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Abstract: The Montmorillonite K10 clay catalyzed synthesis of
4-aryltetrahydropyrans is presented as a one-pot, multicomponent,
environmentally friendly Prins–Friedel–Crafts-type reaction.
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Advances in high throughput screening (HTS) technology
for identification of new potential drugs has prompted re-
searchers to develop more efficient synthetic routes to li-
braries of small organic molecules. Multicomponent
reactions (MCR), which result in the breaking and form-
ing of multiple bonds in a single step or in a single reac-
tion flask, are considered ideal for the generation of new
compound libraries for HTS.1 The tetrahydropyran (THP)
moiety is a naturally occurring and abundant heterocyclic
motif that has been implicated in the physiological activi-
ty of a broad array of natural and synthetic products.2 A
host of synthetic approaches to THP compounds has been
reported, including the one-pot MCR of carbonyls (1)
with 3-buten-1-ol and arenes catalyzed by BF3·OEt2.

3

Herein we report our investigation of a more environmen-
tally friendly approach to the synthesis of THPs using
Montmorillonite K10 clay (Mont-K10, Scheme 1) as a
catalyst. In addition to being considerably less expensive
than BF3·OEt2, Mont-K10 clay is also nontoxic, noncorro-
sive, and much simpler to handle. Reactions catalyzed by
BF3·OEt2 must be conducted in rigorously dried glass-
ware, under an inert environment, and they require aque-
ous workup steps, which invariably lead to the generation
of waste products. Mont-K10 catalyzed reactions, on the
other hand, can be conducted open to the air and workup
typically involves only a filtration step; often, both the
clay and the solvent can be recycled and reused.4,5

As concern for the environment continues to shape the
way chemists think about the construction of physiologi-
cally active compounds, the development of synthetic
methodologies that promote greener reactions is essential.
Environmentally benign clays are ideally suited for the
‘greening’ of modern synthetic chemistry, and we have
reported the effective application of Montmorillonite K10

clay as a catalyst for carbon–carbon bond-forming and
other reactions.6–12

We chose to begin our investigation with p-nitrobenzalde-
hyde (1a) as the carbonyl substrate. We found that reflux-
ing p-nitrobenzaldehyde with excess 3-buten-1-ol in
dichloromethane in the presence of Mont-K10 clay gave
the corresponding acetal 3. When 3 was subsequently tak-
en up in excess benzene and refluxed in the presence of
additional Mont-K10, the corresponding tetrahydropyran
product 2a was generated in good yield (Scheme 2).

Scheme 2  Initial experiment

In an effort to simplify the procedure and avoid wasting a
full equivalent of the 3-buten-1-ol, we next refluxed p-
nitrobenzaldehyde with Mont-K10, 3-buten-1-ol (1.1
equiv), and methanol (5 equiv) in benzene for two hours.
This modified procedure successfully resulted in the gen-
eration of 2a in good yield, presumably via dimethyl ace-
tal (or mixed acetal) intermediate 4. We propose a
mechanism in which 4 reacts subsequently with 3-buten-
1-ol to give oxonium ion intermediate 5, which in turn un-
dergoes Prins cyclization to give carbocation 6. Benzene
then reacts with 6 via Friedel–Crafts alkylation to give 2a
(Scheme 3). This initial reaction was robust enough to be

Scheme 1  Retrosynthesis
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developed into an undergraduate organic chemistry labo-
ratory discovery/research project, the details of which
have been reported.13

Scheme 3  Proposed mechanism

We next set out to probe the scope of the reaction with a
sample of readily available carbonyl compounds (Table
1). Our results, though far from exhaustive, are consistent
with those reported by Reddy et al. using BF3·OEt2.

3 Of
particular note are the observed yields for the reactions
with acetone and cyclohexanone (Table 1, entries 5 and 6,
respectively), which are superior to previously reported
values. Our methodology represents a much more envi-
ronmentally and logistically friendly route to the target
compounds, and further expands the repertoire of reac-
tions successfully catalyzed by Montmorillonite K10
clay.14
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Table 1 Reaction Scope

Entry Carbonyl R1 R2 Product Yield (%)

1 1a p-O2NC6H4 H 2a[3,15] 90

2 1b m-O2NC6H4 H 2b[3] 88

3 1c o-O2NC6H4 H 2c[3] 99

4 1d m-BrC6H4 H 2d[3] 91

5 1e Me Me 2e[3] 75

6 1f –(H2C)5– 2f[3] 90
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