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FLUORINATION REACTIONS AT C-4 OF METHYL 2-0-BENZYL-3, 6-DIDEOXYHEXOPYRANOSIDES
¥ITH DIETHYLAMINOSULFUR TRIFLUORIDE (DAST) AND WITH TRIS(DIMETHYLAMINO)SULFONIUM
DIFLUOROTRIMETHYLSILICATE (TASF)
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Fluorination at C-4 of methyl 2-0-benzyl-3,6-dideoxy-a -D-ribo- and a -D-arabino-
hexopyranosides{(l and 5) using diethylaminosulfur trifluoride(DAST) proceeded with
exclusive retention of configura;ion. But treating the triflates of 1 and 5 with
tris(dimethylamino)sulfonium difluorotrimethylsilicate(TASF) afforded mostly the
configurationally inverted fluorides.
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In our studies on the incorporation of monofluorinated 3, 6-dideoxyhexopyranose moieties into

the artificial antigens structurally related to O-antigens of Salmonella typhi and paratyphi, we

have found that the reactions of the equatorial 4-hydroxyl groups of methyl 2-0-benzyl-3,6-dideoxy-
a -D-ribo- and a -D-arabino-hexopyranosides(l and 5) with DAST gave the 4-deoxy-4-fluoro derivatives
(2 and 6, respectively) with exclusive retention of configuration.

'=%J the reaction

Although DAST has been widely used to introduce fluorine into carbohydrates,
mechanisms are not easily rationalized.* %' It was first believed that the direct replacement of the
hydroxyl group by a fluorine atom using DAST proceeded via the Sw2 mechanism, ' but some instances

of fluorination with configurational retention have been reported.* 7 %’

We now report another
instance in comparison with the fluorination using TASF.'?%’

When methyl 2-0-benzyl-3,6-dideoxy-a@ -D-ribo-hexopyranoside(l) was treated''’ with 3 molar
equivalents of DAST in dichloromethane at -13°C for 2.5 h, methyl 2-0O-benzyl-3,4,6-trideoxy-4-
fluoro-a -D-ribo-hexopyranoside(2) was obtained in 62% yield but no xylo-isomer 3 was isolated.
However, the reaction'®’ of the triflate of 1, prepared from 1 by use of trifluoromethanesulfonic
anhydride in dichloromethane-pyridine, with 4.8 molar equivalents of TASF in dichloromethane at

room temperature for 1.5 h afforded both 2 and 3 in yields of 13 and 54%, respectively (Chart 1).
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Similarly, 5 was treated with 3 molar equivalents of DAST at -13°C for 2 h to form methyl 2-0-
benzyl-3,4,6-trideoxy-4-fluoro-a -D-arabino-hexopyranoside(6) in 39% yield without isolation of the
lyxo-isomer 7. As for the fluorination of the triflate of 5 with TASF in the same manner as that of
1, only the configurationally inverted fluoride 1 was obtained, in 21% yield, accompanied with a 24%

yield of the 3,4-unsaturated compound 8 (Chart 2)
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In the fluorination with DAST, the Sw2 reaction of the intermediate I in Chart 3 is negligible
because no configurationally inverted fluoride was produced. The fact that even the reaction of 1
with 1.2 equivalents of DAST at -13°C for 0.5 h with post-stirring at room temperature for 1.5 h
gave only 2 in 66% yield implies the higher plausibility of the Snwi mechanism (pathway a). However,
pathway b via carbocation I cannot be neglected, as the attack of fluoride anion against C-4 from
the B -side of the pyranose ring must be interfered with the repulsive effect of ring oxygen

In contrast, the fact that inversion of configuration at C-4 predominantly occurred in the
fluorination with TASF suggests that the reaction of triflate I is likely to proceed through path-
way d (Chart 3). Minor production of the configurationally retained fluoride 2 from the triflate of
1 indicates that pathway c¢ via Il also contributed to the reaction, but only in part, because, if it
were the main course, repulsion between fluoride anion and ring oxygen would have allowed the domi-
nant attack on I from the a -side of the pyranose ring to give 2 as the major product.

The lower yields of fluorides for the reactions of § in both methods than those of 1 are con-
sidered to be due to the steric and electric hindrance by the axial benzyloxyl group at C-2.

The fluorides, 2 and 6, were also prepared from methyl 2-0-benzyl-3,6-dideoxy-a -D-xylo-'%"' and
lyxo-hexopyranosides(4 and 9) by the reactions of their triflates with TASF in yields of 19 and 13%,
respectively. In the reaction of 9, compound 8 was isolated in 42% yield as the major product. The
treatment of 4 and 9 with DAST gave some unidentified products, but no fluorides were included
therein. The synthesis of 1, 4, 5, and 9 are to be published elesewhere,.

The F-H coupling constants observed in 'H-NMR spectra of methyl 2-0-benzyl-3,4,6-trideoxy-4-
fluoro-a -D-ribo-, arabino-, xylo-, and lyxo-hexopyranosides(2, 3, 6, and 7) are depicted in Fig. 1.

The diaxial “Jr.n-: of 44.8 Hz and 43.7 Hz observed for 3 and 7, respectively, are very close to the
unperturbed value of 43.5 Hz for diaxial ®Jr.u.'*’ This indicates that the axial H on deoxygenated
carbon(C-3) and the axial F on C-4 in vicinal disposition of methyl 3, 6-dideoxy~a -D-hexopyranoside

are in ideal trans-diaxial relationship.'
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Fig.
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The '®C-NMR data shown in Table | are satisfactory for the structures of the fluorides 2, 8, 6.
1.

Table I. '*C-NMR Data for 2, 3, 6, and 7 (Measured
at 75.4 MHz in CDClz)
& (ppm)
Compound (Je,r (Hz))
c-1 c-2 c-3 c-14 C-5 C-6

2 96.9  73.5 30.9  90.3  65.8  17.1
(11.1) (19.2)(180.2) (24.5)
3 97.8  70.4 29.9 90.2 64.7 15.7
(21.0)(177.5) (19.5) (6.5)
[ 98.0 75.4 30.2 89.4  66.8 17.4
(11.9) (19.2)(174.6) (24.5)
7 99.3 70.3 27.8 87.1 64.8  16.1

(20.1)(181.6) (19.9) (7.2)

1. F-H Coupling Constants for 2, 3, 6, and
7 (in Hz, Measured at 300 MHz in CDCl:)
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