(CARBORANE)RHODIUM-GOLD COMPLEXES

JUSTIN E. GOLDBERG and F. GORDON A. STONE*

Department of Chemistry, Baylor University, Waco, TX 76798-7348, U.S.A.

(Received 17 July 1992; accepted 3 August 1992)

Abstract—Treatment of the reagent [NEt₄][Rh(CO)(PPh₃)(η^{5} -7,9-C₂B₉H₁₁)] in CH₂Cl₂, in the presence of TlBF₄, with half an equivalent of the digold compounds [Au₂Cl₂{ μ -Ph₂P(CH₂)_nPPh₂}] (n = 2-6) affords the complexes [Rh₂Au₂{ μ -Ph₂P(CH₂)_nPPh₂}(CO)₂ (PPh₃)₂(η^{5} -7,9-C₂B₉H₁₁)₂]. The compounds [Rh₂Au₂{ μ -Ph₂P(CH₂)_nPPh₂}(CO)₂(PPh₃)₂(η^{5} -7,8-C₂B₉H₁₁)₂] (n = 3 or 6) have similarly been prepared. Reactions between the digold complexes [Au₂Cl₂(μ -Z or *E*-Ph₂PCH=CHPPh₂)] and the salts [NEt₄][Rh(CO)(PPh₃)(η^{5} -7,n-C₂B₉H₁₁)] (n = 8 or 9) give the four isomeric dirhodium–digold complexes [Rh₂Au₂(μ -Z or *E*-Ph₂PCH=CHPPh₃)(η^{5} -7,n-C₂B₉H₁₁)]. The NMR data for the new compounds are reported and discussed in terms of the formulations proposed.

In studies on compounds having bonds between dissimilar metal atoms, we have employed the salts $[NEt_4][Rh(CO)(L)(\eta^5-7, 8-C_2B_9H_9R_2)]$ (1a, $L = PPh_3$, R = H; 1b, L = CO, R = Me; 1c, $L = PPh_3$, R = Me) to prepare complexes in which rhodium is bonded to rhenium, la cobalt, lb iridium,^{1b} platinum^{1c,d} and gold.^{1e,f} This approach to compounds with heteronuclear metal-metal bonds was prompted by the recognition that the anion of the salt 1a is isolobally mapped² with $[Fe(CO)_2(\eta^5-C_5H_5)]^-$, and that the latter has been employed as a useful synthon for preparing mixedmetal compounds for some 30 years.³ The reagent 1d is an isomer of 1a,⁴ having an η^5 -7,9-C₂B₉H₁₁ ligand instead of the η^{5} -7,8-C₂B₉H₁₁ group present in the former species.[†] We have recently studied reactions between 1d and the platinum compounds $[PtCl(R)(L)_2]$ (R = H, Me or Ph; L = PEt₃, PMe₂Ph or PPh₃) and have thereby obtained a variety of Rh-Pt complexes.^{1d} In this paper we extend our work with 1d describing a series of new Rh-Au

compounds. Earlier work with the reagents 1a-1c afforded several Rh—Au complexes, including the compounds 2–4. ^{le,f}

RESULTS AND DISCUSSION

The reaction between [AuCl(PPh₃)] and 1d in THF, in the presence of TlBF₄ to remove chloride as insoluble TlCl, afforded the complex [RhAu (CO)(PPh₃)₂(η^{5} -7,9-C₂B₉H₁₁)] (2d), characterized by the data given in Tables 1 and 2. Compound 2d (Fig. 1) is an isomer of 2a.^{1e} Both species show a single, very strong band in their IR spectra for the CO ligand (2a, 1998; 2d, 1993 cm⁻¹), and the ³¹P{¹H} NMR spectra reveal two resonances for the PRh and PAu groups. Those for 2d occur at δ 36.4 [PRh, J(RhP) 132 Hz] and 33.2 (PAu). The corresponding data for 2a are δ 35.9 [PRh, J(RhP) 123 Hz] and δ 35.3 [PAu, J(RhP) 12 Hz], which are clearly very similar.

The ¹³C{¹H} NMR spectrum of **2d** was informative with signals for the CO group at δ 192.5 [*J*(RhC) 73, *J*(PC) 14 and 8 Hz], and for the cagecarbon nuclei at δ 51.9 and 49.1. The observance of two CH(C₂B₉H₁₁) peaks is consistent both with the ¹H NMR data (δ 1.96 and 2.19) and with the data for **2a** (δ 44.3 and 44.0 in the ¹³C{¹H}, and δ 1.91 and 2.52 in the ¹H NMR spectrum), and is as expected given the asymmetry of the rhodium centre. Whether the carborane ligand is rotating about an axis through the rhodium atom and the centroid of the open pentagonal face, or whether

^{*} Author to whom correspondence should be addressed.

[†] In the salt **1a** a rhodium atom forms, with a $[nido-7,8-C_2B_9H_{11}]^{2-}$ dianion, a *closo*-1,2-dicarba-3-rhodadodecaborane structure. Similarly, in **1d** a $[nido-7,9-C_2B_9H_{11}]^{2-}$ dianion forms a *closo*-1,7-dicarba-2-rhodacarborane icosahedral framework. However, in the formulae in this paper the carborane groups are designated as η^{5} -7,n-C₂B₉H₁₁ (n = 8 or 9) in order to emphasize their pentahapto ligand properties, in which they formally act as four-electron donors.

		ical aliu pilysical uala iul ulio		combicves			
			Yield	v _{max} ((2 0) ⁶	Analysi	(%) (%)
	Compound	Colour	(%)	(cm	-1- -	с С	Н
2d [RhAu	u(CO)(PPh ₃) ₂ (η ⁵ -7,9-C ₂ B ₉ H ₁ ,]	Yellow	90	1993	3 vs	47.3 (47.6)	4.2 (4.2)
3c [WRh.	Au(μ -CC ₆ H ₄ Me-4)(CO) ₃ (PPh ₃)(η^{5} -7,9-C ₂ B ₉ H ₁₁)(η -C ₅ H ₅)] Orange	56 2	016 vs, 1993	m (sh), 1954 s	38.1 (38.2)	3.4 (3.4)
5a [Rh ₂ A	$\ln_2 \{\mu - Ph_2 P(CH_2)_2 PPh_2\} (CO)_2 (PPh_3)_2 (\eta^5 - 7, 9 - C_2 B_9 H_{11})_2]$	Cream	65	1993	3 vs	43.8 (44.3)	4.5 (4.2)
5b [Rh ₂ A	$\ln_2{\mu-Ph_2P(CH_2)_3PPh_2}(CO)_2(PPh_3)_2(\eta^5-7,9-C_2B_9H_{11})_2$	Cream	64	1989) vs	44.3 (44.6)	4.4 (4.2)
$5c [Rh_2A$	$\ln_2\{\mu-Ph_2P(CH_2)_3PPh_2\}(CO)_2(PPh_3)_2(\eta^5-7,8-C_2B_9H_{11})_2]$	Yellow	78	200	2 vs	45.0 (44.6)	4.8 (4.2)
5d [Rh ₂ A	$\ln_{2}\{\mu-Ph_{2}P(CH_{2})_{4}PPh_{2}\}(CO)_{2}(PPh_{3})_{2}(\eta^{5}-7,9-C_{2}B_{9}H_{11})_{2}]$	Cream	67	1992	2 vs	45.3 (44.9)	4.7 (4.3)
5e [Rh ₂ A	$\ln_{2}\{\mu-Ph_{2}P(CH_{2}),PPh_{2}\}(CO)_{2}(PPh_{3})_{2}(\eta^{5}-7,9-C_{2}B_{9}H_{11})_{2}\}$	Beige	61	199(sv (45.9 (45.2)	4.6 (4.4)
5f [Rh ₂ A	$u_{2}[\mu-Ph_{2}P(CH_{2})_{6}PPh_{2}](CO)_{2}(PPh_{3})_{2}(\eta^{5}-7,9-C_{2}B_{9}H_{11})_{2}]$	Cream	58	1993	3 vs	46.3 (45.5)	4.7 (4.5)
5g [Rh ₂ A	$\ln_2{\mu-Ph_2P(CH_2)_6PPh_2}(CO)_2(PPh_3)_2(\eta^5-7,8-C_2B_9H_{11})_2$	Yellow	76	2000) vs	45.8 (45.5)	4.6 (4.5)
6a [Rh ₂ A	\u ₂ (μ- <i>E</i> -Ph ₂ PCH=CHPPh ₂)(CO) ₂ (PPh ₃) ₂ (η ⁵ -7,9-C ₂ B ₉ H ₁₁	1)2] Beige	32	1992	2 vs	44.4 (44.4)	4.3 (4.1)
6b [Rh ₂ A	Nu ₂ (μ-Z-Ph ₂ PCH=CHPh ₂)(CO) ₂ (PPh ₃) ₂ (η ⁵ -7,9-C ₂ B ₉ H ₁₁)	²] Beige	54	198	7 vs	45.1 (44.4)	4.3 (4.1)
6c [Rh ₂ A	$\operatorname{Au}(\mu - E - \operatorname{Ph}_2\operatorname{PCH} = \operatorname{CHPPh}_2)(\operatorname{CO})_2(\operatorname{PPh}_3)_2(\eta^5 - 7, 8 - \operatorname{C}_2\operatorname{B}_9\operatorname{H}_{11})$	^{12]^c Beige}		200	2 vs		
6d [Rh ₂ A	\u ₂ (μ-Z-Ph ₂ PCH=CHPPh ₂)(CO) ₂ (PPh ₃) ₂ (η ⁵ -7,8-C ₂ B ₉ H ₁	1)2] Orange	71	1990) vs	44.1 (44.4)	4.3 (4.1)
	Table 2. ¹ H, ¹³ C	C and ³¹ P NMR data ^a for the	: rhodium–gold	complexes			
Compou	$(\varrho) _{q} H_{l}$ pu	13Cc ((9)			$^{31}\mathrm{P}^{d}\left(\delta\right)$, ,
2d	1.96, 2.19 [s \times 2, 2H, CH(C ₂ B ₉ H ₁₁)], 7.22–7.60 (m, 30H, Ph)	192.5 [d of d of d, CO, J(Rh 81 135 0-128 0 (Ph) 51 9 4	(C) = 73, J(PC)	= 14 and 3	6.4 [d, br, PRh, J	(RhP) = 132], 33.	2 (s, br, PAu)
36	1.68, 2.18 [s × 2, 2H, CH(C ₂ B ₉ H ₁₁)], 2.30 (s, 3H, Me- 4), 5.59 (s, 5H, C ₅ H ₃), 7.01, 7.21 [(AB) ₂ , 4H, C ₆ H ₄ , J(AB) = 8], 7.30–7.60 (m, 15H, Ph)	283.4 [μ -C, J(WC) = 152], 2 J(WC) = 180], 193.3 [d of d J(PC) = 14], 148.7 [C ⁴ (C ₆ H 128.6 (Ph and C ₆ H ₄), 92.6 ((213.6 [WCO, J(RhCO, C_2H_5), 50.0 (C_2 31))))))))))))))))))))))))))))))))))))	3) = 74, , 141.9- B ₉ H ₁₁),	7.1 [d, PRh, <i>J</i> (Rl	hP) = 132]	
5a	2.05 [s, 4H, CH(C ₂ B ₉ H ₁)], 2.45 (m, br, 4H, CH ₂),	21.9 (Mc-4) *135.0–127.0 (Ph), 51.5, 48.7	(C ₂ B ₉ H ₁₁), 24.5	[(AXX'), 3	6.2 [d of d, vbr, F	'Rh, <i>J</i> (RhP) = 132	2 and 30], 32.6
i	7.19–7.56 (m, 50H, Ph)	CH_2 , $ J(AX) + J(AX') = 3$	6] 		s, br, PAu)		
តិ	1./2 (m, 2H, β-CH ₂), 1.99, 2.09 [s×2, 4H, CH(C ₂ B ₉ H ₁₁)], 2.52 (m, 4H, α-CH ₂), 7.22–7.61 (m, S0H, Ph)	192.6 [d of d of d, CU, $J(Rh)$ 7], 135.0–128.7 (Ph), 52.0, 4([(AXX), α -CH ₂ , $ J(AX)+J$	(C) = 75, J(PC) 8.9 $(C_2B_9H_{11}), 2$ I(AX') = 45], 2	= 14 and 3 29.1 0.8 [t, β -	6.0 [d, PRh, J(R)	hP) = 132] , 28.2 (s	, PAu)
		$CH_2, J(\Gamma \cup) = J$					

2842

50	1.91 (m, 2H, β-CH ₂), 1.98, 2.54 [s × 2, 4H, CH(C ₂ B ₉ H ₁₁)], 2.64 (m, 4H, α-CH ₂), 7.22–7.53 (m,	191.6 [d of d, CO, J (RhC) = 72, J (PC) = 18], 134.4- 128.9 (Ph), 44.5, 43.9 ($C_2B_9H_{11}$), 29.2 [(AXX'), α -	36.5 [d, br, PRh, J (RhP) = 124], 31.3 [d, PAu, J (RhP) = 11]
	50H, Ph)	CH_{2} , $ J(AX) + J(AX') = 42]$, 21.1 [t, β - CH_2 , J(PC) = 5]	
Şd	1.53 (m, 4H, β-CH ₂), 1.98 [s, 2H, CH(C ₂ B ₉ H ₁₁)], 2.15 (m, 4H, α-CH ₂), 2.20 [s, 2H, CH(C ₂ B ₉ H ₁₁)], 7.24-7.58 (m, 50H, Ph)	192.7 [d of d of d, CO, J(RhC) = 74, J(PC) = 14 and 8], 135.2–128.7 (Ph), 51.9, 49.2 (C ₂ B ₉ H ₁₁), 28.4 [d, α - CH ₂ , J(PC) = 33], 27.3 [(AXX'), β -CH ₂ .	36.4 [d, br, PRh, J(RhP) = 132], 30.7 (s, br, PAu)
		$ J(\mathbf{AX} + J(\mathbf{AX}') = 23]$	
56	1.40 (m, 4H, β -CH ₂), 1.54 (m, 2H, γ -CH ₂), 1.95 [s, 2H, CH/C B H N 2 10 [m, 6H \approx CH \approx 0.1	192.8 [d of d of d, CO, $J(RhC) = 74$, $J(PC) = 14$ and or 125.1 126 T (PC) 51.0 40.1 C D U > 21.0 R	36.1 [d, br, PRh, $J(RhP) = 132$], 30.0 (s, br, PAu)
	CH(C ₂ B ₉ H ₁₁)], 7.24–7.58 (m, 50H, Ph)	$\begin{array}{c} 0, 1, 0, 1, -1, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	
		$[d, \beta-CH_2, J(PC) = 5]$	
51	1.31 (m, br, 4H, γ -CH ₂), 1.41 (m, br, 4H, β -CH ₂), 1.97	192.8 [d of d of d, CO, $J(RhC) = 74$, $J(PC) = 14$ and	36.3 [d, br, PRh, J(RhP) = 132], 30.6 (s, br, PAu)
	[S, ZH, CH($(-2B_0H_{11})$], Z.21 [m, DI, 0H, α -CH ₂ and CH(Z D II) α 273 (2.1 EMI DI)	8], 155.2–128.7 (Ph), 51.9, 49.2 ($C_2B_9H_{11}$), 30.6 [d, γ -	
	CH(C2B9H11)]; /.24-1.01 (m, 2014, Ph)	CH_2 , $J(PC) = 13$, 28.5 [d, α - CH_2 , $J(PC) = 32$], 25.9 [d, β - CH_3 , $J(PC) = 5$]	
Sg	1.34 (m, br, 4H, γ-CH ₂), 1.51 (m, br, 4H, β-CH ₂), 1.92	191.7 [d of d, CO, $J(RhC) = 72$, $J(PC) = 18$], 134.6-	36.6 [d, br, PRh, <i>J</i> (RhP) = 122], 33.4 [d, PAu,
	[s, 2H, CH(C ₂ B ₉ H ₁₁)], 2.29 (m, br, 4H, α-CH ₂), 2.52	128.9 (Ph), 44.3, 43.8 (C ₂ B ₉ H ₁₁), 30.5 [d, <i>γ</i> -CH ₂ ,	J(RhP) = 11]
	[s, 2H, CH(C ₂ B ₉ H ₁₁)], 7.28–7.60 (m, 50H, Ph)	$J(PC) = 15], 28.8 [d, \alpha-CH_2, J(PC) = 33], 25.9 [d, \beta-CH_2, D(PC)] = 51$	
		$Cn_2, J(\Gamma C) = J$	
6a	1.97, 2.10 [$s \times 2$, 4H, CH(C ₂ B ₉ H ₁₁)], 7.19–7.59 (m, cont pb and CU-CU)	192.4 [d of d of d, CO, $J(RhC) = 74$, $J(PC) = 14$ and of 122 4 (A VVV) $CH_{11} - CH_{11} + V(AVV) = 74$	36.2 [d, br, PRh, <i>J</i> (RhP) = 132], 29.5 (s, br, PAu)
	22H, Fu and CrimCh)	b_{1} , 142.4 [(AAX), CHITCH, $J(AX) + J(AX) = 52$, 135.2–128.7 (Ph), 51.8, 49.1 (C,B,H,1)	
6 9	1.86, 2.29 [s×2, 4H, CH(C ₂ B ₉ H ₁₁)], 6.76 [(AA'XX'),	193.3 [d of d, CO, $J(RhC) = 72$, $J(PC) = 15$], 135.8	35.7 [d, PRh, J(RhP) = 130], 23.1 [d, PAu,
	2H, CH=CH, $J(AX) = 39$, $J(AX') = 17$,	[(AXX), CH=CH, J(AX)+J(AX) = 47], 134.9-	$J(\mathbf{RhP}) = 15]$
	J(AA') = 3, J(XX') = 17, 7.16–7.55 (m, 50H, Ph)	128.6 (Ph), 52.4, 48.3 (C ₂ B ₉ H ₁₁)	
ઝ	1.97, 2.62 [s \times 2, 4H, CH(C ₂ B ₉ H ₁₁)], 7.22–7.57 (m,	191.3 [d of d, CO, $J(RhC) = 72$, $J(PC) = 18$], 143.0	36.7 [d, br, PRh. J(RhP) = 123], 32.7 (s, PAu)
	52H, Ph and CH=CH)	[(AXX'), CH=CH, J(AX) + J(AX') = 56], 136.0-	
		128.0 (Ph), 44.8, 44.1 (C ₂ B ₉ H ₁₁)	
Sel Sel	1.89, 2.69 [s×2, 4H, CH(C ₂ B ₉ H ₁₁)], 6.74 [(AA'XX'),	192.0 [d of d, CO, $J(RhC) = 72$, $J(PC) = 18$], 135.4	36.5 [d, PRh, J(RhP) = 122], 26.8 (s, br, PAu)
	2H, CH=CH, $J(AX) = 36$, $J(AX) = 16$,	[(AXX), CH=CH, J(AX)+J(AX) = 56], 135.1-	
	J(AA') = 8, $J(XX') = 16$], 7.24–7.56 (m, 50H, Ph)	128.9 (Ph), 45.2, 44.3 (C ₂ B ₉ H ₁₁)	
"Chemi	ical shifts S in mm counting constants in Hz measurame	nts at ambient temperatures in O.C.	

(Carborane)rhodium-gold complexes

" Cnemical shifts o in ppm, coupling constants in Hz, measurements at ambient temperatures in CD₂Cl₂. ^b Resonances for B—H protons occur as unresolved broad weak signals in the range δ 0–3.

^{α} Hydrogen-1 decoupled, chemical shifts are positive to the high frequency of SiMe₄. ^{α} Hydrogen-1 decoupled, chemical shifts are positive to the high frequency of 85% H₃PO₄ (external).

"Resonance for CO ligands not observed due to weak spectrum and multiplicity of signal.

it is rigid on the NMR time-scale, will make no difference to the asymmetry of the CH vertices with respect to the Rh(CO)(PPh₃)Au fragment. This is because there is no position the cage may adopt which will allow a plane of mirror symmetry to be drawn through the molecule, so as to make the CH vertices equivalent. They must always be inequivalent, although their signals may sometimes be accidentally coincident. What is noteworthy is that in the ${}^{13}C{}^{1}H$ NMR spectrum of 2a the signal at δ 44.3 appears as a doublet [J(XC) 5 Hz], presumably due either to ¹⁰³Rh or ³¹PRh coupling. However, both CH signals for 2d are singlets. This slight difference possibly arises from the fact that the 7,9 cage is known to adopt a slightly distorted geometry, with one of the boron atoms in the pentagonal coordinating face lying out of the plane of the remaining four atoms.^{1d,4} This slight distortion, relative to the geometry of the 7,8 cage where no similar distortion has been observed, may be sufficient to remove the slight coupling.

What is more unexpected, and thus even more noteworthy, is the fact that in 2d the signal for the CO group is a doublet-of-doublet-of-doublets, whereas in 2a it is the more expected doublet-ofdoublets. This is a feature which is observed again later in relation to the compounds 5; the 7,9 species always shows an extra ³¹PAu coupling to the CO group. We propose that this extra observable coup-

ling is due to a very subtle shift in the position of the CO ligand, making it more transoid to the Au-P vector, and thus increasing the magnitude of the ³¹PAu coupling to the point where it becomes resolved and hence observable. Indeed, it seems reasonable to assume that this subtle repositioning of the CO group is a further consequence of the slightly distorted 7,9 cage. Furthermore, that distortion, resulting in a slight shifting of the ligands relative to one another, may also account for the fact that the signal for the PAu group in 2a is a doublet, due to ¹⁰³Rh coupling, whereas in 2d the comparable PAu signal is a broad singlet. This difference between the 7,8 and 7,9 systems will again become apparent when we discuss compounds 5, where the same subtle variations are observed.

In view of the earlier synthesis of the trimetal complex 3a,^{1e} from the reaction between 1a and [WAuCl(μ -CC₆H₄Me-4)(CO)₂(η -C₅H₅)], in the presence of TlBF₄, the corresponding reaction between 1d and the tungsten-gold species was investigated. In this manner the complex [WRhAu(μ -CC₆H₄Me-4)(CO)₃(PPh₃)(η ⁵-7,9-C₂B₉H₁₁)(η -C₅H₅)] (3c) was prepared (Fig. 1). The latter was fully characterized by the data given in Tables 1 and 2, and, as expected, these data are very similar to those of its isomer 3a containing the η ⁵-7,8-C₂B₉H₁₁ ligand.

The synthesis of 3c from $[WAuCl(\mu-CC_6H_4Me-4)]$

OBH 1d OCH 1a 1b CMe 10 C_eH₄Me-4 Au(PPh₃) W(CO)₂(η-C₅H₅) L PPh₃ 2a 3a CH 2ь co 36 CMe CMe 2c CMe

 $(CO)_2(\eta$ -C₅H₅)] and 1d also afforded small quantities of 2d and [W(=CC₆H₄Me-4)(CO)₂(\eta-C₅H₅)]. These two by-products evidently form via the decomposition of 3c since solutions of the latter were observed to decompose slowly to give the same two species. The isomeric compound 3a is more stable, and its structure was confirmed by X-ray diffraction.^{1e}

We have recently employed the digold compounds $[Au_2Cl_2{\mu-Ph_2P(CH_2)_nPPh_2}]$ (n = 2-6)and [Au₂Cl₂(u-Z or E-Ph₂PCH==CHPPh₂)] as precursors for the synthesis of ditungsten-digold complexes, in which two $RC \equiv W(CO)_2(n^3-7.8 C_2B_9Me_2$ (R = C₆H₄Me-4) groups are bridged by $AuP(Ph)_2(CH_2)_n(Ph)_2PAu$ or $AuP(Ph)_2CH = CH$ (Ph)₂PAu units.³ It was of interest, therefore, to determine if reactions between 1d and the same digold compounds would afford complexes of the types $[Rh_2Au_2{\mu-Ph_2P(CH_2)_nPPh_2}(CO)_2(PPh_3)_2$ $(\eta^{5}-7,9-C_{2}B_{9}H_{11})_{2}$ and $[Rh_{2}Au_{2}(\mu-Z \text{ or } E-Ph_{2})]$ $\mathbf{PCH} = \mathbf{CHPPh}_{3}(\mathbf{CO})_{1}(\mathbf{PPh}_{3})_{2}(n^{3}-7.9-\mathbf{C}_{2}\mathbf{B}_{4}\mathbf{H}_{1,1})_{2}\mathbf{I}.$ in which two Rh(CO)(PPh₃)(η^{5} -7,9-C₂B₉H₁₁) fragments are similarly held together by the $AuP(Ph)_2$ $(CH_2)_n(Ph)_2PAu$ or $AuP(Ph)_2CH=CH(Ph)_2PAu$ moieties.

Treatment of a CH₂Cl₂ solution of 1d with half an equivalent of the chlorogold complexes $[Au_2Cl_2]$ μ - $Ph_2P(CH_2)_nPPh_2$, in the presence of excess TIBF₄, afforded the compounds $[Rh_2Au_2\{\mu-Ph_2P(CH_2)_n\}$ $FPh_{2}(CO)_{2}(PPh_{3})_{2}(\eta^{3}-7,9-C_{2}B_{9}H_{11})_{2}[n = 2 (5a),$ 3 (5b), 4 (5d), 5 (5e) and 6 (5f)]. In similar syntheses, employing the reagent 1a, the complexes $[Rh_2Au_2]$ $\{\mu - Ph_2P(CH_2)_nPPh_2\}(CO)_2(PPh_3)_2(\eta^5 - 7.8 - C_2B_9)$ H_{11}_{2} [n = 3 (5c) and 6 (5g)] were obtained. The pairs of compounds 5b and 5c, and 5f and 5g, are isomers, differing only in the disposition of the CH vertices in the *nido*- η^5 -C₂B₉H₁₁ ligands. Data characterizing all the compounds 5 are summarized in Tables 1 and 2, and are in agreement with the formulations shown for 5a, 5b and 5d-5f (Fig. 2). Structural formulae for 5c and 5g are not displayed because of their close similarities with those of 5b and 5f, respectively.

All the species 5 show a single CO stretching band in their IR spectra in the range 1989–2002 cm⁻¹. The NMR data (Table 2) were informative in supporting the structures proposed. The ³¹P{¹H} NMR spectra of the complexes showed two resonances for the PRn and PAu groups, respectively. The latter signals were generally broad singlets, in the range δ 28.2–33.4. However, the spectra of 5c and 5g were sufficiently resolved for the PAu resonances to appear as doublets, due to weak ¹⁰³RhAu³¹P coupling (11 Hz); the change from the 7,9- to the 7,8-cage seeming to make the difference, as was discussed earlier. The PRh resonances of 5b5f occur as broad doublets [J(RhP) 122-132] at ca δ 36.5. That of **5a**, however, was a doublet-ofdoublets with couplings of 132 and 30 Hz, respectively. We ascribe the former to the amicipated ¹⁰³Rh—³¹PPh₃ single bond coupling. Since the PAu resonance is a singlet the 30 Hz value cannot be the result of a three-bond ³¹PPh₃RhAu³¹PPh₂ coupling, and must also be due to a ¹⁰³Rh—³¹PPh₃ interaction. The observation of this second, but weak, ¹⁰³Rh—³¹P coupling may be caused by a spatial ¹⁰³Rh---Rh³¹P effect, arising through a folding of the relatively short $P(CH_2)_2$ chain so as to bring the Rh(CO)(PPh₂)(y^{5} -7,9-C₂B₂H₁) groups into proximity with one another. Unfortunately, it was not possible to grow crystals of 5a for an X-ray diffraction study.

With the exception of 5a, the ${}^{13}C{}^{1}H$ NMR spectra of all the complexes showed a single resonance for the CO ligand. The absence of the expected signal in the spectrum of 5a is attributed to measurements being made on a weak solution. resulting from the relative insolubility of the compound, together with the anticipated multiplicity of the resonance, thereby leading to the peaks being lost in the noise. For the other compounds, the CO resonances are seen at $ca \delta$ 192, appearing either as a doublet-of-doublets [J(RhC) ca 75, J(PC) ca 14]and 8 Hz] for the complexes containing the 7,9carborane ligand, or as a doublet-of-doublets $\{J(RhC) \ ca \ 72, \ J(PC) \ ca \ 18 \ Hz \}$ for the 7.8 analogues. As was mentioned earlier for 2a vs 2d, this difference is attributed to the distortions of the η^{5} -7,9-C₂B₉H₁₁ ligand being sufficient to force the CO group more transoid relative to the PAu moiety, thus increasing the ³¹PAuRh¹³CO coupling. All the complexes 5 show the expected two diagnostic peaks for the non-equivalent carborane cage CH nuclei. Interestingly, the signals for the species 5c (δ 44.5 and 43.9) and 5g (δ 44.3 and 43.8), which contain η^{5} -7,8-C₂B₉H₁₁ groups, are less widely separated than those (δ ca 52 and 49) for the molecules 5 which have η^{5} -7,9-C₂B₉H₁₁ ligands. The assignments for the CH₂ groups in the ¹H and ¹³C{¹H} NMR spectra (Table 2) were made in part on the basis of those for the structurally related complexes $[W_{2}Au_{2}(\mu - CC_{6}H_{4}Me - 4)_{2}]^{2}[\mu - Ph_{2}P(CH_{2})_{n}PPh_{2}]^{2}$ $(CO)_4(\eta^5-7, 8-C_2B_9H_9Me_2)_2].^{4}$

Solutions of the compounds 5 slowly (several 'nours') decompose to give the compound 2a or 2d, depending on which $\eta^{-2}C_2B_9H_{11}$ group they contain. The species with the longer CH₂ chains and having the η^{-5} -7, $\vartheta - \varepsilon_2 B_9 H_{11}$ cage system appeared marginally more stable in solution. However, in contrast, the reaction between 1a and $[Au_2Cl_2(\mu - Ph_2PCH_2CH_2PPh_2)]$ did not afford an isomer of 5a, only decomposition products being observed.

Reactions between the salts 1a and 1d and the compounds $[Au_2Cl_2(\mu - Z \text{ or } E-Ph_2PCH=CHPPh_2)]$ were next investigated, and in this manner the four isometric complexes $[Rh_2Au_2(\mu-Ph_2PCH=$ CHPPh₂)(CO)₂(PPh₃)₂(η^{5} -7,*n*-C₂B₉H₁₁)₂] (*n* = 8 or 9) (6) were prepared; data for which are given in Tables 1 and 2. Only the species 6a and 6b, containing *nido*- η^{5} -7,9-C₂B₉H₁₁ ligands, are displayed (Fig. 3), since 6c and 6d with $nido-\eta^5-7, 8-C_2B_9H_{11}$ groups are structurally so similar. Compound 6c, with a *trans*-Ph₂PCH=CHPh₂ group and an η^5 -7,8- $C_2B_9H_{11}$ cage, was relatively unstable in solution, decomposing to give 2a. Hence, a pure sample for microanalysis was not obtained. The NMR data for 6c, and all the other compounds 6, displayed the expected resonances in accord with the structures proposed. As expected, based on the earlier discussion, in the ${}^{13}C{}^{1}H$ NMR spectra, the signals for the CO ligands in 6c and 6d, both of which contain the 7,8-carborane group, appeared as a doublet-of-doublets. As was also expected, that for the CO group of 6a, containing the 7,9 cage, was a doublet-of-doublets. However, for 6b, although it also contains the $7,9-C_2B_9H_{11}$ group, the signal for the CO ligands was the more simple doublet-of-doublets. Possibly, in this case, the constraints of the sterically more rigid and thus more demanding *cis*-alkene forces the PAu group into a position such that the ³¹PAuRh¹³C coupling is now too small to be resolved, or is possibly zero. In fact, it is noteworthy that, in this complex only, the signal for the PAu group appears as a doublet, due to ¹⁰³Rh—³¹P coupling (15 Hz), whereas for **6a**, **c** and **d** the resonance is observed as a broad singlet. Clearly, in these compounds, with less steric freedom than those containing alkane chains, there is not just an effect caused by the change of the carborane cage, but also one due to the steric constraints imposed by the alkene group.

EXPERIMENTAL

Light petroleum refers to that fraction of b.p. 40-60°C, and all solvents were freshly distilled over appropriate drying agents prior to use. Chromatography columns ca 15 cm long and 3 cm in diameter were packed with silica (70-230 mesh). Celite pads, used to remove TlCl by filtration, were ca 3 cm thick. All experiments were carried out under nitrogen using Schlenk-tube techniques. The NMR measurements were made using a Bruker AMX 360 MHz spectrometer and IR spectra were recorded with a Bruker IFS 25 instrument. The reagents $[NEt_4][Rh(CO)(PPh_3)(\eta^5-7, n-C_2B_9H_{11})]$ (n = 8 or 9),⁴ [AuCl(PPh₃)],⁶ [WAuCl(μ -CC₆H₄Me-4)(CO)₂ $(\eta$ -C₅H₅)], ^{le} [Au₂Cl₂{Ph₂P(CH₂)_nPPh₂}]⁵ and $[Au_2Cl_2(\mu-Ph_2PCH=CHPPh_2)]^5$ were prepared by procedures described previously.

Synthesis of the complex $[RhAu(CO)(PPh_3)_2(\eta^5-7,9-C_2B_9H_{11})]$

A mixture containing **1d** (0.10 g, 0.15 mmol), [AuCl(PPh₃)] (0.075 g, 0.15 mmol) and TlBF₄ (0.047 g, 0.16 mmol) in THF (20 cm³) was stirred for *ca* 30 min, after which time an IR spectrum indicated that the reaction was complete. The mixture was filtered through Celite, and the solvent removed *in vacuo*. The residue was dissolved in CH₂Cl₂ (*ca* 3 cm³) and chromatographed on silica at -10° C. Elution with the same solvent removed a yellow band. Evaporation of the solvent *in vacuo*, followed by crystallization of the residue from CH₂Cl₂-light petroleum (*ca* 20 cm³, 1:10), gave yellow crystals of [RhAu(CO)(PPh₃)₂(η^{5} -7,9-C₂B₉H₁₁)] (**2d**) (0.14 g).

Synthesis of the complex [WRhAu(μ -CC₆H₄Me-4) (CO)₃(PPh₃)(η^{5} -7,9-C₂B₉H₁₁)(η -C₅H₅)]

A mixture of 1d (0.15 g, 0.23 mmol), [WAuCl(μ -CC₆H₄Me-4)(CO)₂(η -C₅H₅)] (0.15 g, 0.23 mmol)

and TIBF₄ (0.073 g, 0.25 mmol) was stirred in CH_2Cl_2 (25 cm³) for ca 30 min, after which time the resulting brown slurry was filtered through Celite. The solvent was removed in vacuo and the residue was adsorbed on silica by addition of ca 2 g of the latter, followed by $ca 10 \text{ cm}^3$ of CH₂Cl₂. After the removal of solvent in vacuo, all solid material was transferred to the top of a silica chromatography column held at -10° C. Elution with CH_2Cl_2 -light petroleum (2:3) removed an orange fraction, which was shown by IR spectrescopy to contain both $\{W \equiv CC_{5}H_{4}Me-4\}$ $(\eta$ -C₅H₅)] and the desired product. The complex $[WRhAu(\mu - CC_6H_4Me - 4)(CO)_3(PPh_3)(\eta^5 - 7, 9 - C_2)]$ $B_{9}H_{11}(\eta-C_{5}H_{5})$] (3c) (0.15 g) was isolated microanalytically-pure by crystallization from CH₂Cl₂light petroleum ($ca 20 \text{ cm}^3$, 1:10), washing with light petroleum $(3 \times 10 \text{ cm}^3)$ and drying in vacuo. Small amounts of 2d were also observed in the product mixtures and identified by NMR spectroscopy.

Synthesis of the complexes $[Rh_2Au_2{\mu-Ph_2P}(CH_2)_nPPh_2(CO)_2(PPh_3)_2(\eta^5-7,9-C_2B_9H_{11})_2]$

A similar procedure was used to prepare all these compounds, therefore, only that for one complex (5d) is given in detail. A CH₂Cl₂ (15 cm³) solution of 1d (0.10 g, 0.15 mmol) and TlBF₄ (0.050 g, 0.17 mmol) was treated with $[Au_2Cl_2]_{\alpha}$ -Ph₂P(CH₂)_4 Plfh₂/₁ (9.966 g, 9.9375 mmol) and the mixture was stirred for 30 min. The resulting cloudy yellow solution was fibrered inrough Ueine. The solvent was removed *in vacuo* and the residue was dissolved in CH₂Cl₂ (5 cm³), and the solution chromatographed on silica at -10° C. Elution with the same solvent afforded a pale yellow eluate. The removal of the solvent *in vacuo* and crystallization of the residue from CH₂Cl₂-light petroleum (10 cm³, 1:4) gave $[Rh_2An_2(\mu-Ph_2P(CH_2)_4PPh_2)(CO)_2(PPh_3)_2(\eta^5 - 7,9 - C_2B_9H_{11})_2]$ (5d) (0.095 g) as a yellow powder, which was washed with light petroleum (2 × 10 cm³) and dried *in vacuo*.

Synthesis of the compounds $[Rh_2Au_2\{\mu-Ph_2P(CH_2)_n PPh_2\}(CO)_2(PPh_3)_2(\eta^5-7,8-C_2B_9H_{11})_2]$

A mixture of 1a (0.10 g, 0.15 mmol) and TlBF₄ (0.050 g, 0.17 mmol) in CH₂Cl₂ (15 cm^3) was added to $[Au_2Cl_2[\mu-Ph_2P(CH_2)_3PPh_2]]$ (0.067 g, 0.075 mmol) and the reactants were stirred for ca 15 min. The cloudy pale orange solution was filtered through Celite, and the solvent was removed in vacuo from the yellow filtrate. The residue was dissolved in CH_2Cl_2 (5 cm³) and chromatographed on silica at -10° C. Elution with CH₂Cl₂ gave a bright yellow fraction. The removal of the solvent in vacuo, followed by crystallization of the solid from CH_2Cl_2 -light petroleum (ca 10 cm³, 1:5), gave yellow microcrystals of $[Rh_2Au_2{\mu-Ph_2P(CH_2)_3}$ $PPh_{2}(CO)_{2}(PPh_{3})_{2}(\eta^{5} - 7, 8 - C_{2}B_{9}H_{11})_{2}](5c) (0.11)$ g), washed with light petroleum $(2 \times 10 \text{ cm}^3)$ and dried in vacuo. The complex $[Rh_2Au_2{\mu-Ph_2P}$ $(CH_2)_6PPh_2$ (CO)₂ (PPh₃)₂ (η^{5} - 7,8-C₂B₉H₁₁)₂ (5g) was similarly prepared from **1a** and $[Au_2Cl_2\{\mu$ - $Ph_2P(CH_2)_{\theta}PPh_2$.

Synthesis of the complexes $[Rh_2Au_2(u-Ph_2PCH= CHPPh_2)(CO)_2(PPh_3)_2(\eta^3-C_2B_9H_{11})_2]$

The complexes **b** were all prepared by a similar method, and therefore only that for **6d** is given in detail. A CH₂Cl₂ (15 cm³) solution of **1a** (0.10 g, 0.15 mmol) was treated successively with TlBF₄ (0.050 g, 0.17 mmol) and [Au₂Cl₂(μ -cis-Ph₂ PCH=CHPPh₂)] (0.066 g, 0.075 mmol). The mixture was shirred for 30 min, and then filtered

●СН Овн Fig. 3. through Celite. The solvent was removed *in vacuo* from the orange solution, and the residue was redissolved in CH₂Cl₂ (*ca* 4 cm³) and chromatographed at -10° C in the usual manner. Eluting with the same solvent gave an orange eluate, from which the solvent was removed *in vacuo*. The residue was recrystallized from CH₂Cl₂-light petroleum (*ca* 20 cm³, 1:5) to give microcrystals of [Rh₂Au₂(μ -Z - Ph₂PCH=CHPPh₂)(CO)₂(PPh₃)₂(η^{5} - 7,8 - C₂ B₉H₁₁)₂] (**6d**) (0.10 g), washed with light petroleum (2 × 10 cm³) and dried *in vacuo*.

Acknowledgements—We thank the Robert A. Welch Foundation for support (Grant AA-1201) and the U.K. Science and Engineering Research Council for the award of a research studentship (to J. E. G.).

REFERENCES

 (a) M. U. Pilotti, F. G. A. Stone and I. Topaloğlu, J. Chem. Soc., Dalton Trans. 1991, 1621; (b) J. R. Fernandez, G. F. Helm, J. A. K. Howard, M. U. Pilotti and F. G. A. Stone, J. Chem. Soc., Dalton Trans. 1990, 1747; (c) J. E. Goldberg, J. A. K.
Howard, H. Müller, M. U. Pilotti and F. G. A. Stone, J. Chem. Soc., Dalton Trans. 1990, 3055; (d) J. E.
Goldberg, D. F. Mullica, E. L. Sappenfield and F. G.
A. Stone, J. Chem. Soc., Dalton Trans. 1992, in press;
(e) N. Carr, M. C. Gimeno, J. E. Goldberg, M. U.
Pilotti, F. G. A. Stone and I. Topaloğlu, J. Chem. Soc., Dalton Trans. 1990, 2253; (f) M. U. Pilotti, F.
G. A. Stone and I. Topaloğlu, J. Chem. Soc., Dalton Trans. 1991, 1355.

- (a) R. Hoffmann, Angew. Chem., Int. Edn Engl. 1982,
 21, 711; (b) F. G. A. Stone, Angew. Chem., Int. Edn Engl. 1984, 23, 89.
- R. B. King, P. M. Treichel and F. G. A. Stone, *Chem. Ind.* 1961, 747.
- J. A. Walker, C. B. Knobler and M. F. Hawthorne, *Inorg. Chem.* 1985, 24, 2688.
- J. E. Goldberg, D. F. Mullica, E. L. Sappenfield and F. G. A. Stone, J. Chem. Soc., Dalton Trans. 1992, in press.
- 6. R. Usón and A. Laguna, Organomet. Synth. 1986, 3, 325.