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Degradation of aldehydes to one carbon lower homologs
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Abstract—Degradation of aldehydes to one carbon lower homologs has been achieved by using a mixture of N-methylmorpholine,
N-methylmorpholine N-oxide, a catalytic amount of OsO4 and NaIO4 in a mixture of acetone/H2O. © 2003 Elsevier Science Ltd.
All rights reserved.

In the aim of synthesizing the C9–C17 fragment of
leucascandrolide,1 we needed to transform compound 1
to aldehyde 2 (Scheme 1). The oxidative cleavage of the
double bond by using OsO4 (0.05 equiv.) in the pres-
ence of N-methylmorpholine N-oxide (NMO) (1.7
equiv.) in a mixture of acetone/H2O (3/1) followed by
the addition of NaIO4 (2 equiv.) was quite surprising
as, after 14 hours, a mixture of two aldehydes was
obtained: the expected aldehyde 2 in low yield (18%)
and the one carbon lower homolog, aldehyde 3, which
was isolated in 20% yield. Under similar conditions, the
protected homoallylic alcohol 4 led to two aldehydes 5
and 6. Aldehyde 5 was isolated in 36% yield and its
corresponding lower homolog, aldehyde 6, was also
isolated in 36% yield (Scheme 1).

The �-substituted aldehydes 3 and 6 are probably
formed respectively from aldehydes 2 and 5. Under
these oxidative conditions, aldehydes of type A are
probably in equilibrium with enol intermediates of type
B in the presence of N-methylmorpholine (NMM) lib-
erated in the reaction media. These enol intermediates
are then dihydroxylated by NMO/OsO4 to produce
intermediates of type C which are probably cleaved by
NaIO4 to produce aldehyde D (Scheme 2).

To verify this hypothesis, aldehyde 5 was treated with
NMM (1 equiv.), NMO (2 equiv.), a catalytic amount
of OsO4 (0.05 equiv.) and NaIO4 (4 equiv.) in acetone/
H2O (10/1) at room temperature. Under these condi-
tions, aldehyde 5 was transformed to 6 in good yield
(58%)2 (Scheme 3).

Scheme 1.
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previously observed by using copper-catalyzed
oxidation3 but, to our knowledge, only one method
which corresponds to the degradation of aldehydes to
one carbon lower homologs has been reported in the
litterature.4 This process consists in the treatment of an
aldehyde with iodine bromide followed by the treat-
ment of the resulting �-bromoaldehyde with potassium
hydroxide, and the obtained hydrate of �-hydroxyalde-
hyde was cleaved by sodium periodate. This procedure
was applied to the degradation of the side chain of
cholanic aldehyde.4

This oxidative one-pot process transformation of alde-
hydes to one carbon lower homologs is not a common
process. A complete degradation of unbranched alde-
hydes to acetaldehyde and formate units has been

Table 1. Degradation of aldehydes to one carbon lower homologs
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Due to the importance of �-substituted aldehydes in
synthesis, the easy NMM/NMO/OsO4 and NaIO4 one-
pot procedure for the oxidative cleavage of aldehydes
has been applied to aldehydes 7–13. The results are
reported in Table 1.

When aldehydes 7–13 were treated by NMM/NMO/
OsO4 and NaIO4, the respective one carbon lower
homologs 14–20 were isolated in yields higher than
50%. It is worth noting that the presence of a quater-
nary center (compounds 14–16) as well as the presence
of a protected hydroxy group (compounds 17–20)
avoids further enolisation in aldehydes 14–20. It has
been also verified that an �-alkyl substituted aldehyde
such as 21 was not transformed to ketone 22 under
these oxidative conditions (Scheme 4).

These oxidative conditions are very mild as a t-
butyldimethylsilyl protecting group was tolerated. Fur-
thermore, no epimerization of the stereogenic center
was observed when �-substituted aldehydes were
formed from �-substituted aldehydes (Table 1, entries 6
and 7).

�-Substituted aldehydes and particularly chiral
�-hydroxyaldehydes can be prepared very easily by
degradation of protected �-hydroxyaldehydes. These
latter compounds are very useful synthons and their use
in the elaboration of biological active compounds will
be reported in due course.
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