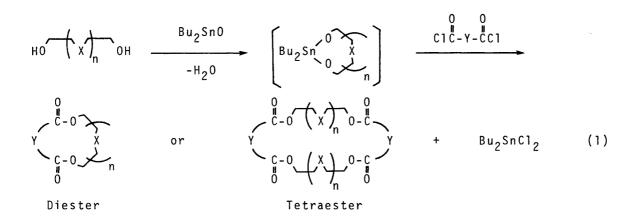
THE PREPARATION OF MACROCYCLIC DI- OR TETRAESTER/ETHER COMPOUNDS FROM GLYCOLS WITH DIACID CHLORIDES BY THE USE OF DIBUTYLTIN OXIDE


Akira NINAGAWA, * Takeshi MAEDA, and Haruo MATSUDA Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565

Several macrocyclic di- or tetraester/ether compounds were readily prepared by reacting various oligoethylene glycols with aliphatic and aromatic diacid chlorides, and hetero atoms-containing diethylene glycols with adipoyl chloride by the use of dibutyltin oxide in good yields.

The synthesis and unique cation complexing characteristics of cyclic polyethers were first reported by Pedersen.¹⁾ Since that time a large variety and number of macrocyclic compounds have been prepared and their cation complexation properties have been studied extensively. Similarly, macrocyclic ester/ether compounds display some unusual metal- and water-bonding properties,²⁾ in that they may form complexes through either the ether oxygens or the carbonyl groups, or both. The macrocyclic di- and tetraester/ether compounds have been prepared by treating various glycols and diacid chlorides in dilute solutions,³⁾ thermolysis of *o*-phthalate polyester of glycols,⁴⁾ cyclotransesterification with use of an ion template,⁵⁾ catalytic cyclization by metal salts of oligoethyleneglycol monosuccinates,⁶⁾ and sublimation from poly(diethyleneglycol terephthalate).⁷⁾ Recently, macrocyclic tetraester compounds were prepared by reacting cyclic stannoxanes, as templated diol precursors with diacid chlorides.⁸⁾

This work reports the preparation of the macrocyclic di- or tetraester/ether compounds from the reaction of glycols with dibutyltin oxide, and successively with diacid chlorides via the route of Eq. 1.

The following reaction procedure was typical; A mixture of 1.49 g (6 mmol) of dibutyltin oxide, 0.63 g (6 mmol) of diethylene glycol, and 100 ml of dry benzene was refluxed with stirring for 1 h in a 300 ml flask equipped with a Dean and Stark water collector. After completion of the dehydration, a solution of 1.10 g

(6.9 mmol) of adipoyl.chloride in 100 ml of dry benzene was added dropwise to the mixture during 30 min. Reflux was then continued for 2.5 h and the reaction mixture allowed to cool. Then 1 ml of pyridine was added, and the reaction mixture was concentrated under vacuum, and separated by column chromatography on silica gel(Wako-gel C-200; developing solvents, benzene and then ethyl acetate). Dibutyltin oxide was recovered as dibutyltin dichloride from the benzene fraction. The ethyl acetate fraction was recrystallized from hexane to give 1,4,7,14,17,20hexaoxacyclohexacosane-8,13,21,26-tetrone in 58% yield. The experimental results are summarized in Tables 1 and 2. The structures of these products were consistent with IR, NMR, and Mass spectra and elemental analyses.

Table 1 shows the results of glycols with adipoyl chloride. 1,5-Pentanediol gave cyclic tetraester compound in 80% yield, but other glycols, containing hetero atoms such as oxygen, nitrogen, and sulfur gave cyclic diester compounds, and the yields of the diesters

Table 1. Reaction products of $glycols(HOCH_2CH_2XCH_2CH_2OH)$ with adipoyl chloride

Glycol X	Product ^{a)}	Yield %	Mp °C
CH ₂	T ^{b)}	80	82 - 84
0	D	58	76-77
N-CH ₃	D _p p)	41	53-54
S	D _p p)	27	63-64

a) D and T mean di- and tetraester compounds shownin Eq. 1, respectively.b) New product.

decrease in the following order $0 > N-CH_3 > S$. It seems that the structure and coordinate bond energies of cyclic pentacoordinated organotin compounds,⁹⁾ which are prepared from the reaction of glycols with dibutyltin oxide contribute to the formation of the diester compounds.

Glycol	Diacid chloride	Product ^{a)}	Yield	Мр
n	Y	Troduct	<u>%</u>	°C
1		Т	34	155-158
	CH ₂	Т	32	67- 69
	(CH ₂) ₂	D	36	32- 35
	(CH ₂) ₃	D _p p)	35	0i1
	(CH ₂) ₄	D	58	76-77
	-@-	Т	57	200-204
	-@	T _p p)	27	168-170
2	(CH ₂) ₂	D	19	Oil
	(CH ₂) ₃	D _p p)	29	0i1
	(CH ₂) ₄	D	45	56- 58
	-@-	Dp)	37	170-172
	-@	T _p p)	64	108-111
3	CH ₂	D	29	65- 67
	(CH ₂) ₃	D	32	0i1
	(CH ₂) ₄	D	29	0i1
	-@-	D	64	94-96
	-@	D	51	93-94

Table 2. Reaction products of oligoethylene $glycols(HOCH_2(CH_2OCH_2)_nCH_2OH)$ with diacid chlorides(C1CO-Y-COC1)

a) and b) See Table 1.

Table 2 shows the results of oligoethylene glycols with aliphatic and aromatic diacid chlorides. The yields of cyclic di- or tetraester/ether compounds were higher than those of the high dilution technique used hitherto.³⁾ In the case of aliphatic diacid chlorides, minimum ring size of cyclic diester/ether compounds was 11 membered ring. Eight of the products shown in Tables 1 and 2 have not been known previously. Further works on the scope of the reaction are in progress.

This work was supported by a Grant-in-Aid for Scientific Research No. 57550521 from the Ministry of Education, Science and Culture.

References

- 1) C. J. Pedersen, J. Am. Chem. Soc., 89, 7017(1967).
- 2) J. S. Bradshaw, G. E. Maas, R. M. Izatt, and J. J. Christensen, Chem. Rev., 79, 37(1979).
- 3) P. E. Fore, J. S. Bradshaw, and S. F. Nielsen, J. Heterocycl. Chem., <u>15</u>, 269(1978); J. S. Bradshaw, L. D. Hansen, S. F. Nielsen, M. D. Thompson, R. A. Reeder, R. M. Izatt, and J. J. Christensen, J. Chem. Soc., Chem. Commun., <u>1975</u>, 874; J. S. Bradshaw, C. T. Bishop, S. F. Nielsen, R. E. Asay, D. R. K. Masihdas, E. D. Flanders, L. D. Hansen, R. M. Izatt, and J. J. Christensen, J. Chem. Soc., Perkin Trans. 1, <u>1976</u>, 2505; M. D. Thompson, J. S. Bradshaw, S. F. Nielsen, C. T. Bishop, F. T. Cox, P. E. Fore, G. E. Maas, R. M. Izatt, and J. J. Christensen, Tetrahedron, <u>33</u>, 3317(1977); J. S. Bradshaw and M. D. Thompson, J. Org. Chem., <u>43</u>, 2456(1978); K. Frensch and F. Vögtle, Tetrahedron Lett., <u>1977</u>, 2573; H. Repin and E. Papanikolau, J. Polym. Sci., Part A-1, <u>7</u>, 3426(1969); R. E. Asay, J. S. Bradshaw, S. F. Nielsen, M. D. Thompson, J. W. Snow, D. R. K. Masihdas, R. M. Izatt, and J. J. Christensen, J. Heterocycl. Chem., <u>14</u>, 85(1977).
- 4) W. A. Ehrhart, J. Org. Chem., <u>33</u>, 2930(1968).
- 5) B. Thulin and F. Vögtle, J. Chem. Res.(S), 1981, 256.
- 6) A. Bachrach and A. Zilkha, Eur. Polym. J., 18, 421(1982).
- 7) T. Morimoto, Y. Fujita, and A. Takeda, J. Polym. Sci., Part A-1, <u>6</u>, 1044 (1968).
- 8) A. Schanzer and N. Mayer-Shochlet, J. Chem. Soc., Chem. Commun., <u>1980</u>, 176;
 A. Schanzer, N. Mayer-Shochlet, F. Frolow, and D. Rabinovich, J. Org. Chem., <u>46</u>, 4662(1981);
 A. Schanzer, J. Libman, H. Gottlieb, and F. Frolow, J. Am. Chem. Soc., <u>104</u>, 4220(1982);
 A. Schanzer, J. Libman, and H. E. Gottlieb, J. Org. Chem., <u>48</u>, 4612(1983);
 A. Schanzer, J. Libman, and F. Frolow, Acc. Chem. Res., <u>16</u>, 60(1983).
- 9) D. Seyferth, A. G. Davies, E. O. Fischer, J. F. Normant, and O. A. Reutov,
 "J. Organometal. Chem. Library 12, Organometallic Chemistry Reviews,"
 Elsevier Scientific Publishing Co., Amsterdam (1981), p. 293.

(Received August 28, 1984)