Preparation of Optically Active (R)- and (S)-Allene-1,3-dicarboxylates and Their Asymmetric Cycloaddition Reactions with Cyclopentadiene

Mariko Aso,¹a Izumi Ikeda,¹a Tsuyoshi Kawabe,¹a Motoo Shiro,¹b and Ken Kanematsu⁺¹a

Institute of Synthetic Organic Chemistry, Faculty of Pharmaceutical Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka 812,^{1a} and Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima, Tokyo 196,^{1b} Japan

Key words: optically active allene-1,3-dicarboxylate, asymmetric Diels-Alder reaction

Abstract: Optically active (R)- and (S)-allene-1,3-dicarboxylates were prepared, and their asymmetric Diels-Alder reactions with cyclopentadiene in the presence of Lewis acid proceeded to afford the *endo*-adducts in high yields. The absolute configuration of the adduct was completely confirmed by X-ray analysis.

Although the activating influence that a carboxylate moiety exerts upon the 1,3-disubstituted allene framework makes these compounds excellent candidates as dienophiles in Diels-Alder reactions, 1, 2 no systematic study of the cycloaddition reactions of compounds of this type has been reported. It would be predicted that Diels-Alder reaction of the optically active allene-1,3-dicarboxylate proceeds with high stereoselectivity derived from axial asymmetry of allene moiety. From this point of view, it is expected that adduct A would be preferentially obtained through the combination of the sterically favored approach owing to axial asymmetry of allene moiety and the effective secondary orbital interaction (Figure 1). While adduct B would be formed without secondary orbital interaction of carboxylate moiety, adduct C must be formed against the steric hindrance. In addition, adduct D would be scarcely formed because of two disadvantageous factors.

Figure 1

Optically active di-(-)-menthyl allene-1,3-dicarboxylate 5 was prepared by the modification of Smith's procedure of allene-1,3-dicarboxylate (Scheme I).³ 3-Chloroglutaconic acid 3 was obtained from dimethyl 1,3-acetonedicarboxylate 1 by treatment with phosphorus pentachloride (1.05 equiv) followed by hydrolysis with 20% hydrochloric acid. Esterification of the diacid 3 with (-)-menthol (conc. sulfuric acid, benzene, reflux) proceeded to give chlorodimenthylester 4 in high yield. The proportion of the stereoisomers 4 was determined (E: Z = 6: 1) by ¹H-NMR spectrum inspection. Dehydrochlorination of 4 by triethylamine (1.19 equiv) in anhydrous tetrahydrofuran at 0 °C gave a mixture of diastereomers, which was recrystallized from pentane to afford pure crystals 5; m.p. 83 °C, $[\alpha]_D^{20}$ -251.1° (c = 1.00, CHCl₃).

Scheme I^a

^aReagents: (a) PCl₅; (b) 20% HCl, reflux; (c) (-)-menthol, conc. H₂SO₄, benzene, reflux; (d) Et₃N, THF, 0 °C, then recrystallized from pentane.

The Diels-Alder reaction of 5 with cyclopentadiene in the presence of aluminum chloride proceeded to afford the 1:1 adduct 6 in 96% yield (Scheme II).⁴ A typical experimental procedure is as follows. To a suspension of aluminum chloride (592 mg, 4.44 mmol, 1.20 equiv) in 12 mL of anhydrous dichloromethane at -78 °C under nitrogen was added a solution of 5 (1.49 g, 3.69 mmol) in anhydrous dichloromethane. After 30 min, cyclopentadiene (3 mL, excess) was added. The reaction mixture was stirred at -78 °C for 5 h to give 6 (1.66 g, 96%). The relative configuration of 6 was established by the ¹H-NMR spectroscopy.⁵ Furthermore, the absolute configuration of 5 was determined by Agosta's procedure.⁶ Thus, the absolute configuration of the axial asymmetry of 5 was shown to be R.

Scheme II^a

^aReagents: cyclopentadiene, AlCl₃, CH₂Cl₂, -78 °C, 5 h.

On the other hand, optically active di-(+)-menthyl allene-1,3-dicarboxylate 8 (m.p. 83 °C, $[\alpha]_D^{22}$ +262.7° (c = 0.99, CHCl₃)) was prepared in a similar manner as the preparation of 5 (Scheme III). Similar treatment of 8 with cyclopentadiene in the presence of aluminum chloride proceeded to afford the 1:1 adduct 9 in 89% yield. Spectral data of 9 were identical with those of 6 except for antipodal optical rotation.⁵

Scheme III*

^aReagents: (a) (+)-menthol, conc. H_2SO_4 , benzene, reflux; (b) Et_3N , THF, 0 °C, then recrystallized from pentane; (c) cyclopentadiene, AlCl₃, CH₂Cl₂, -78 °C, 3 h.

In addition, the absolute configuration of 9 was completely confirmed by X-ray analysis (Figure 2).7

Figure 2 X-ray crystal structure of adduct 9

As described above, we have succeeded in preparation of optically active (R)- and (S)-allene-1,3dicarboxylates 5 and 8 using (-)- and (+)-menthol, respectively. Moreover, the Diels-Alder reaction of 5 and 8 with cyclopentadiene in the presence of Lewis acid proceeded to afford adducts 6 and 9 in high yields, respectively. Further, the adducts 6 and 9 were supposed to be useful for synthesis of optically active natural products and its antipode. For example, *cis*-trikentrin B is a minor component of the trikentrins, and the absolute structure of natural *cis*-trikentrin B is not determined.⁸ Therefore, the synthesis of optically active *cis*-trikentrin B using the obtained optically active adduct as a synthetic key intermediate is now in progress.

References and Notes

- 1. W. Oppolzer and C. Chapuis, Tetrahedron Lett., 24, 4665 (1983).
- M. Yoshida, Y. Hidaka, Y. Nawata, J. M. Rudziński, E. Ôsawa, and K. Kanematsu, J. Am. Chem. Soc., 110, 1232 (1988).
- 3. C. P. Dell, E. H. Smith, and D. Warburton, J. Chem. Soc., Perkin Trans. 1, 1985, 747.
- 4. K. Furuta, K. Iwanaga, and H. Yamamoto, Tetrahedron Lett., 27, 4507 (1986).
- 5. Data for the synthetic 6: ¹H NMR (270 MHz, CDCl₃) δ 6.11–6.18 (m, 2H), 5.98 (d, J = 2.0 Hz, 1H), 4.25-4.88 (m, 2H), 3.87 (dd, J = 3.5, 2.0 Hz, 1H), 3.41 (m, 1H), 3.33 (m, 1H), 1.35-2.28 (m, 20H), 0.41-1.53 (m, 18H); IR (CHCl₃) cm⁻¹ 1710 (s), 1690 (s); EI-MS m/z 470 (M⁺); Anal. Calcd for C₃₀H₄₆O₄: C, 76.55; H, 9.85. Found: C, 76.80; H, 9.77; m.p. 97 °C; $[\alpha]_D^{23}$ -48.2° (c = 1.03, CHCl₃). Data for the synthetic 9: ¹H NMR (270 MHz, CDCl₃) δ 6.11–6.18 (m, 2H), 5.97 (d, J = 2.0 Hz, 1H), 4.25-4.88 (m, 2H), 3.87 (dd, J = 3.6, 2.0 Hz, 1H), 3.41 (m, 1H), 3.33 (m, 1H), 1.35-2.28 (m, 20H), 0.41-1.53 (m, 18H); IR (CHCl₃) cm⁻¹ 1710 (s), 1690 (s); EI-MS m/z 470 (M⁺); Anal. Calcd for C₃₀H₄₆O₄: C, 76.55; H, 9.85. Found: C, 76.48; H, 9.85; m.p. 104.5 °C; $[\alpha]_D^{22}$ +47.1° (c = 1.08, CHCl₃).
- 6. (+)-Norcamphor dinitrophenylhydrazone derived from adduct 6 was compared with the data of the references as follows; W. C. Agosta, J. Am. Chem. Soc., 86, 2638 (1964); (+)-norcamphor dinitrophenylhydrazone derived from adduct 6; [α]_D²⁵ +32.7° (c = 0.46, CHCl₃), m.p. 132 °C (lit. [α]_D²⁸ +30° (CHCl₃), m.p. 129-130 °C). While (-)-norcamphor dinitrophenylhydrazone was derived from adduct 9, its optical rotation was opposite to that of (+)-norcamphor derivative from adduct 6; [α]_D²³ -28.0° (c = 1.03, CHCl₃), m.p. 131 °C.
- 7. Crystal data for adduct 9; formula C₃₀H₄₆O₄, formula weight 470.69, crystal system tetragonal, space group P4₃, a(Å) 11.665(4), c(Å) 21.778(8), V(Å³) 2963(2), Z value 4, D calc(g cm⁻³) 1.055, μ(CuKα)(cm⁻¹) 5.03, R; Rw 0.046; 0.058. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.
- T. Yasukouchi and K. Kanematsu, *Tetrahedron Lett.*, 30, 6559 (1989); H. Muratake, M. Watanabe, K. Goto, and M. Natsume, *Tetrahedron*, 46, 4179 (1990).

(Received in Japan 28 May 1992)