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Abstract: A novel and highly efflclent procedure for the synthesis of 2,4,6- trisubstituted and 2,3,4,6-tetrasubstituted 
pyridines has been developed. It is based on the one-pot reaction of I” situ generated a&unsaturated imines with 
CH-nucleophiles. 

The interest towards pyridine ring containing compounds is determined by their widespread occurence 
in nature as well as by remarkable versatility of pyridine derivatives in synthetic organic chemistry. The 
pyridine nucleus is a major component of a variety of natural products and drugs.‘82 Numerous reports for 
the last two decades have described the application of pyridine derivatives as ligands for metal-cage 
complexes, in particular with lanthanides.3 and ruthenium.4,5 Recently, chiral metal catalysts with pyridine 
derivatives as ligands were shown to be enantioselective, and reactive catalysts for the synthesis of 
enantiopure organic compounds.6 

A wide variety of synthetic approaches to the pyridine nucleus are available.7*81g One of the most 
common syntheses involves the construction of the pyridine ring from [4+2] atom fragments.” However, there 
is no literature data to our best knowledge on the application of a&unsaturated imines as building blocks 
for similar reactions. Recent reports described an elegant preparation of these unstable compounds 
and their application for the synthesis of E -allylic amines,” and a&unsaturated ketones.‘* The generality 
of the procedure for the synthesis of a&unsaturated imines (2, Scheme l), the mild conditions of the reaction, 
as well as ready availability of starting materials allowed us to conclude that 2 may be a versatile building block 
for construction of the pyridine ring. In order to explore this idea we studied reaction of in situ generated 2” 
with anions of aryl substituted acetonitriles (Scheme 1). 
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In our attempt to optimize the reaction conditions, we found that the best yields of the target 

2-aminopyridines 3a-c were achieved in THF as the solvent.‘4 Change of the base for the deprotonation of 1 

from rrBuLi” to set- or terI-EfuLi did not affect the outcome of the reaction. Considerably better yields (by ca. 

7-10%) of 3a-c were achieved when freshly distilled components for the synthesis of 2, namely, nitriles RlCN, 

and aldehydes R2CH0 were used. Temperature was found to play a crucial role in the outcome 

of the reaction, probably due to the thermal instability of the imine 2. If the reaction was allowed to stand for 
more than 30 min at room temperature on the stage of preparation of 2, the yields of 3a-c were 23-27%, 

and the formation of tarry materials was observed. The procedure is limited to nonenolizable nitriles and 

aldehydes. The application of sodium or potassium salts of acetonitriles furnished better yields of 4a-c 

(by ca. 4-7%) than the corresponding lithium salts.14 Reactions of 2 with anions of alkylnitriles, namely, 

acetonitrile, butyronitrile or ally1 cyanide resulted in a complex mixture of products, none of them major. 

GC MS analysis of the reaction indicated the presence of the target aminopyridines, albeit in a low yield 

(1 I%, 7%, and 9% respectively). Attempts to isolate them by a variety of techniques were unsuccessful. 

In the second series of experiments, we studied the reaction of 2 with sodium enolates of methyl aryl 

ketones. The results are summarized in Scheme 2. 
Scheme 2. 
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Reaction conditions were essentially similar to those reported for the reaction of 2 with anions of substituted 

acetonitriles14. Reaction of 2 and enolate of acetaldehyde16 resulted in a complex mixture of products. No 

target pyridine has been detected by GC MS. Reaction of 2 with more sterically crowded sodium enolate of 

5-methoxytetralone led to 5 in a good yield. 
F 
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It is likely that the mechanrsm of the reaction involves an rnitial attack of a&unsaturated imine by the 

CH-nucleophile (Scheme 3). The resulting intermediates 7 or 10 are in the equilibrium with stabilized anions 

8 or 11. Slow cyclization of 7 or 10 results in the formation of an intermediate tetrahydropyridine 9 or 12 

followed by oxidation into 3a-d or 4a-c, respectively. 
Scheme 3. 

PI 
- 4a-c 

- Hz0 

12 

In summary, we have described an efficient procedure for the synthesis of 2,4,6-trisubstituted and 

2,3,4,6-tetrasubstituted pyridines which is based on the reaction of anions generated from acetonitriles and 

alkylarylketones with in situ generated a&unsaturated imines. Further investigation on the scope, limitation, 

and mechanism of the reported reaction is in progress. 
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