4a-h October 1987 Papers 893 ## Polarized Ketene Dithioacetals; 55: Synthesis of Novel 5-Aryl-2-methylthio-4*H*-pyran-4-ones from Cinnamoylketene Dithioacetals B. Deb, C.V. Asokan, H. Ila,* H. Junjappa* Department of Chemistry, North-Eastern Hill University, Shillong 793003, Meghalaya, India A novel method for the synthesis of 5-aryl-2-methylthio-4H-pyran-4-ones $4\mathbf{a}$ - \mathbf{h} has been developed from the corresponding cinnamoyl-ketene dithioacetals $1\mathbf{a}$ - \mathbf{h} in three successive steps. In the first step, $1\mathbf{a}$ - \mathbf{h} were oxidized with alkaline hydrogen peroxide to give the corresponding (β -aryl- α , β -epoxypropanoyl)ketene dithioacetals $2\mathbf{a}$ - \mathbf{h} in 78-89% overall yields. In the second step the epoxyketones $2\mathbf{a}$ - \mathbf{h} were subjected to rearrangement in the presence of ether-boron trifluoride complex to give the corresponding (α -formyl- α -phenylacetyl)ketene dithioacetals $3\mathbf{a}$ - \mathbf{h} , which were then cyclized in the third step by refluxing in acetic acid/ethanol to afford the title compounds in good yields. During the course of our investigations on polarized ketene dithioacetals, we have shown in our earlier work that cinnamoyl ketene dithioacetals 1^2 serve as useful precurssors for the synthesis of styrylpyrimidines, methyl 5-aryl-2,4-pentadienoates, substituted 2-arylcyclopentenones and stilbenes. We have also developed recenly a facile method for 2-aryl-6-methylthio-4H-pyran-4-ones by base-catalyzed condensation of acylketene dithioacetals with methyl benzoates to give the corresponding (α -aroylacyl)ketene dithioacetals followed by their cyclization in refluxing acetic acid. In the present work, we now report the synthesis of hitherto unknown 5-aryl-2- | 14 | Ar | 1-4 | Ar | |----|--|-----|--| | a | C ₆ H ₅ | f | 3,4-(CH ₃ O) ₂ C ₆ H ₃ | | b | 4-CH ₃ C ₆ H ₄ | g | $3,4,5-(CH_3O)_3C_6H_2$ | | c | 4-ClC ₆ H ₄ | | 2 | | d | 4-CH ₃ OC ₆ H ₄ | h | | | e | $3-CH_3OC_6H_4$ | | 0 | | | | | | 3a-h Table 1. 5-Aryl-1,1-bis(methylthio)-4,5-epoxy-1-penten-3-ones 2 Prepared | Prod-
uct | Yield ^a
(%) | m.p.
(°C) ^b | Molecular
Formula ^c | IR $(KBr)^d$
$\delta (cm^{-1})$ | ¹ H-NMR (CDCl ₃ /TMS) ^e
δ. J(Hz) | MS (70 eV) ^f
m/e (%) | |--------------|---------------------------|---------------------------|--|------------------------------------|--|---| | 2a | 89 | 82-83 | C ₁₃ H ₁₄ O ₂ S ₂
(266.4) | 1630, 1480,
1640 | 2.41 (s, 3 H, SCH ₃); 2.42 (s, 3 H, SCH ₃); 3.49 (d, 1 H, <i>J</i> = 2.5, H-4); 3.90 (d, 1 H, <i>J</i> = 2.5, H-5); 6.20 (s, 1 H, =CH); 7.25 (s, 5 H _{arom}) | 266 (M ⁺ , 5); 250 (17); 235 (54); 219 (37); 147 (100) | | 2b | 83 | 96–97 | $C_{14}H_{16}O_2S_2$ (280.4) | 1640, 1590,
1480 | (a) $3H_{arom}$ (b) $3H_{arom}$ (c) $3H_{arom}$ (d) $3H_{arom}$ (e) $3H_{arom}$ (f) $3H_{arom$ | 280 (M ⁺ , 4); 264 (5); 249 (13); 233 (51); 147 (100) | | 2c | 80 | 105106 | $C_{13}H_{13}ClO_2S_2$ (300.8) | 1609, 1475 | 2.50 (s, 3 H, SCH ₃); 2.51 (s, 3 H, SCH ₃); 3.45 (d, 1 H, $J = 2.5$, H-4); 3.92 (d, 1 H, $J = 2.5$, H-5); 6.25 (s, 1 H, =CH); 7.13–7.55 (m, A_2B_2 , 4 H _{arom}) | 300, 302 (M ⁺ , 10,5); 284.
286 (51, 20); 269, 271 (9, 4); | | 2d | 86 | 9394 | C ₁₄ H ₁₆ O ₃ S ₂
(296.4) | 1636, 1609,
1488 | 2.45 (s, 3 H, SCH ₃); 2.46 (s, 3 H, SCH ₃); 3.48 (d, 1 H, <i>J</i> = 2.5, H-4); 3.79 (s, 3 H, CH ₃ O); 3.85 (d, 1 H, <i>J</i> = 2.5, H-5); 6.20 (s, 1 H, =CH); 6.75–7.30 | 253, 255 (8, 3); 147 (38)
296 (M ⁺ , 18); 280 (6); 265
(10); 249 (100); 147 (80) | | 2e | 78 | 84-85 | C ₁₄ H ₁₆ O ₃ S ₂
(296.4) | 1605, 1480 | (m, A_2B_2 , $4H_{arom}$)
2.50 (s, 6H, SCH ₃); 3.42 (d, 1H, $J = 2.5$, H-4);
3.74 (s, 3H, CH ₃ O); 3.88 (d, 1H, $J = 2.5$, H-5);
6.19 (s, 1H, =CH); 6.72–7.38 (m, $4H_{arom}$) | 296 (M ⁺ , 7); 280 (3); 265 (4); 249 (60); 147 (100) | | 2f | 81 | 120-121 | $C_{15}H_{18}O_4S_2$ (326.4) | 1620, 1590,
1480 | 2.50 (s, 3H, SCH ₃); 2.51 (s, 3H, SCH ₃); 3.55 (d, 1H, $J = 2.5$, H-4); 3.89 (s, 7H, CH ₃ O and H-5); 6.16 (s, 1H, =CH); 6.60-6.79 (m, 3H _{aron}) | M ⁺ (absent); 310 (17); 295 (20); 279 (15); 263 (100); 147 | | 2g | 80 | 184–185 | $C_{16}H_{20}O_5S_2$ (356.5) | 1626, 1590,
1479 | 2.49 (s, 3 H, SCH ₃); 2.52 (s, 3 H, SCH ₃); 3.49 (d, 1H, $J = 2.5$, H-4); 3.68 (s, 3 H, CH ₃ O); 3.80 (s, 6 H, CH ₃ O); 3.92 (d, $J = 2.5$ Hz, H-5); 6.28 (s, 1 H, =CH); 6.58 (s, 2 H _{aron}) ^g | (82)
356 (M ⁺ , 0.5); 309 (12); 147
(92) | | 2h | 83 | 124–125 | C ₁₄ H ₁₄ O ₄ S ₂
(310.4) | 1660, 1600,
1570 | 2.49 (s, 6H, SCH ₃); 3.42 (d, 1H, $J = 2.5$, H-4); 3.82 (d, 1H, $J = 2.5$, H-5); 5.96 (s, 2H, CH ₂); 6.20 (s, 1H, =CH); 6.62-6.90 (m, 3H _{arom}) | 310 (M ⁺ , 5); 294 (3); 279 (9); 263 (73); 147 (100) | ^a Yield of isolated product 2 based on 1. b Uncorrected, measured on Thomas Hoover melting point apparatus. Satisfactory microanalysis obtained: $C \pm 0.29$, $H \pm 0.31$. d Recorded on Perkin Elmer 297 Infrared spectrophotometer. Recorded on Varian EM-390 spectrometer. Measured on Jeol-D 300 Mass spectrometer. ^g In DMSO-d₆/CDCl₃. 894 Papers synthesis Table 2. 2-Aryl-5,5-bis(methylthio)-3-hydroxy-2,4-pentadienals 3 Prepared | Product | Yield ^a
(%) | m.p. (°C) ^b | Molecular
Formula ^c | IR (KBr) ^d
v (cm ⁻¹) | 1 H-NMR (CDCl $_{3}$ /TMS) c δ | MS (70 eV) ^f
m/e | |---------|---------------------------|------------------------|--|--|---|--| | 3a | 92 | 158 -159 | $C_{13}H_{14}O_2S_2$ (266.4) | 3200, 2830,
1580, 1500 | 2.25 (s, 3H, SCH ₃); 2.60 (s, 3H, SCH ₃); 5.85 (s, 1H, =CH); 7.50-7.55 (m, 5H _{arom}); 7.80 (s, 1H, CHO) ^g | 266 (M ⁺); 267 (M ⁺ + 1) | | 3b | 86 | 159-160 | $C_{14}H_{16}O_2S_2$ (280.4) | 3200, 2830,
1595, 1480 | 2.26 (s, 3H, SCH ₃); 2.40 (s, 3H, SCH ₃); 2.63 (s, 3H, CH ₃); 5.90 (s, 1H, =CH); 7.05-7.50 (m, 4H _{arom}); 7.28 (s, 1H, CHO) | 280 (M ⁺); 281 (M ⁺ + 1) | | 3e | 87 | 164-165 | C ₁₃ H ₁₃ ClO ₂ S ₂
(300.8) | 3200, 2840,
1595, 1500,
1480 | 2.26 (s, 3H, SCH ₃); 2.60 (s, 3H, SCH ₃); 5.82 (s, 1H, =CH); 7.05–7.50 (m, A ₂ B ₂ , 4H _{arom}); 7.65 (s, 1H, CHO) | 300, 302 (M ⁺); 301, 303
(M ⁺ + 1) | | 3d | 88 | 140141 | $C_{14}H_{16}O_3S_2$ (296.4) | 3210, 2825,
1600, 1520,
1485 | 2.20 (s, 3H, SCH ₃); 2.55 (s, 3H, SCH ₃); 3.80 (s, 3H, CH ₃ O); 5.81 (s, 1H, =CH); 6.75–7.26 (m, A ₂ B ₂ , 4H _{arem}); 7.66 (s, 1H, CHO) | 296 (M ⁺); 297 (M ⁺ + 1) | | 3e | 85 | 154–155 | $C_{14}H_{16}O_3S_2 (296.4)$ | 3250, 2825,
1590, 1490,
1475 | 2.14 (s, 3H, SCH ₃); 2.50 (s, 3H, SCH ₃); 3.70 (s, 3H, CH ₃ O); 5.83 (s, 1H, =CH); 6.78–7.50 (m, 4H _{arom}); 7.70 (s, 1H, CHO) | 296 (M ⁺); 297 (M ⁺ + 1) | | 3f | 86 | 197198 | $C_{15}H_{18}O_4S_2$ (326.4) | 3215, 2831,
1590, 1495 | 2.21 (s, 3H, SCH ₃); 2.60 (s, 3H, SCH ₃); 3.83 (s, 6H, CH ₃ O); 5.84 (s, 1H, =CH); 6.65 6.86 (m, 3H _{3rom}); 7.66 (s, 1H, CHO) | 327 (M ⁺ + 1) | | 3g | 88 | 178-179 | $C_{16}H_{20}O_5S_2$ (356.5) | 3200, 2825,
1590, 1480 | 2.20 (s, 3H, SCH ₃); 2.57 (s, 3H, SCH ₃); 3.88 (s, 9H, CH ₃ O); 5.90 (s, 1H, =CH); 6.49 (s, 2H _{arom}); 7.74 (s, 1H, CHO) | 357 (M ⁺ + 1) | | 3h | 84 | 174-175 | $C_{14}H_{14}O_4S_2$ (310.4) | 3200, 2838,
1595, 1498,
1480 | 2.30 (s, 3H, SCH ₃); 2.60 (s, 3H, SCH ₃); 5.81 (s, 1H, =CH); 5.99 (s, 2H, CH ₂); 6.60–6.82 (m, 3H _{arom}); 7.67 (s, 1H, CHO) | 310 (M ⁺); 311 (M ⁺ + 1) | ^a Yield of isolated product 3 based on 2. ^g ¹³C-NMR (CDCl₃/TMS): δ = 16.38 (q, SCH₃); 17.67 (q, SCH₃); 106.32 (d, =CH); 115.7 (s, Ar–C=); 128.49, 129.07, 130.26 (d, C_{aron}); 132.80 (s, C-1' of phenyl); 169.70 (d, CHO); 176.50 [s, =C(SCH₃)₂]; 181.5 (s, HOC=). methylthio-4*H*-pyran-4-ones **4** from cinnamoylketene dithio-acetals **1** through a sequence of reactions shown in the Scheme. When 1a was reacted with alkaline hydrogen peroxide at room temperature, the corresponding (β -phenyl- α , β -epoxypropanoyl)ketene dithioacetal 2a was obtained in 89% yield, while the bismethylthioenone group remained unaffected under these conditions. The epoxyketone 2a underwent smooth rearrangement to the corresponding (α -formyl- α -phenylacetyl)ketene dithioacetal 3a (92%) on treatment with ether-borontrifluoride complex in refluxing tetrahydrofuran. In a subsequent step, when 3a was refluxed in ethanol and acetic acid, the corresponding 2-methylthio-5-phenyl-4*H*-pyran-4-one (4a) was obtained in 75% yield. The other substituted pyrones 4b-h were similarly prepared in good yields by the same sequence from the respective 1b-h via 2b-h and 3b-h. The ketene dithioacetals **5a** and **5b** failed to undergo epoxidation with hydrogen peroxide under identical conditions and yielded only intractable reaction mixture at higher temperature (50–60° or under modified conditions.⁸) The structures of 2, 3 and 4 were established by their spectral and analytical data (Tables 1-3). The starting cinnamoyl ketene dithioacetals 1a-h were prepared according to the reported procedure.² ## 5-Aryl-1,1-bis(methylthio)-4,5-epoxy-1-penten-3-ones 2; General Procedure: A solution of 30% $\rm H_2O_2$ (5 mL) in 3 normal aqueous NaOH solution (5 mL) is added dropwise to a well stirred solution of 1 (10 mmol) in MeOH (150 mL) during 5 min. The mixture is stirred at room temperature for 6 h, diluted with water (100 mL), and left overnight in a refrigerator (0 °C). The epoxy compounds 2 are filtered as white solids, which are used as such for subsequent step and crystallyzed from MeOH for spectral and analytical data (Table 1). ## 2-Aryl-5,5-bis(methylthio)-3-hydroxy-2,4-pentadienals 3; General Procedure: To a solution of 2 (10 mmol) in THF (50 mL), $\rm Et_2O \cdot BF_3$ (16 mL) is added and the mixture is refluxed for 5 h. The mixture is cooled and poured over ice cold saturated NaHCO₃ solution (200 mL). The product is extracted with EtOAc ($4\times50\,\rm mL$), washed with water ($3\times100\,\rm mL$), dried (Na₂SO₄) and concentrated to give 3 as bright yellow to orange-red solids. These are used as such for subsequent reaction and crystallyzed from ether/CHCl₃ for spectral and analytical data (Table 2). 5-Aryl-2-methylthio-4H-pyran-4-ones 4; General Procedure: A solution of 3 (7.5 mmol) in ethanol (15 mL) and glacial acetic acid (5 mL) is refluxed for 3–5 h, cooled and poured over ice cooled saturated NaHCO₃ solution (70 mL). The product is extracted with $\mathrm{CH_2Cl_2}$ (3 × 50 mL), dried (Na₂SO₄), evaporated and the residue is b Uncorrected, measured on Thomas Hoover melting point apparatus. Satisfactory microanalysis obtained C ± 0.28 , H ± 0.31 . d-f As in Table 2. Table 3. 5-Aryl-2-methylthio-4H-pyran-4-ones 4 Prepared | Product | Reaction
Time (h) | Yield ^a
(%) | m.p. ^b
(°C) | Molecular
Formula | $IR (KBr)^{d}$ $v_{C=0} (cm^{-1})$ | 1 H-NMR (CDCl $_{3}$ /TMS) c δ | MS (70 eV) ^f
m/e (%) | |---------|----------------------|---------------------------|---------------------------|--|------------------------------------|--|---| | 4a | 6 | 75 | 96-97 | $C_{12}H_{10}O_2S$ (218.3) | 1630 | 2.40 (s, 3H, SCH ₃); 6.10 (s, 1H, H-3); 7.13-7.41 (m, 5H _{aron}); 7.69 (s, 1H, H-6) | 218 (M ⁺ , 53); 203
(13); 146 (38); 118
(28); 102 (100) | | 4b | 7 | 72 | 109-110 | $C_{13}H_{12}O_2S$ (232.3) | 1630 | 2.33 (s. 3H, CH ₃); 2.45 (s, 3H, SCH ₃); 6.28 (s, 1H, II-3); 7.10-7.45 (m, A ₂ B ₂ , 4H _{arom}); 7.80 (s. 1H, H-6) | 232 (M°, 48); 217
(11); 160 (48); 132
(14); 116 (100) | | 4c | 5 | 76 | 114–115 | C ₁₂ H ₉ ClO ₂ S
(252.7) | 1650 | 2.47 (s, 3H, SCH ₃); 6.28 (s, 1H, II-3); 7.20–7.49 (m, A ₂ B ₂ , 4H _{arom}); 7.78 (s, 1H, H-6) | 252, 254 (78, 27); 237,
239 (25, 7); 180, 182
(57, 20); 152, 154
(20,9); 136, 138 (100,
47) | | 4d | 5 | 73 | 139-140 | C ₁₃ H ₁₂ O ₃ S
(248.3) | 1632 | 2.45 (s, 3H, SCH ₃); 3.80 (s, 3H, CH ₃ O); 6.29 (s, 1H, H-3); 6.82-7.56 (m, A ₂ B ₂ , 4H _{nrom}); 7.77 (s, 1H, H-6) | 248 (100); 233 (15);
176 (69); 148 (10); 132
(63) | | 4e | 4 | 72 | Viscous
Semisolid | $C_{13}H_{12}O_3S$ (248.3) | 1635 ^g | 2.48 (s, 3 H, SCH ₃); 3.80 (s, 3 H, CH ₃ O); 6.19 (s, 1 H, H-3); 6.73–7.37 (m, 4 H _{arom}); 7.78 (s, 1 H, H-6) | 248 (M ⁺ , 100), 233
(17); 176 (39); 148
(80); 132 (65) | | 4f | 5 | 70 | 144-145 | C ₁₄ H ₁₄ O ₄ S
(278.3) | 1640 | 2.45 (s. 3H, SCH ₃); 3.82 (s, 6H, CH ₃ O); 6.19 (s, 1H, H-3); 6.68-7.17 (m, 3H _{arom}); 7.72 (s, 1H, H-6) | 278 (M*, 100); 263 (7); 206 (4); 178 (30); 162 (25) | | 4g | 3 | 69 | 6364 | $\frac{C_{15}H_{16}O_{8}S}{(308.4)}$ | 1637 | 2.45 (s. 3H, SCH ₃); 3.71 (s. 3H, CH ₃ O); 3.81 (s. 6H, CH ₃ O); 6.15 (s. 1H, H-3); 6.60 (s. 2H _{arom}); 7.69 (s. 1H, H-6) | 308 (M ⁺ , 21); 293 (26); 208 (7); 192 (65) | | 4h | 6 | 71 | 144145 | C ₁₃ H ₁₀ O ₄ S
(262.3) | 1625 | 2.46 (s, 3H, SCH ₃); 5.95 (s, 2H, CH ₂); 6.25 (s, 1H, H-3); 6.77–7.05 (m, 3H _{arom}); 7.72 (s, 1H, H-6) | 262 (M ⁺ , 100); 247
(12); 190 (71); 162
(100); 146 (64) | Yield of isolated product 4 based on 3. chromatographed on a neutral alumina column using EtOAc and hexane (1:20) as eluent to afford 4 as colorless solids which are crystallized from $\mathrm{CHCl_3}/\mathrm{hexane}$ mixture (Table 3). B.D. and C.V.A. thank CSIR, New Delhi for Junior and Senior Research fellowships. - (1) Part 54: Singh, L.W., Ila, H., Junjappa, H. Indian. J. Chem., in - (2) Thuiller, A., Vialle, J. Bull. Soc. Chem. Fr. 1962, 2182. - (3) Singh, L.W., Gupta, A.K., Ila, H., Junjappa, H. Synthesis 1984, - (4) Myrboh, B., Asokan, C. V., Ila, H., Junjappa, H. Synthesis 1984, 50. - (5) Asokan, C.V., Ila, H., Junjappa, H. Tetrahedron Lett. 1985, 26, - (6) Asokan, C.V., Ila, H. Junjappa, H. Synthesis 1987, 284. - (7) Singh, L.W., Ila, H., Junjappa, H. Synthesis 1987, 873. - (8) Bach, R.D., Knight, J.W. Org. Synth. 1981, 60, 63. Received: 7 January 1987; revised: 31 March 1987 ^b Uncorrected, measured on Thomas Hoover melting point apparatus. ^e In chloroform. Satisfactory microanalysis obtained: $C \pm 0.27$, $H \pm 0.34$. a=e As in Table 1.