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Oxygen Evolution from Water

Characterization of a Dinuclear Mn*=0 Complex
and Its Efficient Evolution of O, in the Presence
of Water**

Yuichi Shimazaki, Taro Nagano, Hironori Takesue,
Bao-Hui Ye, Fumito Tani, and Yoshinori Naruta*

The oxidation of water in the process of dioxygen evolution is
catalyzed by an oxygen-evolving complex (OEC) in photo-
synthesis, which is one of the most important and fundamen-
tal chemical processes in nature.'” The active site in a
photosynthetic OEC protein contains a tetramanganese
cluster,¥) which adopts a Y-shaped geometry as revealed by
recent X-ray structure analysis of photosystem IL”! Though
the mechanism of dioxygen evolution has not been deter-
mined, the stage of oxygen evolution would involve either a
high valent terminal oxo manganese species™*° or the
coupling of bridging oxo units.*¥ Manganese complexes
have been extensively studied as artificial OEC models in
structural and functional investigations to understand the
mechanism of oxygen evolution from water in photosynthetic
OEC.P However, only a few Mn complexes that can catalyze
homogeneous water oxidation have been reported.! We
have previously reported dimanganese complexes of dimeric
tetraarylporphyrins linked by 1,2-phenylene bridge
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(Scheme 1).®1 The anodic oxidation of an aqueous solution
of acetonitrile (5% v/v H,0O in CH;CN) with the dimanganese
tetraarylporphyrin dimer evolved oxygen in the potential
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Scheme 1. Structure of Mn,~dimeric porphyrin complex [Mn(DTMP)**
(1) and a reaction pathway for O, formation.

range >1.20 V versus Ag/Ag*. The catalyst can also oxidize
olefins such as cyclooctene to form epoxide with stoichio-
metric amounts of m-chloroperbenzoic acid (mCPBA).”! We
proposed that the oxidation of a dimanganese(ii) tetraar-
ylporphyrin dimer could give the corresponding high valent
Mn=0 complex, which is the active species in these oxidation.
However, the mechanisms of oxygen evolution and epoxida-
tion, especially the formation of a high-valent Mn=0O
intermediate have not been fully confirmed. Herein, we
report on the oxidation of the dimanganese porphyrin dimer
by employing mCPBA as an oxidant, and the characterization
of the resulting Mn"=0 species by spectroscopic methods.
Furthermore, oxygen evolution was observed from the Mn'=
O species when a small excess of trifluoromethanesulfonic
acid (CF;SO;H) was added. To the best our knowledge, this is
the first clear example of an O—O bond formation involving a
Mn"=0 species.

The addition of two molar equivalents of mCPBA for each
Mn ion to the Mn™, porphyrin dimer [Mn,(DTMP)(OH)]-
NO,-5H,0O (1) afforded the Mn", complex 2 (Scheme 1) in
CH,CI1,/CH;CN (1:1, v/v) solution that contained 35 equiv-
alents of tetrabutylammonium hydroxide (Bu,NOH) and
1.0% water at room temperature. Species 2 exhibited a very
sharp Soret band centered at 423 nm (Figure 1). When one
molar equivalent of 1,1-diphenyl-2-picrylhydrazine (DPPH—
a one-electron reductant for each Mn ion) was added to 2, a
Mn'"Y, species 3 was rapidly formed, which has a Soret band
centered at 415 nm. Complex 3 was also prepared when one
molar equivalent of mCPBA for each Mn ion was added to 1
in CH,ClL,/CH;CN (1:4, v/v) solution in the presence of five
equivalents of Bu,NOH, confirmed by UV/Vis spectrum.
When the solution of 2 was left stand at room temperature,
the Soret band at 423 nm gradually disappeared and a 468 nm
band accordingly appeared with isosbestic points indicating
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Figure 1. Comparison of the absorption spectra; 1-NOj, e+<«+ ;
2, —; 3, ———. Inset: resonance Raman spectra of 2 (5°C,

Ae=413.1 nm, 20 mW). a) Bu,N'OH in CH,Cl,/CH,CN, b) Bu,N"*OH
in CH,Cl,/CH,CN, c) Bu,NOD in CH,Cl,/CD,CN. Incubation time of
the isotopic experiment was 10 min before the Raman data was
collected.

the direct reduction to an Mn'™, species. The change in
absorbance over time at 423 nm at 20°C showed that the
decay of 2 is first-order. The half-life (¢,,) of 2 was 3.1 h (the
observed decay constant, k., =6.19 x 107 s7!), thus implying
that 2 was stable at 20°C.["*'?l The Mn", species 2 was also
stable under similar basic conditions in CH,Cl,/CH;CN (1:3,
v/v) solution with 10% water (kos=3.38x107°s™"). The
stability of 2 is dependent upon the amount of Bu,NOH. For
example, in the presence of five equivalents of Bu,NOH, the
decay constant of 2 kg, =5.47x107s™" (¢,,=2.1 min) at
20°C and furthermore, without the presence of BuNOH, we
did not observe the appearance of 2 under oxidation by
mCPBA. Thus, highly basic conditions are necessary for the
formation and the stabilization of 2.

The ESR spectrum of 3 at 77 K showed g=4.5 and 2.2
(g = the g factor), signals characteristic of a high-spin d> Mn"Y
complex.'*! On the other hand, 2 was ESR inactive at 5 K.
Though an oxo-bridged dinuclear Mn' porphyrin complex is
ESR inactive,'™ the Mn centers of 1 could not be bridged
intra/intermolecularly by an oxo or hydroxo group, because of
the steric hindrance of the meso mesityl groups.""! However,
some examples of monomeric Mn"=0 complexes have been
reported to be diamagnetic species.">'? On the basis of these
chemical and magnetic studies, we assign the Mn centers of 2
as low-spin, d> Mn" ions.

The resonance Raman spectrum of 2 exhibited two
isotope-sensitive intense bands at 791 and 518 cm™
(Figure 1, inset). By replacing Bu,N"OH in H,"°O with
Bu,N*®*OH in H,"®O, these bands shifted to 757 and 491 cm !,
respectively. Furthermore, by replacing Bu,N'*OH in H,'°O
with Bu,N'*OD in D,%O, the 518cm™! band shifted to
503 cm™!, while the 791 cm™ band did not shift. The observed
isotopic shifts of 34 and 27 cm™' with '*O-substitution and
15 cm ™! with OD-substitution are in good agreement with the
calculated values ("*O, 35 and 22 cm™'; OD, 11 cm ™) from the
harmonic oscillator approximation of Mn'=0 and Mn"—OH
stretching vibrations. Therefore, the 791 and 518 cm ™' bands
are assigned to »(Mn'=0) and v(Mn"'—OH), respectively,
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thus indicating that each Mn center of 2 is six-coordinate
HO-Mn"=0. The observed Mn"=O0 stretching frequency is
higher than that of [Mn"Y(O)(OH)(TMP)]- (712cm™;
TMP = tetramesitylporphyrin),'¥ thus indicating the Mn"=
O bond is stronger than Mn"V=0. On the other hand,
»(Mn"=0) of a Mn tetraamide complex (979 cm™") is much
higher than the present value,™? which shows that the
manganese—oxo bond of 2 is much weaker than that of the
tetraamide complex, presumably because of the effect of the
trans-hydroxo ligand in 2. Although '*O-mCPBA was used as
an oxidant in the '®O-labeled experiment, the isotopic shifts
were observed, because of facile exchange of the oxo and
hydroxo oxygen atoms with oxygen atoms of H,O and OH .
Oxo-hydroxo tautomerism, that is, conversion of oxo to the
hydroxo moiety, would proceed through a hydrogen-bonded
water molecule in a concerted fashion.'”? Consequently, oxo
and hydroxo groups could exist both inside and outside of the
cavity in the tautomeric process.

The monomeric MnY=0 porphyrin species can exist only
for a few seconds or minutes, whereas 2 is stable for several
hours.'>'? Actually, we could not observed a stable Mn'=
O(TMP) complex under the same conditions used for 2. The
higher stability of 2 than that of MnY=O(TMP) complex is
due to its characteristic structure.’ The present dimeric
complex has a hydrophobic cavity surrounded by the
porphyrin rings and the bulky meso mesityl groups, which
could protect the inside oxo groups.

When 40 equivalents of CF;SO;H for each manganese ion
was added to the HO—Mn"=0 species 2 in CH,Cl,/CH;CN
(1:3, v/v) solution that contained 10 % water, the Mn" species
was spontaneously reduced to Mn™ within a few seconds and
O, evolution was observed under an Ar atmosphere. The
yield of the evolved O, was determined by mass spectrometry
to be 92 % with respect to complex 2, based on the assumption
that each [Mn'=0], complex gives one O, molecule
(Figure 2). Upon '®O-substitution of water and hydroxide,
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Figure 2. Mass spectrometric gas analysis upon the addition of
CF,SO;H to 2 under an Ar atmosphere. a) Before addition of CF;SO;H
to 2, b) addition of 40 equiv CF;SO;H to 2 in H,'°0/'®*OH", c) addition
of 40 equiv CF;SO;H to 2 in H,'®0/"0H".

%0, was observed to evolve in a yield greater than 90%.
Furthermore, the mixture of '°0,, %00, and 8O, was
observed in a statistical distribution, when the mixture of
SOH" in H,'°0 and ®OH" in H,'"®*O was employed. The ratio
of 1°0,:"%0'%0:'80, was in good agreement with the calculated
value from the applied isotopic ratio of '*0:'%0 in water and
hydroxide anion (for example, the observed ratio of
150,:°0%0:180,%0 =4:42:54, the calculated ratio of
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160,:1%0%0:1%0,!90 = 9:42:49 from the applied isotopic ratio
of °0:%0 =3:7 in water and hydroxide anion). These results
indicated quantitative incorporation of oxygen atoms from
H,0 and OH™ into the evolved O,. On the other hand, no O,
evolution was detected on the controlled experiment with a
Mn", species 3. It was reported that H,O—Mn'=0O can
oxidize halide anion through an oxo-transfer reaction.!'!]
Indeed, upon protonation, 2 quantitatively oxidized Cl™ into
CIO~ by an attack of the Mn"=0O moiety on Cl~, whereas
without protonation, Cl~ oxidation could not be observed.
Thus, the protonation on 2 could form a transient intermedi-
ate, such as (H,O—Mn"=0),. The O—O bond formation would
occur by the attack of the H,O—Mn"=0 group on water, or by
a coupling reaction between the oxo groups of each Mn'=0
unit. Furthermore, as decomposition of the Mn complex was
not detected in the stoichiometric reaction presented herein,
the interconversion between 1 and 2 can be extended to a
catalytic cycle.

In conclusion, we have characterized the Mn'=0 por-
phyrin dimer as a key intermediate of the O, evolution in
detail. The reaction of the Mn™, complex 1 with mCPBA
under strong basic conditions gave the stable diamagnetic
MnY, intermediate 2, which has oxo and hydroxo axial ligands
derived from water and/or hydroxide ions. Addition of a small
excess amount of acid to 2 rapidly afforded a Mn", species,
and dioxygen was evolved quantitatively. Further studies on
the mechanism of this oxygen evolution catalyzed by the
dimanganese tetraarylporphyrin dimer are in progress in our
laboratory.
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