Intramolecular Diels-Alder and Cope Reactions of o-Quinonoid Monoketals and Their Adducts: Efficient Syntheses of (±)-Xestoquinone and Heterocycles Related to Viridin

Rina Carlini, Kerianne Higgs, Christina Older, and Sab Randhawa

Guelph-Waterloo Center for Graduate Work in Chemistry. University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Russell Rodrigo*

Department of Chemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada

Received March 4. 1997

The viridin (1) family of steroidal antibiotics¹ as well as the xestoquinone (2a) and halenaquinone (2b) groups of marine natural products are pentacyclic compounds featuring a common naphtho[1,8-bc]furanone unit with an "angular" methyl group. Synthetic activity in this area has resulted² in many syntheses of **2a** and **2b**, but there have been no reports of any such success with the more challenging targets like viridin and its congeners, even though this group of antifungal agents have been known for much longer. The best synthesis³ to date of a tricyclic naphthofuranone furnished 3 in 11 steps and 6.3% overall yield from α -furylmethanol. Although this work culminated in the synthesis of 2a (1.5% overall, 14 steps), it was not efficient enough to be realistically regarded as a gateway to the viridin group of natural products. Our initial synthetic efforts⁴ toward a tricycle like 3 were not successful, but their failure forced us to reexamine the problem and to look for a more direct route to this deceptively simple compound. Not only would success in this venture permit the development of a rapid synthesis of 2a and 2b, but it would also allow explorations to commence toward a first synthesis of viridin.

The formal similarity of the α -oxygenated cyclohexadienone moiety of 3 to o-benzoquinone prompted an investigation into the Diels-Alder chemistry of those highly reactive substrates. To ensure regiocontrol in the cycloaddition and to restrain the facile polymerization processes that plague the chemistry of simple o-benzoquinones, an intramolecular version of the reaction was considered. The test vehicles chosen for this purpose were mixed monoketals of o-quinones 5a-c that could be easily generated in situ by oxidation of the respective

Scheme 1^a

^a Conditions: (a) 1.2 equiv of PhI[O₂CCF₃]₂, 5 equiv of (E)-2,4pentadienol, 2.4 equiv of $NaHCO_{3(s)}$, 2 mol % of BHT (for **4a**), dry THF, rt; (b) distill excess 2,4-pentadienol (bp = 58 °C/20 mmHg).

o-methoxyphenols $4\mathbf{a} - \mathbf{c}$ in the presence of an excess amount of (E)-2,4-pentadienol (Scheme 1). The intramolecular Diels-Alder (IMDA) reaction that followed would compel the *o*-quinonoid monoketal to react as a diene⁵ (to form 6) and/or as a dienophile (to form 7). The former pathway is predictably favored because of the o-quinonoid s-cis geometry, but we had hoped that the latter reaction, hitherto unprecedented, could be encouraged by the placement of electron-withdrawing substituents at C-4 of 4 to enhance dienophilicity of the o-quinonoid intermediate 5. The results (Scheme 1) vindicated our thinking, but mixtures of 6 and 7 were always produced, and to tip the balance completely toward dienophilic reactivity, the unsubstituted double bond had to be removed from the game, and this could be done by making it part of an aromatic ring.

Thus, four substrates, three naphthalenoid 9a-c and one anthracenoid 12a, prepared from the corresponding o-methoxyphenols 8a-c and 11a provided good to excellent yields of the desired adducts **10a**-c and **13a** formed as endo-exo⁶ mixtures (Scheme 2). All these reactions are "one-pot" three-step double annelation processes (oxidation, ketalization, and IMDA), and yields reported are for pure isolated materials. Furthermore, the same reaction with the tricyclic benzindanone substrate 15 produced 16 in 86% yield (2:1 endo-exo). Adduct 16 represents the first ever construction of the pentacyclic system of viridin and could be regarded as an advanced intermediate for the eventual synthesis of this compound. Although this new IMDA dienophilic reactivity of oquinonoid species appeared to be general,7 the reaction failed with 8d; only red polymeric material was produced, probably through the formation of a *p*-quinomethide in the oxidation step. It is interesting but hardly surprising that the 9,10-dihydroanthraquinonoid ketal 12b behaved like o-benzoquinonoid ketal 5c, providing a mixture of 14 (32%) and the 7,12-dihydroderivative 13b (23%, as the endo isomer only).

A reevaluation of the results of the IMDA reaction with the o-benzoquinonoid substrates 5 showed that the

⁽¹⁾ For a recent review see: Hanson, J. R. Nat. Prod. Rep. 1995, 12, 381-4.

^{(2) (}a) Maddaford, S. P.; Anderson, N. G.; Cristofoli, W. A.; Keay, B. A. *J. Am. Chem. Soc.* **1996**, *118*, 10766–73 and references therein. (b) Harada, N.; Sugioka, T.; Uda, H.; Kuriki, T.; Kobayashi, M.; Kitagawa, I. J. Org. Chem. 1994, 59, 6606-13.
(3) Kanematsu, K.; Soejima, S.; Wang, G. Tetrahedron Lett. 1991,

^{32.4761 - 4}

⁽⁴⁾ Burns, P. A.; Taylor, N. J.; Rodrigo, R. Can. J. Chem. 1994, 72, 42 - 50

^{(5) (}a) Yamamura, S.; Shizuri, Y.; Shigemori, H.; Okuno, Y.; Okhubo, M. Tetrahedron 1991, 47, 635-644. (b) Chu, C.-S.; Lee, T.-H.; Liao, C.-C. Synlett 1994, 635-6.

⁽⁶⁾ All the IMDA reactions were face selective and endo with respect to the o-quinonoid ring.

⁽⁷⁾ A 1,3-cyclohexadiene-5,6-diol carrying a pendant diene unit at the C-5 hydroxyl group produced only the bridged adduct in the IMDA reaction: Hudlicky, T.; Boros, C. H.; Boros, E. E. *Synthesis* **1992**, 174– 6. We thank a reviewer for bringing this to our attention. (8) X-ray crystal structures have been obtained for **10a** (*exo* and

⁽a) A-ray crystal structures have been obtained for 10 ray (zzo and endo) and ¹H and ¹³C NMR correlations made with the tricyclic moieties of the other adducts. An important diagnostic feature emerged when a small W-coupling of 2.2 Hz between H-1 β and H-10c (established by decoupling and 2D correlation) was observed in the endo isomer of 10a. This coupling is found in every other endo isomer of the tricyclic unit but is absent in every *exo* isomer.

^a Conditions: (a) 1.2 equiv of PhI[O₂CCF₃]₂, 5 equiv of (*E*)-2,4-pentadienol, dry THF, rt; (b) distill excess 2,4-pentadienol (bp = 58 °C/20 mmHg).

^a Conditions: (a) NaOMe/MeOH, reflux, 85%; (b) CF₃CO₂H, CH₂Cl₂, rt, 15 min, 90%; (c) *p*-chloranil, *p*-xylene, reflux, 87%; (d) H₂, Pd/C, EtOAc, 56%; (e) Ce(NH₄)₂(NO₃)₆, CH₃CN/H₂O, 63%.

tricyclic adducts 7 always possessed the endo stereochemistry⁸ (cis H-2a, H-8b) in contrast to the o-naphthoquinonoid adducts, which were formed as mixtures (ca. 2:1 *endo–exo*). This apparent contradiction might be the consequence of the greater instability of the o-benzoquinonoid monoketals relative to the o-naphthoquinonoid substrates; reversal of the IMDA reaction may be energetically prohibitive⁹ with adducts like **6** or **7**. Alternatively, the initially formed adducts 6 might have undergone spontaneous Cope rearrangements, which must only produce endo compounds. Such considerations persuaded us to attempt the [3,3]-shift by heating a pure sample of **6a** in refluxing 1,2,4-trimethylbenzene, and to our great satisfaction 7a was produced in 81% yield with >95% conversion.

The acquisition of 7a in two simple steps and 56% overall yield from 2-methoxy-4-methylphenol (4a) represents a significant improvement over the previous route³ and constitutes an important bridgehead in our advance to the various pentacyclic natural products containing this structural unit.¹ We illustrate its value here with a rapid synthesis of (\pm) -xestoquinone (2a) (Scheme 3). Reaction with 4,7-dimethoxyisobenzofuran generated in situ¹⁰ produced a single bridged adduct 17 (60%) by face-selective *exo* addition¹¹ to the enone 7a. Aromatization, elimination of methanol, and dehydrogenation gave the known^{2a} pentacycle **18** (66% from **17**). Hydrogenation of the alkene and oxidation of the pdimethoxylated ring furnished (\pm) -xestoquinone (2a) in eight steps and 7.4% overall yield from 2-methoxy-4methylphenol.12

The heartening success of this synthesis of 2a encourages us to believe that the viridin and wortmannin¹³ groups of biologically active metabolites are within relatively simple reach for the first time. Investigation of the road ahead to these complex natural products has already begun.

Acknowledgment. We thank NSERC Canada for support of this work and Dr. N. Taylor for X-ray crystal structures cited here.

Supporting Information Available: General experimental procedures are described for the intramolecular Diels-Alder (IMDA) reaction forming adducts **6a**-**c**, **7a**-**c**, **10a**-**c**, 13a,b, 14, and 16 and for the Cope rearrangement of 6a to 7a. Copies of ¹H NMR spectra are provided for compounds 6a-c, 7a-c, 10a-c (endo and exo), 13a (endo and exo), 13b, 14, 16 (endo and exo), and 17 (20 pages).

JO970394L

⁽⁹⁾ It has been observed in our laboratory and in others that intermolecular Diels-Alder reactions of o-benzoquinones produce only the endo-adducts: Carlini, R.; Fang, C.-L.; Herrington, D.; Higgs, K.; Rodrigo, R.; Taylor, N. *Aust. J. Chem.* **1997**, in press. (10) Rodrigo, R. *Tetrahedron* **1988**, *44*, 2093–2135 and references

therein.

⁽¹¹⁾ An X-ray crystal structure of 17 established its relative stereochemistry. An adduct resulting from reaction of the isobenzofuran at the C2-C3 bond was also isolated (8%). See: Sadeghy, B. M. M.; Rickborn, B. J. Org. Chem. 1983, 48, 2237-46.

⁽¹²⁾ All compounds were characterized by NMR and other common spectroscopic methods. Full details for the preparation of all previously unknown compounds will be published later.

⁽¹³⁾ Hydrocortisone has recently been converted to wortmannin: Sata, S.; Nakada, M.; Shibasaki, M. *Tetrahedron Lett.* **1996**, *37*, 6141– 44