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Summary: The application of the intramolecular di- 
oxenone photocycloaddition to the efficient synthesis of 
the tricyclic skeleton of the taxane diterpenes, with com- 
plete control of the relative stereochemical relationship 
between the two six-membered rings (A and C), is de- 
scribed. The first example of C-silylation of a ketone 
(cyclooctanone B-ring) enolate is reported, and the origins 
of this remarkable reactivity are discussed. 

Sir: The b a n e  diterpenes: such as taxol, 1: possess both 
unique molecular structures and a potent array of bio- 
logical activities! Tax01 has been shown to exhibit in vivo 
activity against P-388, P-1534, and L-1210 mouse leuke- 
mias, and CX-1 colon, LX-1 lung, and MX-1 breast xe- 
nografts.' Considerable effort has been directed toward 
the synthesis of this fascinating group of compounds? We 
report herein that the intramolecular dioxenone photo- 
cycloaddition9 leads to the efficient synthesis of the tri- 
cyclic skeleton of the taxane diterpenes, with complete 
control of the relative stereochemical relationship between 
the two six-membered rings (A and C). We also note that 
silylation of the enolate derived from the tricyclic taxane 
ketone 8 leads to the first example of C-silylation of a 
ketone enolate.1° 

The synthesis of the requisite photosubstrate is outlined 
in Scheme I.ll Conjugate addition of did-pentenylcopper 
magnesium bromide to enone 2,12 followed by trapping of 
the resulting enolate with methyl ~yanoformate,'~ led to 
the exclusive formation of 3 in 79% yield, in which axial 
addition of cuprate to the rigid bicyclic enone resulted in 
the establishment of the desired C-l/C-3 (taxane num- 
bering) relative stereochemical relationship. Exchange of 
3 with p-methoxybenzyl alcohol provided the p-meth- 
oxybenzyl keto ester 4 in quantitative yield, which on 
treatment with trifluoroacetic anhydride and trifluoro- 
acetic acid in acetone led to the formation of the photo- 
substrate, 5,  in 41% yield. Irradiation of 5 (7.6 mM in 1:9 
acetone-acetonitrile, medium-pressure Hg lamp, Pyrex 
filter) gave a unique photoadduct in 77% yield as a white 
solid (mp 133-134 "C), whose structure was established 
as the cis-fused photoadduct 614 by single-crystal X-ray 
ana1y~is.l~ Reaction of 6 with 2 N potassium hydroxide 
in methanol and treatment of the resulting keto acid 7 with 
ethereal diazomethane led to the formation of the keto 
ester 8 and its (2-15 epimer (3:l ratio) in quantitative 
yield.16 Recrystallization of 8 from ethyl acetate/petro- 
leum ether provided a sample (mp 93-95 "C) suitable for 
X-ray analysis,17 which confirmed the presence of the 
taxane skeleton with the correct C-l/C-3 relative stereo- 
chemical relationship between the two six-membered rings 
(A and C). 

We next examined the further functionalization of the 
central eight-membered (B) ring of the taxane skeleton. 

'The results described herein were presented at the 15th Organic 
Synthesis Workshop, American Cyanamid, Princeton, NJ,  May 25, 
1989. 
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Attempted formation of the silyl enol ether of ketone 8 by 
reaction of 8 with lithium diisopropyl amide a t  -78 "C, 
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ketone, 9 (m.p. 144-145 "C), in 97% yield, the structure 
of which was confirmed by X-ray analysis (see Figure 1)J8 

We attribute the unprecedented C-silylation of 8 to the 
unusually congested environment a t  the center of the 
taxane nucleus. The dihedral angle formed by the 
C,o-H,clo, bond and the C-0 bond of the carbonyl in the 
conjugate base of 8 should be 0" or 180' for a planar ketone 
enolate. However, the value calculated by M M P  for that 
dihedral angle is 25", suggesting the presence of substantial 
a-keto carbanion character in the conjugate base of 8, 
which, as a consequence of the conformation of the 
eight-membered ring, cannot effectively resonate into the 
adjacent carbonyl. The unique geometry of the tricyclic 
taxane skeleton also precludes the well-known Brook re- 
arrangementz0 of 9 to the corresponding silyl enol ether. 
Only unchanged starting material was recovered upon 
heating 9 to 150 'C for 18 h, suggesting that the activation 
barrier for the Brook rearrangement, which proceeds by 
a concerted four-centered mechanism,m was too high for 
the isomerization to be observed in taxane 9, even at ele- 
vated temperatures. 

However, the factors which prevent formation of a fully 
delocalized ketone enolate do not impede the introduction 
of the second substituent a t  C-15. Generation of the di- 
anion of 9 with 2 equiv of lithium diisopropyl amide, 
followed by reaction with methyl iodide at -78 "C, and 
basic workup (to hydrolyze the carbon-silicon bond) led 
to the formation of 10 in 56% yield, in which the relative 
stereochemistry has been assigned as shown in Scheme I, 
based on approach of the methyl electrophile from the less 
hindered p-face of 9. 

The efficient construction of the taxane skeleton de- 
scribed herein attests to the utility of the intramolecular 
dioxenone photocycloaddition-fragmentation reaction for 
the construction of structurally complex carbocyclic ring 
systems. Studies directed toward the synthesis of the 
naturally occurring taxanes using this methodology are 
currently in progress in our laboratory. 
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Figure 1. ORTEP plot for the X-ray structure of a-silyl ketone 
9. 
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followed by treatment with an excess of trimethylsilyl 
chloride, led to the exclusive formation of the C-silylated 
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Summary: The conformation of the trichothecene ring 
system has been altered appreciably by introduction of an 
oxygen bridge between C4 and C15, which results in the 
C9,ClO double bond participating in the spontaneous 
solvolysis of the spiro epoxide group. 

Sir: The trichothecene complex of antibiotics has attracted 
attention in recent years, principally due to their role as 
mycotoxins.' These sesquiterpenes exhibit a broad range 
of biological activity,2 in addition to undergoing a variety 
of interesting chemical  transformation^.^ Although the 
12,13-epoxide group is very unreactive toward external 
nucleophiles: this spiro epoxide is subject to two types of 
intramolecular nucleophilic ring-opening reactions, in- 
volving (1) participation by 0' of the B-ring and (2) par- 
ticipation of the 9,lO-double bond in the A-ring (eq l a  and 
lb, re~pectively).~ The former rearrangement leads to the 

biologically inactive apotrichothecenes and occurs under 
acid conditions.6 Rearrangement to the 10,13-cyclo- 
trichothecenes (eq lb),  which occurs under neutral con- 
ditions, is far leas commonly observed.%' Herein, we report 
kinetic data for a lO,l&cyclotrichothecene rearrangement 
(eq lb)  that reveal that this reaction takes place via a 
solvolytic (or ScN18 pathway, which to our knowledge is 
unprecedented for a methylene epoxide, though it does 
occur with suitably activated epoxides (e.g., p-methoxy- 
styrene e p ~ x i d e ) . ~  

Because the 10,13-cyclotrichothecene rearrangement 
requires that the 9,lO double bond become proximate to 
C-13, the course of events for the rearrangement should 
be highly dependent on the conformational bias of the 
tetrahydropyran ring (ring B), Le., (2-10 must come within 
bonding distance of C-13, which occurs only when ring B 
goes into a boat form. We have synthesized a bridged ether 
(21, whose conformational mobility differs markedly from 
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normal trichothecenes, with the idea that this compound 
will differ significantly in its chemical behavior from 
normal trichothecenes. The 4,15-cyclic ether 2 was pre- 
pared in overall 40% yield (eq 2) from verrucarol (l), a 
trichothecene available from the hydrolysis of macrocyclic 
trichothecenes.1° Ether 2 can readily assume the B-ring 
boat conformation and thus should readily undergo the 
10,13-cyclotrichothecene rearrangement. 

1. TsCI. Py / MeCl, 
2. NaH / THF 

(2) - 
OH 

'OH -0' 

1 2 

Molecular mechanics calculations MM2 (Macro Model 
System 1.5, W. C. Still, Columbia University) indicate that 
for verrucarol ( l ) ,  the chair form of the B-ring is more 
stable by ca. 6 kcal/mol over that of the boat form. 
Somewhat surprisingly, these same calculations show that 
the boat form of the 4,15-cyclic ether 2 is more stable than 
the chair form by ca. 2 kcal/mol. This dramatic change 
in equilibrium appears to be due, in part, to the loss of 
nonbonding interactions between the C- 15 group and the 
underside of the B/C-rings when C-15 is locked to C-4 by 
the oxygen bridge. This shift in equilibrium to favor the 
boat form of the B-ring is demonstrated by the reactivity 
of 2. For example, care must be taken in the isolation of 
2 since it reacts readily with water under neutral or basic 
conditions to give the 10,13-cyclotrichothecene 3a, whose 
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