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Abstract. An enantioselective synthesis of I-subs&ted (E)-2-buten-1.4~dials is akscribcd. The 

method involves the reaction of akiehydes with the chiral PhM$i- substituted allylboronate 3 followed by 

epoxiaktion (dbnethyl dioxirane) and acid catalyzed Petersen rearrangement of the intermediate epoxysilanols. 

In the preceding communication we described the enantioselective synthesis of anti 1,Zdiols 3 via the 

reactions of aldehydes and the chiml (E!)-)c(alkoxysilyl)allylbomnate 1.1 Although this method provides anti 

sihtnols 2 and the derived anti diols 3 with excellent diastereoselectivity, the enantioselectivity of 1 is only 

moderate (6472% e.e.). We report herein the synthesis and aldehyde allylboration reactions of the analogous 

PhMe$i- substituted allylbomnate 4. While the ensntioselectivity of 4 (81-87% e.e.) is considerably 

improved compared to 1, we have been unable to utilize anti silanols 5 in syntheses of anti diols 3 since 

elecuophilic substitution reactions of the allylsilane moiety are faster than protodesilylation or other Ph-Si 

cleavage reactions req& as the first step in the Fleming oxidation procedure.2 During the course of these 

investigations, however, we found that silanols 5 are smoothly converted into 4-substituted butene- 1,4diols 6 

via oxidation with dimethyl dioxirane3 followed by the acid catalyzed Petersen elimination of the intermediate 

epoxysilanes 7. Allylbaonate 4 thus functions as a chiral allylic alcohol pcarbanion equivalent capable of 

controlling the absolute stereochemistry of the hydroxyl group generated at C(4) of 6. Ihis method promises 

to have considerable stereochemical generality eqeciahy in reactions with chiral aldehydes, and therefore is 

likely to find numerous applications in organic synthesis4 

co#+ 

d 
---co+ 

RCHO, teluene * ns Hz% KP. KHCO3 
wllo)~~\/\/ 

-7B”C, 4A sieves 
- XL 

AH MeOH, THF, 23’C 
70-95% 0045% 

AH 
(RR)-1 2,X=0&H,, 3 

(64-7294 e.e.) 

7567 



(R)-‘@imethylphenylsilyl)allylboronate 4 was prepared from allyl(dimethylphenyl)silane 8 using 

slight modiflcations of our standard allylboronate synthesisl~ Thus, a THF solution of 8 was treated with 

1.0 equiv. of n-BuLiKOtBu -4WC for 15 min followed by 1.0 equiv. of (iP10)3B at -78°C for 15 min. This 

mixture was poured into aq. NH&l solution and extracted with ether. The extracts were immediately treated 

with 1.0 equiv. of DIPT, dried over MgSO4 (2 h), and then concentrated to constant weight in vacua. The 

crude product, consisting primarily of 4 and residual 8 and DIPT, is analyzed by 1H NMR to determine the. 

weight percentage of 4 in the mixture; the yield of 4 is generally 70-8040. Crude 4 was dissolved in toluene 

(ca. 1 M) and stored over 4A molecular sieves at -20°C under Ar. Reactions with aldehydes were performed in 

toluene (0.3-0.5 M) at -78’C in the presence of 4A molecular sieves (tin - 4 h at 0.3 M). 
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The enantioselectivity of 4 was assessed via reactions with acetaldehyde, hexanal and cyclohexane- 

carboxaldehyde. The anti silanols 5 were obtained with excellent diasteteoselectivity (the syn diastereomers 

were not detected) in 88-9596 isolated yields and with enantiomeric purities of 81-878 e.e.6 The enantio- 

selectivity of 3 thus closely parallels that of the tartrate (R)-crotylboronate that we have previously studied.5~6 

Our main interest in the development of this reagent was for use in double asymmetric reactions with 

chiral aldehydes.7g As shown in the accompanying Figure, the reactions of (R.R)- and (S,S)-4 with 

glyceraldehyde acetonide 9 display outstanding stereoselectivity, providing diastereomers 10 and 11 each 

with 220 : 1 diastereoselectivity. Similarly, the reactions of these reagents and epoxyaldehyde 14 also exhibit 

excellent stereocontrol. The reaction with (R.R)-4 provides 15 with 15 : 1 selectivity, while 16 is the major 

product of an 8 : 1 mixture when (S,S)-4 is used. It should be noted that the enantiomeric purity of 14 is only 

95% e.e., and it can be calculated that the diastereoselectivity of these reactions would be 20 : 1 and 1: 10, 

respectively, if enantiomerlcally pure 14 were used.Q Finally, the reaction of a-methyl+-alkoxy aldehyde I9 

displays outstanding diastemoselectivity for 20 (GO : 1) in the matched reaction with (R,R)-4, but poor 

selectivity (ca. 1.5 : 1) in the mismatched case leading leading to the anti, anti diastereomer 21. Better 

selectivity for 21 undoubtedly can be obtained by using a more enantloselective chiral auxiliary. 

The epoxidation of the anti silanols and the subsequent acid catalyzed Petersen elimination constitutes 

the second stage of this method. While the epoxidation of allylsilanes has received considerable study,16 we 

found that it was not possible to cleanly epoxidize the allylsilanols prepared in this study by using either 
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MCPBA or VO(acac)~HP. Evidently, the rate of these epoxidations is slow (vinyl groups are poor 

epoxidation substrates) and Petersen eliminations of the intermediate epoxysilanes are probably competitive. 

The resulting allylic alcohols undoubtedly undergo a second epoxidation, leading ultimately to a mixture of 
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products. This problem was solved by using an acetone solution of dimethyl dioxirane as the oxidant.3~ll 

This reagent is neutral, the epoxidations are very fast, and competitive Petersen eliminations were not 

observed The reaction mixtums were concentrated in vacua and then treated with methanolic HOAc to effect 

the rearrangement to the desired allyllc alcohols, obtained typically in 88-95% overall yield This study thus 

adds to the growing list of applications of dimethyl dioxirane as a mild, selective oxidant in organic synthesis. 

In summary, an efficient methcd for the stereoselective synthesis of (E)-2-buten- 1 &diols by the formal 

addition of an @-prop-2-en-l-01 unit to an aldehyde has been developed. We anticipate that this procedure 

will find application in the synthesis of carbohydrates and other polyhydtoxylated natural products. 
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