the case of acetone (to 2), benzaldehyde (to 3) and p-N,Ndimethylaminobenzaldehyde (to 4) in xylene, by simply refluxing the reaction mixture. Compound 1 was formed from I (R = H) and paraformaldehyde in boiling xylene under acidic catalysis conditions. The respective animals 1-4 were isolated as colourless crystals in good yields (80-95%).

NMR study


The NMR data for 1-4 (Scheme 1) studied at ambient temperature are given in Table 1. In addition, NOE experiments were carried out by irradiating the relevant ¹H NMR signals and identifying the NOE enhancements qualitatively in the difference mode.⁵ These results are given in Table 1 as footnotes.

The assignments are unequivocal owing to the very characteristic absorption ranges and signal intensities for symmetry reasons. C-3,4 were differentiated from the aromatic carbon atoms by selective C,H decoupling experiments.

According to the stereochemistry of the compounds studied (1-4) the following NMR characteristics were noted.


(i) The NOEs obtained between H-13 (syn) [or CH₃ (syn)] and H-2,5 (exo) in 1-4 (see Table 1) can be expected only in the boat conformation (II-B).

(ii) The coupling pattern within the $-CH_2CH=$ moiety is as obtained for the non-bridged flexible analogues $I^{1,2}$ (³J = 1.0–1.6 Hz), which suggests dihedral angles of ca. 90°. Very different coupling constants,

according to the very different dihedral angles of ca. 0° and ca. 120° , are expected^{6,7} from Dreiding models for the relevant chair conformation (III-C).

(iii) The stereospecific W-coupling between H-13 (anti) and H-2,5 (endo), obtained in 1, is understandable only in the boat conformation of the eight-membered ring, owing to the planar precondition of all the atoms involved in the W-fragment.

Table 1. NMR parameters of the bridged benzannelated diazocines 1–4 in CDCl ₃ [δ (TMS) (ppm)]										
	C-2,5	C-3,4		C-9C-12						

Compound	[H-2,5]	[H-3,4]	C-7,8	[H-9-H-12]	C-13	R ¹ , R ²
1	60.0ª [3.89 (d, m) and 3.67 (d, m)]°	126.1ª [5.26 (m)]	148.0ª 	124.9; 117.0ª [7.04 (s)]	76.2ª [4.38 (d, t) and 4.14 (d)] ^b	_
2	55.8 [3.73 (m)] ^d	127.7 [5.23 (s, br.)]*	148.6 —	124.6; 117.8 [7.05 (m)] ^f	82.3	29.9; 18.7 [1.59; (s) <i>syn</i>]ª [1.22; (s) <i>anti</i>] [†]
3	60.0	126.7	147.1	124.9; 117.3	86.5	141.7 (i); 128.0 (m); 126.6 (o); 127.4 (p)
	[4.08 (d, m) and 3.85 (d, m)] ^h	[5.38 (s, br.)] ⁱ		[7.05 (m)]	[5.26 (s)]	[7.23 (m, <i>meta, para</i>) 7.52 (d, d, <i>ortho</i>)]
4	59.9	126.5	147.2	124.7; 117.2	86.3	40.5; 112.3 (<i>o</i>); 127.2 (<i>m</i>); 129.9 (<i>i</i>); 150.1 (<i>p</i>)
	[4.05 (d, m); 3.82 (d, m)] ^{h,i}	[5.35 (s, br.)]		[7.03 (m)]	[5.21 (s)]	[2.85 (s); 6.61 (d, m); 7.35 (d, m)]

^a No change in line shape down to -120 °C (CFCl₃). ^b $J_{gem} = 10.3$ Hz; no couplings to H-3,4 but ⁴ J[H-13 (*anti*), H-2,5 (*endo*)] = 1.1 Hz, NOE H-13 (*syn*), H-2,5 (*exo*) and NOE H-13 (*syn*), H-13 (*anti*).

 $^{\circ}J_{gem} = 16.4$ Hz, only small couplings $^{3}J(H-2,5/H-3,4) \approx 1-1.6$ Hz; H-2,5 exo coupling stronger than H-2,5 endo; NOE H-13 (syn), H-2,5 (exo); NOE H-2,5 (endo), H-3,4; NOE H-2,5 (exo), H-2,5 (endo). ^d NOE H-2,5 (exo)/CH₃ (syn); NOE H-2 (endo)/H-3,4.

* NOE H-3,4/H-2,5 (endo).

^fNo NOE.

9 NOE CH₃ (syn), H-2,5 (exo).

^hJ_{gem} = 16.5 Hz, NOE H-13 (*syn*), H-2,5 (*exo*) and NOE H-13 (*syn*), H_{ortho}. ⁱNOE H-2,5 (*exo*), H-2,5 (*endo*), NOE H-2,5 (*endo*), H-3,4, NOE H-13 (*syn*), H-2,5 (*exo*).

(iv) The H-13 (syn)/H-2,5 NOEs were also obtained, in 3 and 4, showing the *anti*-arrangement of the phenyl substituents in these compounds.

(v) Identical conformations are expected for the compounds studied owing to the very similar ¹H and ¹³C chemical shifts; the differences parallel the normal substituent effects.

(vi) In the presence of a phenyl substituent on the methylene bridge (3, 4), the ⁴J[H-13 (*anti*), H-2,5 (*endo*)] W-coupling is no longer obtained for the remaining single H-13 absorption. The triplet structure of the latter signal is due to ⁴J[H-13 (*syn*), H-*ortho*], which was proved by H,H decoupling experiments. This result also corroborates the *anti* conformation of the phenyl substituent in 3 and 4.

DISCUSSION

Heteroatoms and substituents on the eight-membered ring and on the methylene bridge have a strong influence on the preferred conformation for this type of compound. With respect to the eight-membered ring, both boat^{8,9} and chair conformations^{8,10} have been reported as the preferred conformers, in accord with parallel force field calculations,⁹ ¹H and ¹³C chemical shifts^{9,10} and an independent LIS study.⁹

In the case of 1-4 according to (i)-(iii) and (v) above, it can be unequivocally stated that only a single stereoisomer is obtained, where the eight-membered ring is in the boat conformation II(B). The phenyl substituent on the methylene bridge in 3 and 4 is in the *anti* conformation, in line with (iv)-(vi) above, obviously for steric reasons.

EXPERIMENTAL

Syntheses

All melting points were determined using a Boetius M melting point apparatus; they are uncorrected.

1,2,5,6-Tetrahydro-1,6-benzodiazocine (I, R = H) was prepared as described previously.³

1,6-Methano-1,2,5,6-tetrahydro-1,6-benzodiazocine (1). A mixture of I (R = H) (1.6 g; 0.01 mol), paraformaldehyde (1.2 g) and one drop of sulphuric acid in xylene (50 ml) was heated for 8 h while refluxing. The bulk of the solvent was removed under reduced pressure. Recrystallization from light petroleum (b.p. 70–80 °C) of the solid obtained gave 1 (1.55 g; 90%; m.p. 93–94 °C). Found: C, 76.64; H, 7.11; N, 16.53. $C_{11}H_{12}N_2$ requires C, 76.71; H, 7.02; N, 26.27%. *m/z*: 172 (M⁺, 65%), 157 (88%), 144 (32%), 132 (68%), 119 (100%), 92 (36%).

13,13-Dimethyl-1,6-methano-1,2,5,6-tetrahydro-1,6-benzodiazocine (2). A solution of I (R = H) (1.6 g; 0.01 mol) in acetone (20 ml) was heated at reflux for 6 h. After evaporation of the solvent and recrystallization from light petroleum (b.p. 70-80 °C), **2** was obtained (1.9 g; 95%; m.p. 92 °C). Found: C, 77.58; H, 8.31; N, 13.94. $C_{13}H_{16}N_2$ requires C, 77.96; H, 8.05; N, 13.99%. m/z: 200 (M⁺, 70%), 185 (95%), 170 (22%), 157 (30%), 144 (40%), 132 (37%), 119 (100%), 92 (48%).

13-Phenyl-1,6-methano-1,2,5,6-tetrahydro-1,6-benzodiazocine (3). A solution of I (R = H), (2 g; 0.012 mol) and benzaldehyde (3 g, 0.028 mol) in xylene (60 ml) was heated for 4 h at reflux. After evaporation of the solvent and recrystallization from light petroleum (b.p. 70-80 °C), 3 was obtained (2.4 g; 80%; m.p. 90-91 °C). Found: C, 82.59; H, 6.31; N, 11.47. $C_{17}H_{16}N_2$ requires C, 82.22; H, 6.50; N, 11.28%. m/z: 248 (M⁺, 60%), 157 (35%), 144 (20%), 132 (20%), 119 (63%), 92 (26%).

13-(*p*-*N*,*N*-Dimethylamino)phenyl-1,6-methano-1,2,5,6-tetrahydro-1,6-benzodiazocine (4). Reaction of I (R = H), (1.6 g; 0.01 mol) with *p*-*N*,*N*-dimethylaminobenzaldehyde (1.68 g; 0.011 mol) in xylene (50 ml) (as described previously for 3) gave 4 (2.3 g; 80%), m.p. 199–202 °C (from *n*heptane). Found: C, 77.91; H, 6.96; N, 14.02. C₁₉H₂₁N₃ requires C, 78.31; H, 7.26; N, 14.42%. *m/z*: 291 (M⁺, 69%), 157 (21%), 144 (41%), 134 (100%), 132 (30%), 119 (34%), 92 (26%).

NMR spectroscopy

The NMR spectra were obtained at 200.13 MHz (¹H) and 50.327 MHz (¹³C) using a Bruker WP-200 NMR spectrometer. The solvent was $CDCl_3$ and the chemical shifts are referenced to TMS (internal).

The regular Bruker software for the Aspect 2000 was used for the H,H decoupled and NOE difference spectra in the inverse-gated mode.

Acknowledgement

We thank Mrs Renate Mühlpfordt for recording the NMR spectra.

REFERENCES

- E. Kleinpeter, M. Gäbler and W. Schroth, *Monatsh. Chem.* 119, 233 (1988).
- 2. E. Kleinpeter and W. Schroth, Z. Chem. 29, 62 (1989).
- 3. W. Schroth and B. Streckenbach, Z. Chem. 3, 465 (1963).
- (a) B. Werner, Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Martin-Luther-Universität Halle-Wittenberg (1971); (b) F. C. Cooper and M. W. Partridge, J. Chem. Soc. 2888 (1957); (c) N. J. Harper and J. M. Sparke, J. Chem. Soc. C 882 (1969); (d) A. Saunders and J. M. Sparke, J. Chem. Soc. C 1161 (1970).
- J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy. Oxford University Press, Oxford, New York, Tokyo (1987).
- E. Kleinpeter, M. G\u00e4bler and W. Schroth, Magn. Reson. Chem. 26, 380 (1988).
- E. Kleinpeter, J. Hartmann and W. Schroth, Magn. Reson. Chem., submitted for publication.
- R. Dyllick-Brenzinger and H. Olsen, J. Am. Chem. Soc. 103, 704 (1981).
- P. C. Belanger, R. N. Young, J. Scheigetz and C. Dufresne, J. Org. Chem. 47, 4329 (1982).
- (a) M. Barelle, M. Apparn and C. Gey, *Tetrahedron Lett.* 4725 (1976); (b) P. Scheiber and K. Nador, *Justus Liebigs Ann. Chem.* 913 (1985).