

Available online at www.sciencedirect.com

Inorganic Chemistry Communications 6 (2003) 202-205

INORGANIC CHEMISTRY COMMUNICATIONS

www.elsevier.com/locate/inoche

Facile C–N cleavage reactions of secondary and tertiary alkyl amines by P,O chelating rhodium and iridium complexes

Yasuhiro Yamamoto *, Jouji Seta, Hiroshi Murooka, Xiao-Hong Han

Department of Chemistry, Faculty of Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan

Received 20 August 2002; accepted 7 November 2002

Abstract

The reactions of Cp*MCl(MDMPP-*P*,*O*) (1: M = Rh; 3: M = Ir; MDMPP-*P*, $O = PPh_2(C_6H_3-2-O-6-MeO)$) with secondary or tertiary alkyl amine (R₂NH or R₃N) in the presence of KPF₆ underwent a C–N cleavage of amine to afford primary amine complex [Cp*M(MDMPP-*P*,*O*) (RNH₂)](PF₆) (2: M = Rh; 4: M = Ir). © 2002 Elsevier Science B.V. All rights reserved.

Keywords: C-N cleavage; Rhodium; Iridium; P,O chelating ligand

Transition-metal-assisted C–X (X = S, N) bond cleavage [1] plays an important role for several industrial processes. Desulfurization [2] and denitrogenation [3] of crude oil are the examples of the C–X bond cleavage. Among them, there are a few examples of cleavage of a C–N single bond of amines. For example, it has been reported that Pt, Ni and Ru complexes promote the cleavage of the allyl-N bond of allylamines with subsequent transfer of the allyl group to the metal center [4]. Aryl amines (XC₆H₄NH₂) were activated by (silox)₃Ta (silox =^t Bu₃SiO) to afford (silox)₃HTa {NH(C₆H₄X)} and/or (silox)₃(H₂N)Ta(C₆H₄X) depending on the substituent [5].

Recently we reported that compounds, Cp*MCl (MDMPP-*P*,*O*) and Cp*MCl(BDMPP-*P*,*O*) (M = Rh [a] and Ir [b]; Cp* = C₅Me₅; MDMPP-*P*, *O* = *P*Ph₂(C₆H₃-2-*O*-6-MeO), BDMPP-*P*,*O* = *P*Ph{C₆H₃-2,6-(MeO)₂}(C₆H₃-2-*O*-6-MeO)), derived from demethylation of one of the *ortho*-methoxy groups in (2,6-dimethoxyphenyl)diphenylphosphine and bis(2,6dimethoxyphenyl)phenylphosphine gave novel six- or seven-membered metallacycles arising from single or double insertion of alkyne into the M–O or P–C bond on treatment with 1-alkyne or disubstituted alkyne in the presence of KPF₆ or NaPF₆ [7]. When complexes Cp*MCl(MDMPP-*P*,*O*) and Cp*Ir(TDMPP-*P*,*O*,*O'*) (TDMPP-*P*,*O*,*O'* = $P\{C_6H_3-2,6-(MeO)_2\}(C_6H_3-2-O-6-MeO)_2\}$ were treated with electron-deficient olefins such as tetracyanoethylene (tcne) and 7,7,8,8-tetracyano-*p*quinodimethane (tcnq), olefin inserted into weakly activated C–H bond on the phenyl ring of the phosphine ligand [8]. During a series of our research on interaction of these complexes with small molecule, we found the C– N bond cleavage reaction of tertiary and secondary amines to give primary amine complexes. We here report the facile metal-assisted C–N bond cleavage reactions of alkyl amines.

When Cp*RhCl(MDMPP-*P*,*O*) **1** was treated with diethylamine in the presence of KPF₆ at room temperature, orange complex formulated as [Cp*Rh(NH₂Et) (MDMPP-*P*,*O*)](PF₆) **2a** based on elementary analysis and FAB mass spectrometry, was generated in high yield (Scheme 1). The IR spectrum showed two bands at 3323 and 3273 cm⁻¹ due to N–H groups and a band at 885 cm⁻¹ due to a PF₆ group. The ¹H NMR spectrum showed four characteristic resonances at δ 0.69(t), 1.48(d), 2.09(br), and 3.35(s), due to methyl, Cp*, methylene and methoxy protons, respectively. The ³¹P{¹H} NMR spectrum showed a doublet at δ 50.3 together with a septet at δ -143.7 due to a PF₆ group. This complex **2a** can be prepared by the reaction of

^{*}Corresponding author. Tel.: +81-474-72-5076; fax: +81-474-75-1855.

E-mail address: yamamoto@chem.sci.toho-u.ac.jp (Y. Yamamoto).

Scheme 1. Reactions of Cp*MCl(MDMPP-P,O) (1: M = Rh; 3: M = Ir) with alkyl amine.

Cp*RhCl(MDMPP-P,O) with ethylamine in the presence of KPF₆. These results showed that the C–N bond cleavage occurred in secondary amine, whereas did not proceed in the primary amine. A similar C–N bond cleavage occurred in an iridium (III) analog **3** to generate the corresponding [Cp*Ir(NH_2Et)(MDMPP-P,O)](PF₆) complex **4a**. It was confirmed by X-ray analysis of **4a** that ethylamine coordinated to the iridium metal (Fig. 1) [9].

When secondary amines such as di-*n*-propylamine, di-*iso*-propylamine and di-*n*-butylamine were used, the corresponding primary alkyl amine complexes, $[Cp*M(NH_2R)(MDMPP-P,O)](PF_6)$ (M = Rh; **2b**: R = ^{*n*} Pr; **2c**: R = ^{*i*} Pr; **2d**: R = ^{*n*}Bu; M = Ir; **4b**: R = ^{*n*} Pr; **4d**: R = ^{*n*}Bu) were generated. Secondary aromatic amine such as Ph₂NH did not undergo a C–N bond cleavage, suggesting the requirement for the presence of the NCH₂ or NCH groups in amine molecules.

Fig. 1. Molecular structure of complex cation $[Cp*IrCl(MDMPP-P,O) (EtNH_2)](PF_6)$ **4a**. The anion was omitted for clarity. Selected bond length (Å) and angles (°): Ir–P(1) 2.304(3), Ir–O(1) 2.074(7), Ir–N 2.158(8); P(1)–Ir–O(1) 82.3(2), P(1)–Ir–N(1) 87.9(2), O(1)–Ir–N(1) 85.1(3).

Scheme 2. Reactions of Cp*MCl $[PPh_2{C_6H_3-2, 6-(MeO)_2}]$ (M = Rh or Ir) with diethyl amine.

The reactions of 1 or 3 with triethylamine also gave 2a and 4a, respectively, whereas tertiary amines such as "Pr₃ N and "Bu₃N did not undergo a C–N bond cleavage. No C–N cleavage reaction occurred in the monodentate complexes such as Cp* $MCl_2(L)$ (M = Rh, Ir; L = PPh₃, PPh₂{C₆H₃-2, 6-(MeO)₂}); especially in the latter complex, an ether-O coordinated complex [Cp*MCl{PPh₂(C₆H₃-2-*O*Me-6-MeO) }](PF₆) (M = Rh, Ir) [6] was isolated, suggesting the unique specificity of the P,O chelate complexes (Scheme 2).

In order to examine a fate of fragments for amines, the ¹H NMR spectrum of a mixture of Cp*RhCl (MDMPP-*P*,*O*), *i*-Pr₂ NH and KPF₆ was monitored in a mixture of CDCl₃ and (CD₃)₂CO, and showed a singlet at δ 1.04 together with resonance corresponding to **2c**, suggesting the presence of 2,3-dimethylbut-2-ene, followed by identification of 2,3-dibromo-2, 3-dimethylbutane derived from its bromination. A similar reaction using *n*-Bu₂NH was carried out, and the GC-MS spectrum of the reaction mixture showed the presence of octene.

A tentative C–N cleavage route for secondary or tertiary amines is shown in Scheme 3. Since no η^1 complexes led to the C–N cleavage, the P, σ O-coordination is assumed to be indispensable. The reaction consists of an initial coordination of alkyl amine to a metal, accompanying with the transfer of α -hydrogen of alkyl amine to the phenolate, forming a metallaaziridine. The resulting carbene-imine species by the C–N bond cleavage rearranges to a primary amine complex and olefin arising from a dimerization of carbene.

The present reactions provide a mild C–N cleavage of alkyl amines by P,O chelating complexes of pentamethylcyclopentadienylrhodium(III) and -iridium(III). We are currently investigating the catalytic application of the reaction.

Satisfactory analytical data were obtained for new complexes. The representative reaction is described: *Preparation* of **2a**: A solution of (54 mg, 0.093 mmol), diethyl amine (0.5 ml) and NaPF₆ (54.1 mg, 0.322 mmol) was stirred in CH₂Cl₂ (7.5 ml) and acetone (7.5 ml) at rt. After 4 h, the solvent was removed, and residue was extracted with CH₂Cl₂. The CH₂Cl₂ was concentrated, and diethyl ether was added to give orange

Scheme 3. A possible pathway for the C-N cleavage reaction. The PF₆ anion was omitted for clarity.

brown crystals of 2a (55.2 mg, 80.8%). IR(nujol): 3325, 3285(N–H), 839(PF₆) cm⁻¹; ¹H NMR(CDCl₃): δ 0.69 (t, $J_{\rm HH} = 7.0$ Hz, Me, 3H), 1.48 (d, $J_{\rm PH} = 3.0$ Hz, Cp*, 15H), 2.09 (br, CH₂, 2H), 3.35 (s, OMe, 3H), 3.40 (b, NH₂, 2H), 6.0–7.6 (m, 13H). ${}^{31}P{}^{1}H{}$ NMR(CDCl₃): δ 50.3 (d, $J_{PRh} = 137$ Hz), -143.7 (sep, $J_{PF} = 712$ Hz). (Yield of 2a from Et₃N: 61.6%). 2b (80%, from ⁿ Pr₂ NH): IR(nujol): 3327, 3285 (NH), 839 (PF₆) cm⁻¹; ¹H NMR(CDCl₃): δ 0.43 (t, $J_{\rm HH} = 7.5$ Hz, Me, 3H), 0.95 (m, CH₂, 2H), 1.48 (d, $J_{PH} = 3.0$ Hz, Cp*, 15H), 1.99 (br, CH₂, 2H), 3.35 (s, OMe, 3H), 6.0–7.6 (m, 13H). ³¹P{¹H} NMR(CDCl₃): δ 50.0 (d, $J_{PRh} = 125$ Hz), -143.8 (sep, $J_{\rm PF} = 713$ Hz). **2c** (%, from ^{*i*} Pr₂ NH): FAB mass (m/z): 606 ([M]⁺). IR(nujol): 3314, 3274 (NH), 839 (PF₆) cm⁻¹; ¹H NMR(CDCl₃): δ 0.36 (d, $J_{\text{HH}} = 6.5$ Hz, ^{*i*} Pr, 3H), 0.95 (d, $J_{\rm HH} = 6.5$ Hz, ^{*i*} Pr, 3H), 1.47 (d, $J_{\rm PH} = 3.5$ Hz, Cp*, 15H), 2.13 (b, NH₂, 2H), 3.34 (s, OMe, 3H), 6.0–7.7 (m, 13H). ${}^{31}P{}^{1}H$ NMR(CDCl₃): δ 50.8 (d, $J_{PRh} = 125$ Hz), -143.8 (sep, $J_{PF} = 713$ Hz). 2d (orange, 48.3% from "Bu₂NH): IR(nujol): 3319, 3277 (NH), 835 (PF₆) cm⁻¹; ¹H NMR(CDCl₃): δ 0.62 (t, $J_{\rm HH} = 7.0$ Hz, Me, 3H), 0.85 (b, CH₂, 6H), 1.48 (d, $J_{\rm PH} = 3.0$ Hz, Cp*, 15H), 2.02 (b, CH₂), 2.35 (b, NH₂, 2H), 3.35 (s, OMe, 3H), 6.0–7.7 (m, 13H). ${}^{31}P{}^{1}H{}$ NMR(CDCl₃): δ 49.9 (d, $J_{PRh} = 139$ Hz), -143.8 (sep, $J_{\rm PF} = 714$ Hz). 4a (yellow, 16.2% from Et₃N; 57.2% from Et₂NH): FAB mass (m/z): 694 $([M]^+)$; IR(nujol): 3312, 3265(N–H), 844 (PF₆) cm⁻¹; ¹H NMR(CDCl₃): δ 0.72 (t, $J_{\rm HH} = 7.0$ Hz, Me, 3H), 1.52 (d, $J_{\rm PH} = 2.0$ Hz, Cp*, 15H), 2.16 (q, $J_{HH} = 7.0$ Hz, CH₂, 2H), 3.36 (s, OMe, 3H), 6.0–7.6 (m, 13H). ${}^{31}P{}^{1}H$ NMR(CDCl₃): δ 26.3 (s), -143.7 (sep, $J_{\rm PF} = 712$ Hz). 4b (yellow, 71.1%, from ⁿ Pr₂ NH): IR(nujol): 3302, 3260 (NH), 839 (PF₆) cm⁻¹; ¹H NMR(CDCl₃): δ 0.43 (t, J_{HH} = 7.5 Hz, Me, 3H), 1.00 (br, CH₂, 2H), 1.52 (d, $J_{PH} = 2.0$ Hz, Cp*, 15H), 2.11 (br, CH₂, 2H), 2.28 (b, NH₂, 2H), 3.37 (s, OMe, 3H), 6.0–7.6 (m, 13H). ${}^{31}P{}^{1}H$ NMR(CDCl₃): δ 26.3 (d, $J_{PRh} = 125$ Hz), -143.6 (sep, $J_{PF} = 713$ Hz). 4d (orange, 51.1% from "Bu₂NH): IR(nujol): 3310, 3273 (NH), 837 (PF₆) cm⁻¹; ¹H NMR(CDCl₃): δ 0.63 (t, $J_{\rm HH} = 7.0$ Hz, Me, 3H), 0.90 (b, CH₂, 6H), 1.52 (d, $J_{\rm PH} = 2.0$ Hz, Cp*, 15H), 2.14 (b, CH₂, and NH₂, 8H), 3.37 (s, OMe, 3H), 6.0–7.2 (m, 13H). ${}^{31}P{}^{1}H{}$ NMR(CDCl₃): δ 26.2 (s), -143.8 (sep, $J_{PF} = 711$ Hz).

Monitoring of the reaction mixture by the ¹H NMR spectrum: 2,3-dimethylbut-2-ene was estimated as ca. 55% yields based on the intensity of the methyl resonance.

References

- (a) J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Principals and Applications of Organotransition Metal Chemistry, second ed., University Science Books, Mill Valley, CA, 1987;
 (b) H.E. Bryndza, W. Tam, Chem. Rev. 88 (1988) 1163.
- [2] (a) G.H. Spies, R.J. Angelici, Organometallics 6 (1987) 1897;
 (b) J. Chen, L.M. Daniels, R.J. Angelici, J. Am. Chem. Soc. 112 (1990) 199;
 J. Chen, L.M. Daniels, R.J. Angelici, J. Am. Chem. Soc. 113 (1991) 2544;
 (c) W.D. Jones, L. Dong, J. Am. Chem. Soc. 113 (1991) 559;
 (d) A.E. Ogilvy, A.E. Skaugset, T.B. Rauchfuss, Organometallics 7 (1988) 1171;
 - (e) L. Dong, S.B. Duckett, K.F. Ohman, J. Am. Chem.. Soc. 114 (1992) 151.
- [3] (a) R.M. Laine, Catal. Rev. Sci. Eng. 25 (1983) 459;
 (b) J.R. Katzer, R.C. Sivasubramanian, Catal. Rev.-Sci. Eng. 20 (1983) 155;
 (c) T.C. Ho, Catal. Rev.-Sci. Eng. 20 (1979) 155;
 (d) Y.T. Shah, D.C. Cranauer, Catal. Rev. Sci. Eng. 20 (1979)
 - (d) Y.T. Shah, D.C. Cronauer, Catal. Rev. -Sci. Eng. 20 (1979) 209.
- [4] (a) M. Aresta, E. Quaranta, A. Dibenedetto, P. Giannoccaro, I. Tommashi, M. Lanfranchi, A. Tripicchio, Organometallics 16 (1997) 834;
 (b) M. Torrent, D.G. Musaev, K. Morokuma, Organometallics
 - 19 (2000) 4402.
- [5] J.B. Bonanno, T.P. Henry, D.R. Neithamer, P.T. Wolczanski, E.B. Lobkovsky, J. Am. Chem. Soc. 118 (1996) 5132–5133.
- [6] (a) X.-H. Han, Y. Yamamoto, J. Organomet. Chem. 561 (1998) 154;

(b) Y. Yamamoto, K. Kawasaki, S. Nishimura, J. Organomet. Chem. 587 (1999) 49.

[7] (a) Y. Yamamoto, X.-H. Han, J.-F. Ma, Angew. Chem. Int. Ed. 39 (2000) 1965;
(b) Y. Yamamoto, K. Sugawara, J. Chem. Soc., Dalton Trans.

(2000) 2896;
(c) Y. Yamamoto, K. Sugawara, X.-H. Han, J. Chem. Soc., Dalton Trans. (2002) 195.

[8] (a) Y. Yamamoto, X.-H. Han, K. Sugawara, S. Nishimura, Angew. Chem. 111 (1999) 1318;
Y. Yamamoto, X.-H. Han, K. Sugawara, S. Nishimura, Angew. Chem. Int. Ed. 38 (1999) 1242;
(b) Y. Yamamoto, X.-H. Han, S. Nishimura, N. Nezu, T. Tanase, Organometallics 20 (2000) 266. [9] Crystal data for **4a**: C₃₁H₃₈NOP₂F₆Ir, M = 808.8, monoclinic, space group $P2_1/c$ (No. 14), Z = 4, a = 12.541(2), b = 14.708(4), c = 17.539(3) Å, $\beta = 92.19(1)^{\circ}$, V = 3232.9(9) Å³, D = 1.662 g/cm³. Data were collected on a Rigaku AFC5S diffractometer. The structure was solved by Patterson methods and refined anisotropically using full-matrix least-square techniques based on F^2 for all unique reflections (5914) to give R = 0.117 and Rw = 0.149 $[w = 1/\sigma^2(Fo)]$ for 5914 reflections, and R1 = 0.056 (for 4134 reflections $I > 2.0\sigma(Io)$). GOF = 1.48.