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Abstmct: Op&ically active (R)- and (5’)~alkne-1.3dicarboxylatcs were prepared, and their asymmetric Dick-Alder reactions with 

cyclopentadiene in the presence of Lewis acid proceeded to afford the endo-adducu in high yields. The absolute configuration of 

the adduct was completely confirmed by X-my analysis. 

Although the activating influence that a carboxylate moiety exerts upon the 1,3disubstituted allene framework 

makes these compounds excellent candidates as dienophiles in Diels-Alder reactions,1+2 no systematic study of 

the cycloaddition reactions of compounds of this type has been reported. It would be predicted that Diels-Alder 

reaction of the optically active allene-1.3dicarboxylate proceeds with high stereoselectivity derived from axial 

asymmetry of allene moiety. From this point of view, it is expected that adduct A would be preferentially 

obtained through the combination of the sterlcally favored approach owing to axial asymmetry of allene moiety 

and the effective secondary orbital interaction (Figure 1). While adduct B would be fonned without secondary 

orbital interaction of carboxylate moiety, adduct C must be formed against the steric hindrance. In addition, 

adduct D would be scarcely formed because of two disadvantageous factors. 

Figure 1 
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Optically active di-(-)-menthyl allene-1.3~dicarboxylate 5 was prepared by the modification of Smith’s 

procedure of allene-13dicarboxylate (Scheme I). 3 3-Chloroglutaconic acid 3 was obtained from dimethyl 1,3- 

acetonedicarboxylate 1 by treatment with phosphorus pentachloride (1.05 equiv) followed by hydrolysis with 

20% hydrochloric acid. Esterification of the diacid 3 with (-)-menthol (cont. sulfuric acid, benzene, reflux) 

proceeded to give chlorcdimenthylester 4 in high yield. The proportion of the stereoisomers 4 was determined 

(E : 2 = 6 : 1) by tH-NMR spectrum inspection. Dehydrochlorination of 4 by triethylamine (1.19 equiv) in 

anhydrous tetrahydrofuran at 0 ‘C gave a mixture of diastereomers, which was recrystallized from pentane to 

afford pure crystals 5; m.p. 83 “C, [a]$0 -251.1’ (c = 1.00, CHCIs). 

Scheme I” 
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RI(-)-Menthg 
4 (E:Z-6:l) 5 

‘Reagents: (a) PC&; (b) 20% HCl. reflux; (c) (-)-menthol, cont. H$Od, benzene, reflex; 

(d) Et3N, TI-IF, 0 ‘C, then recrystallized from pentane. 

The Diels-Alder reaction of 5 with cyclopentadiene in the presence of aluminum chloride proceeded to afford 

the 1: 1 adduct 6 in 96% yield (Scheme II). 4 A typical experimental procedure is as follows. To a suspension of 

aluminum chloride (592 mg, 4.44 mmol, 1.20 equiv) in 12 mL of anhydrous dichloromethane at -78 “C under 

nitrogen was ad&d a solution of 5 (1.49 g, 3.69 mmol) in anhydrous dichloromethane. After 30 min, 

cyclopentadiene (3 mL, excess) was added. The reaction mixture was stirted at -78 ‘C for 5 h to give 6 (1.66 g, 

96 S). The relative configuration of 6 was established by the tH-NMR spectrosc~py.~ Furthermore, the 

absolute configuration of 5 was determined by Agosta’s procedure. 6 Thus, the absolute configuration of the 

axial asymmetry of 5 was shown to be R. 

Scheme II’ 

‘Reagents: cyclopentadiene, AlC13, C&Cl,, -78 ‘C, 5 h. 

On the other hand, optically active di-(+)-me&y1 allene-1,3&arboxylate 8 (m.p. 83 OC, [a]$ +262.7’ (c = 
0.99, CHCls)) was prepared in a similar manner as the preparation of 5 (Scheme III). Similar treatment of 8 

with cyclopentadiene in the presence of aluminum chloride proceeded to afford the 1: 1 adduct 9 in 89% yield. 

Spectral data of 9 were identical with those of 6 except for antipodal optical rotation.5 
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Scheme III’ 
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‘Reagents: (a) (+)-menthol, cont. HzS04, benzene, reflux; (b) EtsN. THE, 0 “C, 

then recrystallized from pentane; (c) cyclopentadiene, AlCl,, CI-I$l,, -78 T, 3 h. 

In addition, the absolute configuration of 9 was completely confirmed by X-ray analysis (Figure 2).7 

Figure 2 X-ray crystal structure of adduct 9 

As described above, we have succeeded in preparation of optically active (R)- and (S)-allene-1,3- 

dicarboxylates 5 and 8 using (-)- and (+)-menthol, respectively. Moreover, the Diels-Alder reaction of 5 and 8 

with cyclopentadiene in the presence of Lewis acid proceeded to afford adducts 6 and 9 in high yields, 

respectively. Further, the adducts 6 and 9 were supposed to be useful for synthesis of optically active natural 

products and its antipode. For example, cis-trikenuin B is a minor component of the uikennins, and the absolute 

structure of natural cis-trikentrin B is not determined .8 Therefore, the synthesis of optically active cis-triketurin 

B using the obtained optically active adduct as a synthetic key intermediate is now in progress. 
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