Terdentate (P–N–O) Complexes formed from Z,E-PPh $_2$ CH $_2$ C-(Bu t)=N–N=CH(C $_6$ H $_4$ OH-2) or Z,E-PPh $_2$ CH $_2$ C(Bu t)=N–N=CH-[C $_6$ H $_2$ (OH-2)(OMe) $_2$ -4,6] and Nickel, Palladium, Platinum, Rhodium or Iridium

King Kuok Hii, Sarath D. Perera and Bernard L. Shaw* School of Chemistry, The University of Leeds, Leeds LS2 9JT, UK

> Condensation of Z-PPh₂CH₂C(Bu^t)=NNH₂ with salicylaldehyde or 4,6-dimethoxysalicylaldehyde gave the azine phosphines Z,E-PPh₂CH₂C(Bu^t)=N-N=CH(C₆H₄OH-2) 1a or Z $N=CH[C_6H_2(OH-2)(OMe)_2-4,6]$ 1b, respectively. Treatment of 1a with $[PdCl_2(cod)]$ (cod = cycloocta-1,5-diene) gave the bidentate chelate complex [PdCl₂{PPh₂CH₂C(Bu¹)=N-N=CH(C₆H₄OH-2)}] 3. The phosphine 1a reacts with Na2PdCl4 in the presence of NaO2CMe to give the terdentate chelate complex [PdCI{PPh,CH,C(But)=N-N=CH(C,H,O)}] 4a. Treatment of the latter with NaI or MgMel gave the corresponding iodopalladium(II) complex 4b or the methylpalladium(II) complex 4c, respectively. The analogous methylplatinum(II) complex $[\dot{P}h_2CH_2C(Bu^t)=N-\dot{N}=CH(C_6H_4\dot{O})]$ 4d was prepared by treating [PtMe2(cod)] with 1a. Fluxional nickel(II) complexes of type $[\dot{N}iX\{\dot{P}Ph_2CH_2C(Bu^4)=N-\dot{N}=CH(C_6H_4\dot{O})\}]$ (X = CI **4e** or Br **4f**) were also prepared from NiX₂·nH₂O. When Ni(O2CMe)24H2O was treated with two mol equivalents of 1a a paramagnetic octahedral nickel(II) complex [Ni{PPh₂CH₂C(Bu')=N-N=CH(C₆H₄O))₂] 5 was formed. Treatment of [PtCl₂(cod)] with two mol equivalents of 1a in the presence of NaO₂CMe gave a monocationic platinum(II) chloride salt, which with NH_4PF_6 gave the PF_6 salt. Treatment of 1b with $[IrCl(CO)_2(MeC_6H_4NH_2-\rho)]$ or 0.5 equivalents of $[Rh_2Cl_2(CO)_4]$ in the presence of NEt_3 gave the square-planar complexes $[M(CO)\{PPh_2CH_2C(Bu^t)=N-N=CH[C_8H_2O(OMe)_2-4,6]\}]$ (M = Ir 7a or Rh 7b). The carbonyliridium(I) complex 7a underwent oxidative-addition reactions with Mel, allyl chloride, acetyl chloride or propargyl chloride to give the halogenocarbonyliridium(III) complexes $[\dot{r}X(R)(CO)(\dot{P}Ph_2CH_2C(Bu^i)=N-\dot{N}=CH[C_6H_2\dot{O}(OMe)_2-4.6]]$ **8a–8d** respectively. In contrast, the reaction of the carbonylrhodium(i) complex 7b with allyl chloride gave the π -allylrhodium(ii) complex $[RhCl(\eta^3-C_3H_s(PPh_cH_cC(Bu^1)=N-N=CH[C_sH_cO(OMe)_-4,6]]]$ **9**. Proton, $^{31}P-^{1}H$ and some $^{13}C-^{1}H$ NMR data have been attained.

In recent papers 1,2 we have described the syntheses of bidentate P,N-donor ligands such as the phosphino hydrazones Z-PPh₂CH₂C(Bu')=NNMe₂ and Z-PPh₂CH₂C(Bu')=NNH₂ and the corresponding mixed azine-phosphine from benzaldehyde, viz Z, E-PPh₂CH₂C(Bu^t)=N-N=CHPh. We have described the co-ordination chemistry of these ligands with Group 6 metal carbonyls,1 and also with palladium and platinum.² We have also described some co-ordination chemistry of novel, chiral hydrazone, imine or azine P,N-donor ligands derived from (1R)-(+)-camphor $[(1R-(+)-1,7,7-\text{trimethylnorbornan-}2-\text{one}]^{3-5}$ or (1R)-(-)-fenchone $[(1R-(-)-\text{trimethylnorbornan-}2-\text{trimethylnorbornan-$ 1,3,3-trimethylnorbornan-2-one]. In this paper we report the syntheses of the new azine phosphines Z_{E} -PPh₂CH₂C(Bu^t)= $N-N=CH(C_6H_4OH-2)$ 1a and $Z,E-PPh_2CH_2C(Bu^1)=N-N=$ $CH[C_6H_2(OH-2)(OMe)_2-4,6]$ **1b** and complexes formed from **1a** with Ni^{II} , Pd^{II} and Pt^{II} , and from **1b** with Rh^{I} , Rh^{III} , Ir^{I} and Ir^{III}. The azine phosphines 1a and 1b were prepared with the object of incorporating a third donor atom (oxygen), in the form of a phenolate group, into the azine backbone. We expected that the azines 1a and 1b would be terdentate, i.e. P-N-O ligands, and would co-ordinate to metal centres using both soft- and hard-donor atoms. Gray et al.7 and Banbery et al.8 have reported some imine-phosphine ligands derived from salicylaldehyde, viz. PPh₂(CH₂)_nN=CH(C₆H₄-OH-2) (n = 3 or 4). They described some complexes of these ligands with Cr, W, Re, Ni, Zn and Cu, but their complexes with Pd, Pt, Rh or Ir are not known.

Results and Discussion

Reactions of 1a with the Nickel Triad.—Condensation of tert-butyldiphenylphosphinomethyl ketone hydrazone, Z-PPh₂CH₂C(Bu^t)=NNH₂, with salicylaldehyde gave the salicylaldehyde azine phosphine (P-N-OH) 1a as pale yellow needles in excellent yield (90%). The various reactions of la are summarised in Scheme 1 and those of 1b in Scheme 2. The compounds described in this paper have been characterised by elemental analysis and mass spectrometry (data in the Experimental section), IR and $^{31}P-\{^1H\}$ NMR spectroscopy (Table 1), ¹H NMR spectroscopy (Table 2) and ¹³C-{¹H} NMR spectroscopy (Table 3). The ³¹P-{¹H} NMR spectrum of 1a showed a singlet at $\delta - 14.1$. In the ¹H NMR spectrum the O-H proton gave a singlet at δ 11.2. No IR band for an O-H stretch was observed, probably due to intramolecular hydrogen bonding between the hydroxy hydrogen and the azine nitrogen N=CH. Such an intramolecular hydrogen bond was found in the solid state of the imine ligand $PPh_2(CH_2)_3$ -N=CH(C₆H₄OH-2).⁸ The phosphine 1a was converted into the corresponding sulfide 2 by treating it with monoclinic

Treatment of [PdCl₂(cod)] (cod = cycloocta-1,5-diene)⁹ with **1a** gave a bright yellow solid, which was quite insoluble in most of the organic solvents and we were unable to record its NMR spectra. The IR spectrum of this complex shows two bands at 280 and 340 cm⁻¹ due to v(Pd–Cl), typical of a *cis*-PdCl₂ moiety.^{4,10,11} The strong IR band at 3270 cm⁻¹

J. CHEM. SOC. DALTON TRANS. 1994

Bu^t
N PPh₂ R
PPh₂ R
Bu^t
Sb

3

(ii)

ABu^t
N PPh₂
Bu^t
Sb

(iii)

ABu^t
N PPh₂
Bu^t
Sc

(iii)

ABu^t
N PPh₂
Sc

(iv)
Sc

 $\begin{array}{ll} \textbf{Scheme 1} & R = -N = CH(C_6H_4OH-2); (i) \left[PdCl_2(cod)\right]; (ii) \\ Na_2PdCl_4-NaO_2CMe; (iii) \\ NaI; (iv) \\ MgMeI; (v) \left[PtMe_2(cod)\right]; (vi) \\ NiX_2 \cdot nH_2O; (viii) \\ 0.5 \\ \text{equivalent } \\ Ni(O_2CMe)_2 \cdot 4H_2O; (viii) \\ 0.5 \\ \text{equivalent } \\ PtCl_2(cod)\right]-NaO_2CMe; (ix) \\ NH_4PF_6 \\ \end{array}$

 $[Ni\{PPh_2CH_2C(Bu^{\dagger})=N-N=CH(C_6H_4O)\}_2]$

is assigned to the O-H stretching vibration of an uncoordinated hydroxy group. Elemental analyses are in agreement with the composition C₂₅H₂₇Cl₂N₂OPPd•CH₂Cl₂. We therefore tentatively suggest that it has the structure 3 containing a six-membered chelate ring. Treatment of the phosphine 1a with sodium tetrachloropalladate(II) in the presence of sodium acetate gave the expected neutral chloropalladium(II) complex 4a as a bright orange solid in over 90% yield. Complex 4a is slightly soluble in dichloromethane and in the ¹H NMR spectrum the methylene protons gave a doublet at δ 2.99 with $^{2}J(PH)$ 14.4 Hz. Consistent with the proposed structure for 4a, only one IR band for v(Pd-Cl) was observed at 330 cm⁻¹. The corresponding iodopalladium(II) complex 4b was prepared as bright red needles by treatment of 4a with NaI in acetone. This iodo complex is much more soluble in CDCl₃, and the ¹H NMR spectrum is very similar to that of 4a, but a four-bond coupling of 1.5 Hz between the imine proton N=CH and phosphorus is also observed (Table 2). The ¹³C-{¹H} NMR spectrum showed that four of the aryl carbons of the salicylaldehyde moiety were each attached to a single hydrogen (attached proton test experiment). This confirmed that the O-H bond had been split and not the C-H bond in the 6 position. The carbon resonance for the CH₂ carbon gave a doublet at δ 21.5, consistent with the δ_{C} values observed for methylene carbons in six-membered chelate rings. 2,12,13 Interestingly, a significantly large four-bond coupling of 7.5 Hz was observed between C and phosphorus.

The methylpalladium(II) complex 4c was prepared by treating 4a with MgMeI. In the ¹H NMR spectrum of 4c the reson-

ance of the PdMe group was a doublet at δ 1.05 with ${}^3J(PH)$ 2.9 Hz. Complex **4c** is stable in benzene for 24 h at room temperature (ca. 20 °C) or for 3 h at 60 °C. It did not react with MeI at room temperature, but when the reaction mixture was heated to 60 °C for 30 min the iodopalladium(II) complex **4b** was formed. The iodopalladium(II) complex **4b** was probably formed via a palladium(IV) intermediate ¹⁴ [PdIMe₂{PPh₂CH₂C(Bu')=N-N=CH(C₆H₄O)}]. The analogous methylplatinum(II) complex **4d** was prepared by the

Bu^t X 4e Cl 4f Br

logous methylplatinum(II) complex **4d** was prepared by the reaction of [PtMe₂(cod)]¹² with the phosphine **1a** in benzene. The ³¹P-{¹H} NMR spectrum of **4d** showed a singlet at δ 20.6 with ¹J(PtP) 4542 Hz; the large value of ¹J(PtP) is typical for a tertiary phosphine *trans* to an oxygen ligand.^{4,15,16} In the ¹H NMR spectrum, the methylene protons appeared as a doublet at δ 3.34 with ²J(PH) 13.9 and ³J(PtH) 48.8 Hz, and the imine CHPh proton appeared as a singlet at δ 8.67 with ³J(PtH) 16.8 Hz. The resonance of the PtMe protons at δ 0.50 was split into a doublet with ³J(PH) 2.9 Hz together with platinum-195 satellites, ²J(PtH) 70.3 Hz.

The phosphine 1a complexes react readily with $NiX_2 \cdot nH_2O$ to give deep red complexes of type $[NiX\{PPh_2CH_2C(Bu^t)=N-N=CH(C_6H_4O)\}]$ (X = Cl 4e or Br 4f). These complexes gave broad ¹H NMR spectra at 20 °C, but at -60 °C the spectra were similar to that of 4a. The elemental analyses agreed well with the proposed structures for 4e and 4f. The chloronickel(II) complex 4e showed one IR band at 340 cm⁻¹ for v(Ni-Cl), and in the ¹H NMR spectrum at -60 °C the methylene protons gave a doublet at δ 2.59 with

Scheme 2 (i) [IrCl(CO)₂(MeC₆H₄NH₂-p)]-NEt₃ or 0.5 equivalent [Rh₂Cl₂(CO)₄]-NEt₃; (ii) MeI, allyl chloride, acetyl chloride or propargyl chloride; (iii) allyl chloride

8d

CH=C=CH₂

 2J (PH) 13.9 Hz; for the bromonickel(II) complex 4f a broad doublet was observed at δ 2.58 with 2J (PH) ≈ 7 Hz. When two equivalents of the azine phosphine 1a were treated with nickel(II) acetate tetrahydrate in acetone, a green paramagnetic complex was isolated in 83% yield. The conductimetric measurement showed it to be a non-electrolyte in acetone ($\Lambda_m = 4.25 \times 10^{-2} \ \Omega^{-1} \ \text{mol}^{-1} \ \text{cm}^2$). Elemental analyses agreed with the composition $C_{50}H_{52}N_4NiO_2P_2$, and we tentatively suggest that this complex has an octahedral structure of type [Ni{PPh}_2CH_2C(Bu¹)=N-N=CH(C_6H_4O)}_2] 5 containing two terdentate (P-N-O) fragments. No NMR data could be obtained due to its paramagnetism, and attempts to obtain suitable crystals for X-ray studies were unsuccessful. Some ter- and hexa-dentate paramagnetic octahedral nickel(II) azo-phenolate complexes [e.g. NiO_2N_2X_2 (X = S or O)] have been characterised by X-ray crystallography. 18

Treatment of [PtCl₂(cod)] ¹² in CH₂Cl₂ with 2 mol equivalents of **1a** in the presence of NaO₂CMe gave the monocationic salt **6a** in 50% yield. The corresponding PF₆ salt **6b** was prepared by the addition of NH₄PF₆ to a solution of **6a** in methanol. The ³¹P-{¹H} NMR spectra of the platinum(II) complexes **6** showed an AB pattern with ²J(PP) 22 Hz,

Table 1 IR (cm⁻¹) and ³¹P-{¹H} NMR a data

Compound	$d \nu (C=N)^b$	$\nu(Pd-Cl)^c$	ν(C≡O) <i>^b</i>	δ_{P}
1a	1610s	_		-14.1
1b	1645s	_	_	-14.2
2	1630s	_		37.2
3 d	1610s	280m, 340m	_	26.8°
4a	1610m	330m		46.7 ^f
4b	1625s		_	47.0
4c	1620s	_	_	47.1 g
4d	1620s		_	20.6 (4542)
4e	1630s	_		$26.8^{\hat{f},h}$
4f	1625s	****	_	29.3 f,h
5	1605s			i
6a	1630m			19.7 (3744),
				1.5 (3573),
				$^{2}J(PP) 22.0$
6b	1625m		_	20.2 (3739),
				2.1 (3568),
				$^{2}J(PP) 22.0$
7a	1620s	_	1965s	24.0
7b	1620s	and the same of th	1985s	60.6 (165)
8a	1620s	_	2060s	-4.7
8b	1620s	_	2060s	-4.9
8c ^j	1620s		2060s	-6.3
8d ^k	1625s	_	2070s	-10.3
9	1620s	_		42.0 (107)

^a Recorded at 36.2 MHz, chemical shifts (\pm 0.1 ppm) relative to 85% H₃PO₄, solvent CDCl₃ unless otherwise indicated. ¹J(MP) values (Hz) in parentheses. ^b As compressed KBr disc. ^c As Nujol mull between polythene plates. ^d v(O-H) 3270 cm⁻¹. ^e Reaction mixture in CH₂Cl₂ with C₆D₆ as external lock. ^f In CD₂Cl₂. ^g In C₆D₆. ^h Recorded at -60 °C. ⁱ NMR not observed. ^j v(C=O) 1650 cm⁻¹. ^k v(C=C=C) 1930 cm⁻¹.

suggesting that the two phosphorus atoms are cis to each other. In the 1H NMR spectra, two sets of tert-butyl, CH₂ and CH=N protons were observed; in particular, one CH=N proton is not coupled to platinum-195 (i.e. the CH=N proton of the non-chelating ligand) and the other CH=N proton of the chelating ligand is coupled to platinum-195 [$^3J(PtH) \approx 38$ Hz], in agreement with the proposed structures.

Reactions of 1b with Iridium and Rhodium.—We have extended the co-ordination chemistry of this type of terdentate (P-N-O) ligand to Group 9 metal centres such as iridium and rhodium. The 6-unsubstituted salicyl moiety in the phosphine 1a showed the tendency to undergo both aryl C-H and O-H bond activations to give a mixture of C-cyclometalated and O-cyclometalated iridium(III) complexes. 19 We therefore studied reactions (Scheme 2) of the azine phosphine 1b derived from 4,6-dimethoxysalicylaldehyde, in which the methoxy group at the 6 position would block aryl C-H bond activation. Treatment of the phosphine 1b in CH₂Cl₂ with $[IrCl(CO)_2(MeC_6H_4N\dot{H}_2-p)]^{20}$ in the presence of NEt₃ gave the square-planar carbonyliridium(1) complex 7a, which has a $\delta_{\rm p}$ value of 24.0. The IR spectrum showed a band at 1965 cm⁻¹ for v(C≡O), in agreement with literature values reported for carbonyliridium(1) complexes.^{21,22} In the ¹³C-{¹H} NMR spectrum, the doublets at δ 22.0, 95.8 and 175.1 are assigned to the CH₂, C³ and C≡O carbons, respectively. The ¹H NMR spectrum is very similar to those of square-planar palladium(II) complexes of type 4. The analogous carbonylrhodium(I) complex 7b was similarly prepared in 87% yield by treating 1b with 0.5 equivalents of $[Rh_2Cl_2(CO)_4]^{23}$ The $\nu(C\equiv O)$ value of 1985 cm⁻¹ is similar to values reported for carbonylrhodium(I) complexes.24 The 13C-{1H} NMR spectrum showed a doublet of doublets at δ 189.8 with ${}^{1}J(RhC)$ 73.6 and ${}^{2}J(PC)$ 22.9 Hz for the carbon of the carbonyl ligand.

The co-ordinatively unsaturated iridium(I) complex

Table 2 Proton NMR data^a $\delta(Bu^t)$ Compd. $\delta(=CH)$ Others 3.45 [2 H, d, ²J(PH) 1.2] 3.42 [2 H, d, ²J(PH) 1.2] 1.26 (s) 7.95 (s) 11.2 (1 H, s, br, OH) 1b 1.21 (s) 8.38 (s) 3.78 (6 H, s, OMe) 11.4 (1 H, s, br, OH) 4.04 [2 H, d, ²J(PH) 14.9] 2.99 [2 H, d, ²J(PH) 14.4] 8.11 (s) 2 1.23 (s) 4a b 0.80(s)8.30 (s) 2.91 [2 H, d, ²J(PH) 13.9] 2.64 [2 H, d, ²J(PH) 13.2] 3.34 [2 H, d, ²J(PH) 13.9, ³J(PtH) 8.27 [1 H, d, ⁴*J*(PH) 1.5] 8.67 [1 H, d, ⁴*J*(PH) 2.9] 8.67 [1 H, s, ³*J*(PtH) 16.8] 0.79(s)4b 0.69 (s) 1.05 [2 H, d, ³J(PH) 2.9, PdMe] 4c° 4d 0.82(s)0.50 [3 H, d, ${}^{3}J(PH)$ 2.9, ${}^{2}J(PtH)$ 48.87 70.3, PtMe] 2.59 [2 H, d, ${}^{2}J(PH)$ 13.9] 2.58 [2 H, br d, ${}^{2}J(PH) \approx 7$] 3.53 [2 H, d, ${}^{2}J(PH)$ 13.9, ${}^{3}J(PtH)$ **4e** b,d 0.61 (s) 8.77 (s, br) $4f^{b,d}$ 0.59(s)8.76 (s) 0.63(s)6a 7.91 (s) 44.7] 1.17 (s) $4.24 \Gamma_{2} H, d, {}^{2}J(PH) 16.1, {}^{3}J(PtH)$ 8.59 [1 H, d, ⁴J(PH) 10.7, ³J(PtH) 37.87 6b 0.63(s)3.33 [2 H, d, ${}^{2}J(PH)$ 13.4, ${}^{3}J(PtH)$ 7.80(s)45.91 4.26 [2 H, d, ²J(PH) 16.1, ³J(PtH) 1.21(s)8.55 [1 H, d, ⁴J(PH) 11.0, ³J(PtH) 0.79 (s) 3.43 [2 H, d, ²J(PH) 13.2] 8.91 [1 H, d, ⁴J(PH) 0.5] 7a e 3.80 (3 H, s, OMe) 3.82 (3 H, s, OMe) 3.18 [2 H, dd, ²J(PH) 12.9, ³J(RhH) 7b 4 0.78(s)8.85 (s) 3.79 (3 H, s, OMe) 3.80 (3 H, s, OMe) 8a 4 0.93(s)3.40 [1 H, dd, ${}^{2}J(PH)$ 14.3, ${}^{2}J(HH)$ 8.60 (s) $0.98 [3 \text{ H}, d, {}^{3}J(PH) 1.9, IrMe]$ 14.27 3.69 (3 H, s, OMe) 4.06 [1 H, dd, ²J(PH) 14.3, ²J(HH) 3.70 (3 H, s, OMe) 14.27 0.97 (s) $3.17[1 \text{ H}, \text{ t}, {}^{2}J(\text{PH}) 13.9, {}^{2}J(\text{HH})$ 8h e 8.81 (s) 2.37 (2 H, m, IrCH₂) 13.97 3.79 (3 H, s, OMe) 3.97 [1 H, dd, ²J(PH) 14.2, ²J(HH) 3.80 (3 H, s, OMe) 13.97 $4.37 [1 \text{ H, m, }^2 J(\text{HH}) 2.3, ^3 J(\text{HH})$ $16.7, =CH_2$ $4.47 [1 \text{ H, m}, {}^{2}J(\text{HH}) 2.3, {}^{3}J(\text{HH}) 9.9,$ $=CH_2$ 5.73 $\bar{1}$ H, m, $^{3}J(HH)$ 16.7, $^{3}J(HH)$ 9.9, CH=] 2.09 (3 H, s, MeC=O) 8c e 0.84(s)3.75 [2 H, d, ²J(PH) 14.0] 8.64 (s) 3.77 (3 H, s, OMe) 3.78 (3 H, s, OMe) $8d^e$ 0.84(s)3.23 [1 H, dd, ²J(PH) 12.9, ²J(HH) 3.43 [1 H, dd, ²J(HH) 8.8, ⁴J(HH) 8.84 (s) 6.2, C=CH₂] 13.6] 4.19 [1 H, dd, ²J(PH) 13.7, ²J(HH) 3.77 (3 H, s, OMe) 3.80 (3 H, s, OMe) 13.67 3.92 [1 H, dd, ²J(HH) 8.8, ⁴J(HH) 6.2, C=CH₂] 5.49 [1 H, t, ⁴J(HH) 6.2, IrCH] 2.53 [1 H, d, ³J(HH) 11.8, H_{anti}] 0.74(s)2.88 [1 H, dd, ²J(PH) 16.0, ²J(HH) 9.07 (s) 3.14 [1 H, d, ³*J*(HH) 12.5, H_{anti}] 3.68 [1 H, d, ³*J*(HH) 7.1, H_{syn}] 13.17 4.14 [1 H, dd, ²J(PH) 13.1, ²J(HH) 3.73 (3 H, s, OMe) 13.17 3.82 (3 H, s, OMe) 3.82^{f}

7a underwent oxidative-addition reactions with a range of organic halides such as iodomethane, allyl chloride, acetyl chloride or propargyl chloride to give saturated halogenocarbonyliridium(III) complexes of type $[IrX(R)(CO)\{PPh_2CH_2C(Bu^t)=N-N=CH[C_6H_2O(OMe)_2-4,6]\}]$ 8 (X = I or Cl, R = an organic group). The observed shifts of δ_P to high field and the high frequency values of v(C=O) (up to ca. 2060 cm⁻¹) clearly indicate the oxidation of iridium(I) to iridium(III). The carbonyliridium(I) complex 7a reacted rapidly with MeI to give the iridium(III) complex 8a in 87% yield as a yellow solid. The $^{31}P-^{1}H$ NMR spectrum showed a singlet at δ – 4.7, and in the ^{1}H NMR spectrum, the doublet at

 δ 0.98 with ${}^3J(PH)$ 1.9 Hz was assigned to the IrMe protons. The ${}^{13}C$ -{ ^{1}H } NMR spectrum showed two sets of doublets at δ −2.10 with ${}^{2}J(PC)$ 3.5 Hz and δ 166.0 with ${}^{2}J(PC)$ 10.3 Hz for the IrMe and IrC≡O carbons respectively; such small ${}^{2}J(PC)$ values suggest that both carbons are *cis* to phosphorus. Like other square-planar complexes, the C³ carbon was observed as a doublet at δ 96.1 with ${}^{4}J(PC)$ 6.1 Hz indicating that the ligand remains in a planar *mer* arrangement. Since the alkyl halides ${}^{21.25.26}$ and acyl chlorides ${}^{22.25}$ are known to undergo *trans* additions to iridium(I) centres, we tentatively suggest that the stereochemistry around iridium(III) centre is as shown in 8a. We propose the same stereochemistry for the other iridium(III)

4.65 (1 H, m, CH₂CHCH₂)

^a Recorded at 100 MHz, chemical shifts (± 0.01 ppm) relative to SiMe₄, solvent CDCl₃ unless otherwise stated. ^b In CD₂Cl₂. ^c In C₆D₆. ^d Recorded at −60 °C. ^e Recorded at 400 MHz. ^f H_{syn} is obscured by an OMe signal.

" Recorded at 100.6 MHz, chemical shifts (±0.1 ppm) relative to SiMe4, solvent CDCl3, J(PC) values (Hz) in parentheses. b 1J(RhC).

complexes **8b**, **8c** and **8d** because they exhibit similar spectroscopic properties to **8a**. The oxidative addition of allyl chloride to the carbonyliridium(I) complex **7a** gave the σ -allyliridium(III) complex **8b**. In the ¹H NMR spectrum, the olefinic protons of the σ -allyl group appeared as multiplets at δ 4.37, 4.47 and 5.73 with ²J(HH) 2.3, ³J(HH_{trans}) 16.7 and ³J(HH_{cis}) 9.9 Hz, in agreement with the literature values for similar complexes.²⁷ In the ¹³C-{¹H} NMR spectrum, the resonances at δ 12.6 [d, ²J(PC) 2.9 Hz], 110.0 (s) and 144.1 (s) are assigned to the IrCH₂, =CH₂ and CH= carbons, respectively. The oxidative addition of acetyl chloride to the carbonyliridium(I) complex **7a** gave the acetyliridium(III) complex **8c** in 73% yield. The IR spectrum showed a strong band at 1650 cm⁻¹ for v(C=O) of the acetyl group.²² The ¹³C-{¹H} NMR spectrum showed a doublet at δ 203.2 with ²J(PC) 4.8 Hz for the carbonyl carbon of the acetyl group.

The σ -allenyliridium(III) complex **8d**, prepared from **7a** and propargyl chloride, showed three inequivalent proton resonances at δ 3.43 (dd), 3.92 (dd) and 5.49 (t) with $^2J(HH)$ 8.8 and $^4J(HH)$ 6.2 Hz for the two =CH $_2$ protons and IrCH proton, respectively. In the $^{13}C-\{^1H\}$ NMR spectrum, the resonances at δ 62.8 [d, $^2J(PC)$ 5.8 Hz], 69.0 (s) and 208.6 (s) are assigned to the IrCH, =CH $_2$ and =C= carbons, respectively. These δ_C values are in agreement with literature values for allenes 28 and other allenylmetal compounds. 29 The formation of the σ -allenyliridium(III) complex **8d** suggests that the addition of propargyl chloride proceeds via a S_N2' type mechanism. 30,31

Unlike the analogous iridium(1) complex 7a, the carbonylrhodium(I) complex 7b was reluctant to undergo oxidativeaddition reactions with organic halides such as iodomethane or propargyl chloride. The rhodium(1) complex 7b showed no reaction with iodomethane even at 60 °C for 1 h. However, the reaction of allyl chloride with 7b very rapidly gave the π -allylrhodium(III) complex 9. The carbonyl ligand has been displaced as shown by the absence of any IR bands in the carbonyl region in the IR spectrum. The ³¹P-{¹H} NMR spectrum showed a doublet at δ 42.0 with a much smaller coupling constant, ¹J(RhP), of 107 Hz as expected for rhodium(III) complexes. 16 In the 1H NMR spectrum, the anti protons appeared as doublets at δ 2.53 and 3.14 with $^3J(HH)$ vicinal couplings of about 12 Hz, and the syn protons appeared at δ 3.68 and 3.82 with ${}^3J(HH)$ coupling of about 7 Hz, which are in good agreement with the literature values for π -allylrhodium complexes. ^{32,33}

Experimental

The apparatus used and general techniques were the same as in other recent papers from this laboratory. The IR spectra were recorded using a Perkin-Elmer model 257 grating spectrometer and NMR spectra using a JEOL FX-90Q (operating frequencies for ¹H and ³¹P of 89.5 and 36.2 MHz respectively), JEOL FX-100 (operating frequencies for ¹H and ³¹P of 99.5 and 40.25 MHz respectively) or Bruker AM400 spectrometer (operating frequencies for ¹H, ³¹P and ¹³C of 400.13, 161.9 and 100.6 MHz respectively). The ¹H and ¹³C shifts are relative to SiMe₄ and ³¹P shifts are relative to 85% phosphoric acid. The ¹³C resonances were assigned with the aid of attached proton test experiments. The ¹³C chemical shifts are comparable to the literature values. ^{2,7,12,13,34,35} Electron impact (EI) and fast atom bombardment (FAB) mass spectra were recorded using a VG Autospec with 8 kV acceleration, and for metal complexes m/z values are quoted for ⁵⁸Ni, ¹⁰⁶Pd, ¹⁹⁵Pt, ¹⁰³Rh and ¹⁹³Ir.

The compound Z-PPh₂CH₂C(Bu^t)=NNH₂ was prepared as reported in a previous paper.¹

Preparations.—Z,E-PPh₂CH₂C(Bu^t)=N-N=CH(C₆H₄OH-2) 1a. Salicylaldehyde (0.6 g, 5.0 mmol) was added to a solution of Z-PPh₂CH₂C(Bu^t)=NNH₂ (1.5 g, 5.0 mmol) in ethanol (5 cm³). On standing, the required azine phosphine crystallised as

pale yellow needles (1.77 g, 90%) (Found: C, 74.5; H, 6.65; N, 6.85. $C_{25}H_{27}N_2OP$ requires C, 74.6; H, 6.75; N, 6.95%); m/z (EI) 403 (M+1) and 345 ($M-Bu^i$).

Z,E-PPh₂CH₂C(Bu¹)=N-N=CH[C₆H₂(OH-2)(OMe)₂-4,6] **1b**. A mixture of Z-PPh₂CH₂C(Bu¹)=NNH₂ (1.5 g, 5.03 mmol) and 4,6-dimethoxysalicylaldehyde (0.92 g, 5.05 mmol) in ethanol (5 cm³) was left at room temperature for 2.5 h and then cooled to -30 °C. The required azine phosphine **1b** was separated as a yellow solid (1.99 g, 86%) (Found: C, 69.95; H, 6.8; N, 6.1 C₂₇H₃₁N₂O₃P requires C, 70.10; H, 6.8; N, 6.1%); m/z (EI) 405 (M – Bu¹).

 $Z,E-P(=S)Ph_2CH_2C(Bu^i)=N-N=CH(C_6H_4OH-2)$ 2. A mixture of the azine phosphine 1a (100 mg, 0.25 mmol) and monoclinic sulfur (8 mg, 0.25 mmol) was refluxed in benzene (2 cm³) for 1 h. The reaction mixture was filtered and the solvent removed under reduced pressure. The residue was triturated with methanol to give the phosphine sulfide 2 as a white solid (80 mg, 75%) (Found: C, 69.35; H, 6.55; N, 6.4. $C_{25}H_{27}N_2OPS$ requires C, 69.1; H, 6.25; N, 6.45%).

[PdCl₂{PPh₂CH₂C(Bu^t)=N-N=CH(C₆H₄OH-2)}] 3. A solution of the azine phosphine 1a (85 mg, 0.21 mmol) in dichloromethane (1.5 cm³) was added to a solution of [PdCl₂(cod)] (60 mg, 0.21 mmol) in dichloromethane (1.5 cm³). The dichloropalladium(II) complex 3 deposited as a bright yellow solid (95 mg, 78%) (Found: C, 50.3; H, 4.5; N, 4.8. C₂₅H₂₇Cl₂N₂OPPd•CH₂Cl₂ requires C, 50.3; H, 4.6; N, 4.65%).

[PdCl{PPh₂CH₂C(Bu¹)=N-N=CH(C₆H₄O)}] 4a. A solution containing the azine phosphine 1a (100 mg, 0.25 mmol) and sodium acetate (20 mg) in hot methanol (1.5 cm³) was added to a solution of sodium tetrachloropalladate(II) (70 mg, 0.24 mmol) in methanol (2.0 cm³). The reaction mixture was stirred at 20 °C for 4 h to give the required monochloropalladium(II) complex 4a as a bright orange solid (99 mg, 94%) (Found: C, 54.95; H, 4.9; N, 5.1. $C_{25}H_{26}ClN_2OPPd\cdot0.3CH_3OH$ requires C, 54.95; H, 4.85; N, 5.1%); m/z (EI) 543 (M+1) and 509 (M-Cl).

[PdI{PPh₂CH₂C(Bu¹)=N-N=CH(C₆H₄O)}] **4b.** A solution of sodium iodide (30 mg, 0.2 mmol) in methanol (2 cm³) was added to a stirred suspension of the chloropalladium(II) complex **4a** (60 mg, 0.11 mmol) in acetone (1.5 cm³). The resultant clear red solution was put aside at ca. 20 °C for 12 h. The iodopalladium(II) complex **4b** crystallized as bright red needles which were filtered off and dried. Yield 54 mg, 77%. A second crop of **4b** was recovered by evaporating the mother-liquor to dryness and recrystallizing the residue from acetone-methanol. Yield 10 mg, 14% (Found: C, 46.75; H, 4.0; N, 4.3. C₂₅H₂₆IN₂OPPd·0.3CH₃OH requires C, 46.95; H, 4.2; N, 4.3%); m/z (EI) 634 (M^+) and 507 (M-I).

[PdMe{PPh₂CH₂C(Bu^t)=N-N=CH(C₆H₄O)}] 4c. The chloropalladium(II) complex 4a (150 mg, 0.28 mmol) was treated with an excess of MgMeI (3.5 mmol) in diethyl ether (5 cm³). The reaction mixture was cooled to 0 °C and excess MgMeI was destroyed by careful addition of saturated aqueous ammonium chloride solution until effervescence ceased. The solution was then extracted with benzene (2 × 5 cm³). The combined benzene extracts were dried with MgSO₄ and evaporated to dryness. The methylpalladium(II) complex 4c was obtained as a bright yellow solid (83 mg, 58%) (Found: C, 62.0; H, 5.8; N, 4.9. $C_{26}H_{29}N_2OPPd\cdot0.5C_6H_6$ requires C, 62.0; H, 5.8; N, 5.0%); m/z (FAB) 522 (M^+) and 507 (M^- Me).

[PtMe{PPh₂CH₂C(Bu¹)=N-N=CH(C₆H₄O)}] **4d.** A mixture of the azine phosphine **1a** (75 mg, 0.19 mmol) and [PtMe₂(cod)] (60 mg, 0.18 mmol) in benzene (3 cm³) was put aside for 40 min at 20 °C. The reaction mixture was then filtered and the solvent removed under reduced pressure. Addition of methanol to the residue gave the required methylplatinum(II) complex **4d** as yellow prisms (76.5 mg, 70%) (Found: C, 50.8; H, 4.85; N, 4.55. $C_{26}H_{29}N_2OPPt$ requires C, 51.0; H, 4.8; N, 4.6%); m/z (FAB) 611 (M^+) and 596 (M^- Me).

View Article Online

 $[NiCl{PPh_2CH_2C(Bu^t)=N-N=CH(C_6H_4O)}]$ 4e. A mixture of the azine phosphine 1a (60 mg, 0.15 mmol) and NiCl₂·6H₂O (35 mg, 0.15 mmol) in ethanol (2 cm³) was stirred at 20 °C for 20 min. The required chloronickel(II) complex 4e precipitated as a dark red solid (40 mg, 55%) (Found: C, 60.6; H, 5.25; N, 5.8. $C_{25}H_{26}ClN_2NiOP$ requires C, 60.6; H, 5.3; N, 5.7%); m/z (EI) $494 (M^+)$ and 458 (M - Cl).

 $[NiBr\{PPh_2CH_2C(Bu')=N-N-CH(C_6H_4O)\}]$ 4f. A mixture of the azine phosphine 1a (60 mg, 0.15 mmol) and NiBr₂·3H₂O (40 mg, 0.15 mmol) was stirred in ethanol (3 cm³) at room temperature for 15 min. The required bromonickel(II) complex 4f was isolated as a brownish red solid (40 mg, 50%) (Found: C, 55.45; H, 4.7; N, 5.25. C₂₅H₂₆BrN₂NiOP requires C, 55.6; H, 4.8; N, 5.2%); m/z (EI) 540 (\tilde{M}^+).

 $[Ni\{PPh_2CH_2C(Bu^t)=N-N=CH(C_6H_4O)\}_2]$ 5. A solution of nickel(II) acetate tetrahydrate (60 mg, 0.24 mmol) in water (1 cm³) was added to a solution of the azine phosphine 1a (195 mg, 48 mmol) in acetone (2 cm³). Complex 5 was obtained as a green solid (173 mg, 83%) (Found: C, 69.7; H, 6.15; N, 6.45. $C_{50}H_{52}N_4NiO_2P_2$ requires C, 69.7; H, 6.1; N, 6.5%); m/z (FAB) 861 (M + 1), 459 (M - 1a)and 403 (M - 1a - Bu^t).

 $[Pt{PPh_2CH_2C(Bu^t)=N-N=CH(C_6H_4O)}{PPh_2CH_2C(Bu^t)}$ $=N-N=CH(C_6H_4OH-2)$]Cl 6a. The compound [PtCl₂(cod)] (60 mg, 0.16 mmol) was added to the azine phosphine 1a (0.13 g, 0.33 mmol) and sodium acetate (30 mg, 0.36 mmol) in dichloromethane (3 cm³). The reaction mixture was left at 20 °C for 3 d, whereupon 6a deposited as yellow microcrystals which were filtered off and washed with cold methanol (81 mg, 50%) (Found: C, 55.2; H, 4.9; Cl, 8.05; N, 4.85. C₅₀H₅₃ClN₄-O₂P₂Pt·0.85CH₂Cl₂ requires C, 55.2; H, 5.05; Cl, 8.65; N, 5.05%; m/z (FAB) 998 (M - Cl).

 $[\dot{P}t(\dot{P}Ph_2CH_2C(Bu^t)=N-\dot{N}=CH(C_6H_4\dot{O}))\{PPh_2CH_2C-\dot{P}(C_6H_4\dot{O})\}\}$ $(Bu')=N-N=CH(C_6H_4OH-2)$]PF₆ **6b**. This compound was prepared by the dropwise addition of a saturated solution of NH₄PF₆ in methanol to a methanolic solution of **6a** (60 mg, 0.058 mmol). Complex 6b deposited as a bright yellow solid (40 mg, 60%) (Found: C, 52.0; H, 4.65; N, 4.8. $C_{50}H_{53}F_6N_4O_2P_3Pt_9$ 0.8CH₃OH requires C, 52.2; H, 4.85; N, 4.80%)

 $[\dot{I}r(CO)\{\dot{P}Ph_2CH_2C(Bu^t)=N-\dot{N}=CH[C_6H_2\dot{O}(OMe)_2-4,6]\}]$ 7a. The compound $[IrCl(CO)_2(MeC_6H_4NH_2-p)]$ (0.4 g, 1.02) mmol) was added to a solution of the azine phosphine 1b (0.48 g, 1.04 mmol) in dichloromethane (5 cm³). After 15 min triethylamine (0.2 cm³, 1.43 mmol) was added. The solvent was then removed under reduced pressure and the residue triturated with methanol to give the carbonyliridium(1) complex 7a as a yellow solid (0.53 g, 77%) (Found: C, 46.5; H, 4.3; N, 4.05. $C_{28}H_{30}IrN_2O_4P\cdot0.7CH_2Cl_2$ requires C, 46.5; H, 4.3; N, 3.8%); m/z (FAB) 683 (M + 1).

 $[\dot{R}h(CO)\{\dot{P}Ph_2CH_2C(Bu')=N-\dot{N}=CH[C_6H_2O(OMe)_2-\dot{N}]$ 4,6] **7b**. The compound [Rh₂Cl₂(CO)₄] (0.30 g, 0.77 mol) was added to a solution of the azine phosphine 1b (0.72 g, 1.6 mmol) in dichloromethane (5 cm³). After 10 min triethylamine (0.25 cm³, 1.8 mmol) was added. The solvent was then removed under reduced pressure and the residue triturated with methanol to give 7b as a yellow solid (0.70 g, 87%) (Found: C, 55.7; H, 5.0; N, 4.65. C₂₈H₃₀N₂O₄PRh•CH₃OH requires C, 55.8; H, 5.5; N, 4.5%); m/z (FAB) 593 (M + 1).

 $[\dot{I}rI(Me)(CO)]\dot{P}Ph_2CH_2C(Bu^t)=N-\dot{N}=CH[C_6H_2\dot{O}(OMe)_2-\dot{N}=CH]$ 4,6]}] 8a. An excess of iodomethane (0.4 cm³) was added to the iridium(1) complex 7a (40 mg, 0.06 mmol) in benzene (1 cm³). After 15 min the solution was filtered and the solvent removed under reduced pressure. Addition of methanol to the residue gave the iridium(III) complex 8a as a yellow microcrystalline solid (42 mg, 87%) (Found: C, 42.3; H, 4.05; N, 3.35. $C_{29}H_{33}IIrN_2O_4P$ requires C, 42.3; H, 4.05; N, 3.40%); m/z(FAB) 825 (M + 1), 697 (M - I), 681 (M - I - Me) and 653 (M - I - Me - CO).

The following three compounds were prepared in a similar manner and on a similar scale to 8a.

 $[\dot{I}rCl(CO)(\sigma-CH_2CH=CH_2)\{\dot{P}Ph_2CH_2C(Bu^t)=N-\dot{N}=$ \dot{N} =CH[C₆H₂ \dot{O} (OMe)₂-4,6]}] **8b**. The σ -allyliridium(III) complex 8b was prepared from 7a using allyl chloride. Yield

72% (Found: C, 47.2; H, 4.1; N, 3.75. $C_{30}H_{33}ClIrN_2O_5P$

requires C, 47.4; H, 4.35; N, 3.70%).

 $[\dot{I}rCl(CO)(COMe)\{\dot{P}Ph_2CH_2C(Bu')=N-\dot{N}=CH[C_6H_2\dot{O}-$ (OMe)2-4,6]}] 8c. The acetyliridium(III) complex 8c was prepared and isolated in 73% yield by the addition of acetyl chloride to 7a (Found: C, 47.15; H, 4.1; N, 3.75. C₃₀H₃₃-ClIrN₂O₅P requires C, 47.40; H, 4.4; N, 3.70%); m/z (FAB) 760 (M^{+}) , 725 $(M^{-} \text{Cl})$, 697 $(M^{-} \text{Cl} - \text{CO})$ and 681 $(M^{-} \text{Cl} - \text{MeCO})$.

 $[IrCl(\sigma-CH=C=CH_2)(CO)\{PPh_2CH_2C(Bu^t)=N-N=$

 \dot{N} =CH[C₆H₂ \dot{O} (OMe)₂-4,6]}] **8d**. The σ -allenyliridium(III) complex 8d was prepared and isolated in 46% yield by the addition of propargyl chloride to 7a (Found: C, 48.95; H, 4.25; N, 3.60. C₃₁H₃₃ClIrO₄N₂P requires C, 49.15; H, 4.5; N, 3.7%); m/z (FAB) 757 (M+1), 721 (M-Cl), 693 (M-Cl-CO) and 653 ($M-Cl-CO-C_3H_3$).

[RhCl(η³-C₃H₅){PPh₂CH₂C(Bu¹)=N-N=CH[C₀H₂O- $(OMe)_2$ -4,6]}] 9. An excess of allyl chloride (0.1 cm^3) was added to a solution of the carbonylrhodium(I) complex 7b (50 mg, 0.08 mmol) in dichloromethane (2 cm³). The reaction mixture was left at room temperature for 2 min, and solvent was then removed under reduced pressure. Addition of methanol to the residue gave the π -allylrhodium(III) complex 9 as a bright yellow solid (28 mg, 52%) (Found: C, 55.20; H, 5.15; N, 4.45. C₃₀H₃₅ClN₂O₃PRh·0.25CH₂Cl₂ requires C, 54.9; H, 5.4; N, 4.25%).

Acknowledgements

We thank the SERC for a fellowship (to S. D. P.) and for other support. We also thank the Committee of Vice-Chancellors and Principals for an ORS award (to K. K. H.), the University for a Tetley and Lupton Scholarship (to K. K. H.), and the trustees of the Lord Edward Boyle Foundation for an award (to K. K. H.). We are grateful to Johnson Matthey plc for the very generous loan of platinum metal salts.

References

- 1 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 2361.
- 2 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 103
- 3 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1991, 1183.
- 4 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Scc., Dalton Trans., 1992, 999.
- 5 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Organomet. Chem., 1992, 428, 59.
- 6 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 713.
- 7 G. M. Gray, N. Takada, M. Jan, H. Zhang and J. L. Atwood, J. Organomet. Chem., 1990, 381, 53 and refs. therein.
- 8 H. J. Banbery, W. Hussain, T. A. Hamor, C. J. Jones and J. A. McCleverty, J. Chem. Soc., Dalton Trans., 1990, 657.
- 9 J. Chatt, L. M. Vallarino and L. M. Venanzi, J. Chem. Soc., 1957,
- 10 G. E. Coates and C. Perkin, J. Chem. Soc., 1963, 421.
- 11 D. M. Adams, J. Chatt, J. Gerratt and A. D. Westland, J. Chem. Soc., 1964, 734.
- 12 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1993, 3653 and refs. therein.
- 13 S. D. Perera and B. L. Shaw, J. Organomet. Chem., 1994, 479, 117.
- 14 A. J. Canty, Acc. Chem. Res., 1992, 25, 83.
- 15 T. G. Appleton, H. C. Clark and L. E. Manzer, Coord. Chem. Rev., 1973, 335 and refs. therein.
- 16 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Complexes, Springer, Berlin, Heidelberg, New York, 1979.
- 17 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.

- 18 S. B. Choudhury, D. Ray and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1992, 107.
- 19 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1203.

- 20 U. Klabunde, *Inorg. Synth.*, 1974, 15, 82.
 21 J. P. Collman and C. T. Sears, jun., *Inorg. Chem.*, 1968, 7, 27.
 22 B. L. Shaw and E. Singleton, *J. Chem. Soc. A*, 1967, 1683.
- 23 J. A. McCleverty and G. Wilkinson, Inorg. Synth., 1966, 8, 211.
- 24 A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 1969, 597.
- 25 A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 1969, 1128.
- 26 M. R. Churchill, J. C. Fettinger, T. S. Janik, W. M. Rees, J. S. Thompson, S. Tomaszewski and J. D. Atwood, *J. Organomet. Chem.*, 1987, **323**, 233 and refs. therein.
- 27 A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 1969, 1562.

- 28 P. Sohar, NMR Spectroscopy, CRC Press, Boca Raton, FL, 1983, vol. 2, p. 179.
- 29 C. E. Shuchart, R. R. Willis and A. Wojcicki, J. Organomet. Chem., 1992, 424, 185.
- 30 J. P. Collman, J. N. Cawse and J. W. Kang, Inorg. Chem., 1969, 8,
- 31 M. D. Johnson and C. Mayle, *Chem. Commun.*, 1969, 192. 32 J. Powell and B. L. Shaw, *J. Chem. Soc. A*, 1968, 583.
- 33 J. Powell and B. L. Shaw, Chem. Commun., 1966, 323.
- 34 W. Kemp, NMR in Chemistry—A Multinuclear Introduction, MacMillan, Basingstoke and London, 1986.
- 35 B. E. Reichert, J. Organomet. Chem., 1974, 72, 305.

Received 6th July 1994; Paper 4/04122D