JOM 23620

Preparation and properties of molybdenum and tungsten dinitrogen complexes

XLI *. Silylation and germylation of a coordinated dinitrogen in cis-[M(N₂)₂(PMe₂Ph)₄] (M = Mo, W) using R₃ECl/NaI and R₃ECl/Na mixtures (E = Si, Ge). X-ray structure of trans-[WI(NNGePh₃)(PMe₂Ph)₄] · C₆H₆

Hiroyuki Oshita, Yasushi Mizobe and Masanobu Hidai

Department of Synthetic Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113 (Japan) (Received January 8, 1993; in revised form February 18, 1993)

Abstract

Treatment of cis-[W(N₂)₂(PMe₂Ph)₄] (1) with R₃SiCl and excess Nal in benzene afforded a series of silyldiazenido complexes trans-[WI(NNSiR₃)(PMe₂Ph)₄] (R₃ = Me₃, EtMe₂, Et₃, Me_{3-n}Ph_n (n = 1-3), (MeO)Me₂, (MeO)₂Me), while a dinuclear complex with bridging silyldiazenido ligand [(PhMe₂P)₄IW(NNSiMe₂P-C₆H₄SiMe₂NN)WI(PMe₂Ph)₄] was obtained from the reaction of 1 with p-ClMe₂SiC₆H₄SiMe₂Cl and Nal. Analogous treatment of 1 with a mixture of R₃GeCl and excess Nal gave novel germylated dinitrogen complexes trans-[WI(NNGeR₃)(PMe₂Ph)₄] (R = Me, Ph (13)). The molecular structure of 13 · C₆H₆ was determined by an X-ray analysis. Crystal data for 13 · C₆H₆: triclinic, space group $P\bar{1}$ with a = 13.533(3), b = 19.629(7), c = 11.941(6) Å, $\alpha = 103.59(3)$, $\beta = 116.11(3)$, $\gamma = 81.12(2)^p$, V = 2763.7(16) Å³, Z = 2 and R = 0.042 for 7476 reflections. On the other hand, when a variety of chlorosilanes or Me₃GeCl was reacted with one equiv of Na in THF under nitrogen in the presence of a catalytic amount of cis-[Mo(N₂)₂(PMe₂Ph)₄], molecular nitrogen was converted into the N₁ products, whose yields, detected as NH₃ after hydrolysis, varied from 0.2 to 7.5 mol/Mo atom depending on the substituent in R₃ECl (E = Si, Ge).

1. Introduction

The continuing evolution of the chemistry of dinitrogen complexes $[M(N_2)_2(L)_4]$ (M = Mo, W; L = tertiary phosphine) has resulted in the exploitation of various potential methods to form N-H and N-C bonds at a coordinated dinitrogen. Among these are several reaction systems that lead ultimately to the formation of ammonia, hydrazine, amines, and azines under ambient conditions. However, few examples are known in which transformation of molecular nitrogen into nitrogenous compounds proceeds catalytically by the use

of these and other well-characterized dinitrogen complexes [2].

The formation of $N(SiMe_3)_3$ and $HN(SiMe_3)_2$ from the reaction of Me_3SiCl and Na under N_2 in the presence of $[M(N_2)_2(P)_4]$ ($P = PMe_2Ph$, 1/2 dpe; dpe $= Ph_2PCH_2CH_2PPh_2$), reported previously from this laboratory, constitutes one of the quite rare examples of catalytic N_2 -fixing systems promoted by transition metal complexes (eqn. (1)) [3].

$$Me_3SiCl + Na + N_2 \xrightarrow{[Mo(N_2)_2(PMe_2Ph)_4]} \xrightarrow{THF, 30^{\circ}C, 4 \text{ h}}$$

$$N(SiMe_3)_3 + HN(SiMe_3)_2$$
 (1)

In relevance to this unique reaction, we have also reported isolation of trimethylsilylated dinitrogen complexes trans-[MX(NNSiMe₃)(P)₄] from the reactions of

Correspondence to: Professor M. Hidai.

^{*} For Part XL, see ref. 1.

a series of $[M(N_2)_2(P)_4]$ and Me_3SiX (X = I, CF_3SO_3) (eqn. (2)) [4].

$$[M(N_2)_2(P)_4] + Me_3SiX \longrightarrow$$

$$trans-[MX(NNSiMe_3)(P)_4]$$
 (2)

We have now found that a variety of silyldiazenido complexes trans-[WI(NNSiR₃)(PMe₂Ph)₄] can be prepared easily by treatment of cis-[W(N₂)₂(PMe₂Ph)₄] (1) with various R₃SiCl compounds in the presence of excess NaI. Furthermore, analogous treatment of 1 with R₃GeCl/NaI mixtures has resulted in the formation of novel germylated dinitrogen complexes [5]. We wish to describe here the details of these silylation and germylation reactions of coordinated dinitrogen together with the catalytic formation of amines resulting from replacing Me₃SiCl with various chlorosilanes and with Me₃GeCl in eqn. (1).

2. Experimental section

2.1. General

All experiments were carried out under dry nitrogen with thoroughly dried glassware. Complexes 1 and 10 were prepared according to literature methods [4c,6]. Solvents were distilled from Na-benzophenone and degassed just before use. All chlorosilanes and Ph₃GeCl were commercially obtained. Me₃GeCl was supplied by Professor K. Mochida. NaI was dried and stored under nitrogen. Na microdispersion (8-10 μ m diameter) was obtained from Nihon Soda Co. IR spectra were recorded on a Shimadzu IR-400 or FT-8100M spectrometer and ¹H NMR spectra were measured on a JEOL JMN-GX-400 spectrometer. GLC analyses were carried out on a Shimadzu GC-14A Gas Chromatograph equipped with 0.2 mm × 25 m CBP-1 or CBP-10 capillary column, while GC-MS (70 eV) analyses were undertaken on a Shimadzu GC-MS QP-1000 spectrometer. Elemental analyses were performed at the Elemental Analysis Laboratory, Department of Chemistry, Faculty of Science, University of Tokyo.

2.2. Preparation of trans- $[WI(NNSiMe_3)(PMe_2Ph)_4]$ (2)

A previous method [4b] was modified as follows. A mixture of Me_3SiCl (1.0 ml, 7.9 mmol) and NaI (4.94 g, 33.0 mmol) in benzene (22.5 ml) was carefully degassed by freeze (at -40 to $-50^{\circ}C$)-pump-thaw cycles, and then 1 (3.13 g, 3.95 mmol) was added. After stirring of the suspension at 50°C for 45 h in the dark, the dark brown product solution was separated from NaI and NaCl by filtration. Addition of hexane by trap to trap condensation to the filtrate concentrated *in vacuo* gave a yellow solid, which was filtered off, washed with hexane, and dried *in vacuo* (2.96 g, 78% yield).

Other silyldiazenido complexes trans-[WI(NNSiR₃) (PMe₂Ph)₄] (R₃ = EtMe₂ (3), Et₃ (4), PhMe₂ (5), Ph₂Me (6), Ph₃ (7), Me₂(OMe) (8), Me(OMe)₂ (9)) were prepared analogously.

3: yield 72%. Anal. Found: C, 43.37; H, 5.69; N, 2.74. $C_{36}H_{55}N_2SiP_4IW$ calc.: C, 44.18; H, 5.66; N, 2.86%.

4: yield 54%. Anal. Found: C, 45.26; H, 5.87; N, 2.88. C₃₈H₅₉N₂SiP₄IW calc.: C, 45.34; H, 5.91; N, 2.78%.

5: yield 67%. Anal. Found: C, 46.03; H, 5.33; N, 2.81. $C_{40}H_{55}N_2SiP_4IW$ calc.: C, 46.80; H, 5.40; N, 2.73%.

6: yield 65%. Anal. Found: C, 50.19; H, 5.54; N, 2.55. C₄₅H₅₇N₂SiP₄IW calc.: C, 49.65; H, 5.28; N, 2.57%.

7: yield 72%. Anal. Found: C, 53.16; H, 5.36; N, 2.42. $C_{50}H_{59}N_2SiP_4IW$ calc.: C, 52.19; H, 5.17; N, 2.43%.

8: yield 29%. Anal. Found: C, 42.11; H, 5.37; N, 2.86. C₃₅H₅₃N₂OSiP₄IW calc.: C, 42.87; H, 5.45; N, 2.86%.

9: yield 35%. Anal. Found: C, 41.38; H, 5.27; N, 2.63. $C_{35}H_{53}N_2O_2SiP_4IW$ calc.: C, 42.18; H, 5.36; N, 2.81%.

2.3. Preparation of $[(PhMe_2P)_4IW(NNSiMe_2-p-C_6H_4SiMe_2NN)WI(PMe_2Ph)_4]$ (11)

To a suspension of p-ClMe₂SiC₆H₄SiMe₂Cl (81.6 mg, 0.310 mmol) and NaI (571 mg, 3.81 mmol) in benzene (6.0 ml) was added 1 (490 mg, 0.618 mmol). After the suspension was stirred for 70 h at 50°C in the dark, the reaction mixture was filtered. Addition of hexane to the filtrate gave a yellow powder, which was filtered off, washed with hexane, and dried *in vacuo* (348 mg, 57% yield). Anal. Found: C, 44.57; H, 5.62; N, 2.77. C₇₄H₁₀₄N₄Si₂P₈I₂W₂ calc.: C, 45.00; H, 5.31; N, 2.84%.

2.4. Preparation of trans- $[WI(NNGeMe_3)(PMe_2Ph)_4]$ (12a) and mer- $[WI_2(NNHGeMe_3)(PMe_2Ph)_3]$ (12b)

Benzene (ca. 5 ml) was condensed by the trap to trap method into a Schlenk tube charged with NaI (502 mg, 3.35 mmol), and then Me₃GeCl (138 μ l, 1.12 mmol) added. The mixture was carefully degassed by freeze (at -40 to -50° C)-pump-thaw cycles, and 1 (440 mg, 0.555 mmol) was added. After the mixture had been stirred at 50°C for 70 h in the dark, the dark brown product solution was separated by filtration. Addition of hexane by trap to trap condensation to the filtrate concentrated *in vacuo* gave orange crystals of 12a (124 mg, 22.8%). Anal. Found: C, 40.88; H, 5.18; N, 2.53. C₃₅H₅₃N₂P₄GeIW (12a) calc.: C, 41.66; H, 5.34; N, 2.78%. A small amount of a dark brown

crystalline solid byproduct, 12b, was isolated when the reaction was carried out in benzene that had been freshly distilled but not degassed, the reactant and solvent having been transferred into a reaction vessel by syringe. However, the yields of 12b from several runs were not reproducible. Anal. Found: C, 33.40; H, 4.37; N, 2.85. C₂₇H₄₃N₂P₃GeI₂W (12b) calc.: C, 32.47; H, 4.34; N, 2.80%.

2.5. Preparation of trans- $[WI(NNGePh_3)(PMe_2Ph)_4]$ · $C_6H_6(13 \cdot C_6H_6)$

Complex 13 was obtained as an orange crystalline solid by an analogous procedure, treatment of Ph₃GeCl and excess NaI with 1 for 45 h (56% yield). Formation of germylhydrazido(2 –) complex was not observed under the conditions which had given a mixture of 12a and 12b. Anal. Found: C, 51.34; H, 5.47; N, 2.13. $C_{50}H_{59}N_2P_4GeIW \cdot C_6H_6$ calc.: C, 52.82; H, 5.15; N, 2.20%. Although three separate combustion analyses were performed for 13, satisfactory carbon analyses were not obtained. Difficulty of this kind in getting good carbon analyses has been observed for several silyl-metal complexes, and ascribed to the formation of silicon carbide during combustion [1,7].

2.6. Catalytic conversion of N_2 gas into silylamines using cis- $[Mo(N_2)_2(PMe_2Ph)_4]$ (10)

A typical procedure was as follows. To a mixture of Na microdispersion (10 mmol) and R_3SiCl (10 mmol) in THF (6.5 ml) degassed by freeze ($-78^{\circ}C$)-pumpthaw cycles, 10 (0.1 mmol) was added. After stirring of the mixture at 30°C for 4 h under N_2 (1 atm), the aliquots were analyzed by GLC and GC-MS. Aqueous KOH solution (10 ml, 40%) was then added and the mixture distilled into aqueous H_2SO_4 solution (10 ml, 0.1 N), which was then diluted to a known volume with water. Yields of NH_3 were determined using indophenol reagent.

2.7. X-ray crystallographic analysis of trans-[WI(NNGe- Ph_3)($PMe_2Ph)_4$] $\cdot C_6H_6$ (13 $\cdot C_6H_6$)

An X-ray diffraction study was carried out at room temperature by using a single crystal sealed in a glass capillary under Ar. The orientation matrices and unit cell parameters were derived from a least-squares fit of 20 machine-centered reflections with 2θ values between 20 and 25°. No significant decay in intensities of three standard reflections was observed during data collections. Intensity data were corrected for Lorentz and polarization effects, and absorption corrections were also performed. Details of the X-ray diffraction study of $13 \cdot C_6H_6$ are summarized in Table 1. Tables of bond distances and angles, anisotropic thermal parameters, positional parameters for the hydrogen

TABLE 1. Details of X-ray crystallography for trans-[WI(NNGe-Ph₃)(PMe₂Ph)₄]·C₆H₆ (13·C₆H₆)

3-1 Z 140 G G 1 GG	
(a) Crystal data	
Formula	$C_{56}H_{65}N_2P_4GeIW$
Molecular weight	1273.3
Crystal dimensions, mm	$0.43 \times 0.37 \times 0.25$
Space group (crystal system)	Pī (triclinic)
a, Å	13.533(3)
b, Å	19.629(7)
c, Å	11.941(6)
α , deg	103.59(3)
$\boldsymbol{\beta}$, deg	116.11(3)
γ, deg	81.12(2)
V , A^3	2763.7(16)
Z	2
$D_{\rm calcd}$, g cm ⁻³	1.530
F(000), electrons	624
$\mu_{\rm calcd}, {\rm cm}^{-1}$	33.63
(b) Data collection and reduction	
Diffractometer	MAC MXC-18
Monochromator	graphite
Radiation (λ/Å)	Mo Kα (0.7107)
2θ range, deg	$3 < 2\theta < 50$
Scan method	ω –2 θ
Scan speed, deg min ⁻¹	16
Absorption correction	Gaussian integration method
Transmission factor	0.278-0.470
Reflections measured	$\pm h, \pm k, + l$
No. of unique data	8714
No. of data used	$7476 (F_{o} > 3\sigma(F_{o}))$
(c) Solution and refinement	
No. of parameters refined	727
R	0.042
$R_{\mathbf{w}}$	0.050
Max residuals, e Å ⁻³	1.25 (around W atom)

atoms, and listing of observed and calculated structure factors for $13 \cdot C_6 H_6$ are available from the authors. Positional parameters of the non-hydrogen atoms are listed in Table 2. Structure solution and refinements were performed at the Computer Center of the University of Tokyo, using the UNIX-III program package. The W atom was found by the direct method program MULTAN 78. Subsequent cycles of difference Fourier syntheses and block-diagonal least-squares refinements revealed all non-hydrogen atoms in 13 as well as the carbon atoms in the solvating benzene (C(81)-C(86)), which were refined anisotropically. All hydrogen atoms were placed in calculated positions ($d_{\rm C-H}=1.09~{\rm \AA}$ for methyl and methylene protons and $d_{\rm C-H}=1.08~{\rm \AA}$ for phenyl protons). Anomalous dispersion effects were included, and the atomic scattering factors were taken from ref. 8.

TABLE 2. Positional parameters (×10⁴) and equivalent temperature factors for trans-[WI(NNGePh₃)(PMe₂Ph)₄]·C₆H₆ (13·C₆H₆)

Atom	x	у	z	$B_{ m eq}$
w	5650.6(3)	2493.7(2)	6775.5(3)	2.4
I	4244.2(5)	3057.2(3)	4494.1(5)	4.2
Ge	7992.4(7)	1813.1(5)	10604.7(8)	3.3
P(1)	7333(2)	3028(1)	7071(2)	3.2
P(2)	5912(2)	1509(1)	5114(2)	3.1
P(3)	4048(2)	1945(1)	6657(2)	3.4
P(4)	5056(2)	3615(1)	7904(2)	3.3
N(1)	6490(5)	2079(3)	8126(6)	3.0
N(2)	6967(7)	1684(4)	8913(7)	5.0
C(1)	8190(7)	3344(5)	8761(8)	4.5
C(2)	7189(8)	3798(5)	6383(10)	4.8
C(3)	6334(8)	1755(5)	3996(9)	4.5
C(4)	4722(8)	1021(5)	3905(8)	4.4
C(5)	2716(7)	2004(6)	5312(9)	5.0
C(6)	4218(9)	985(5)	6638(10)	4.8
C(7)	3563(8)	3878(5)	7321(10)	4.8
C(8)	5412(8)	3629(5)	9576(8)	4.4
C(11)	8420(6)	2495(4)	6684(7)	3.2
C(12)	8766(8)	2613(5)	5814(9)	4.6
C(13)	9593(9)	2194(6)	5546(10)	5.6
C(14)	10111(8)	1656(6)	6203(11)	6.0
C(15)	9787(9)	1519(6)	7069(11)	5.7
C(16)	8939(8)	1929(5)	7301(9)	4.4
C(21)	6911(7)	786(4)	5716(8)	3.6
C(22)	6906(7)	531(5)	6694(8)	3.8
C(23)	7632(8)	- 15(5)	7159(9)	4.9
C(24)	8393(9)	-304(6)	6682(11)	6.0
C(25)	8405(9)	- 57(6)	5716(11)	6.1
C(26)	7676(8)	480(5)	5230(9)	4.9
C(31)	3664(7)	2176(5)	8006(9)	4.1
C(32)	2608(9)	2461(6)	7892(11)	5.8
C(33)	2338(10)	2580(6)	8945(13)	7.0
C(34)	3101(12)	2443(7)	10076(11)	7.5
C(35)	4159(11)	2135(8)	10200(11)	7.7
C(36)	4436(9)	2022(6)	9171(9)	5.2
C(41)	5534(7)	4466(4)	7998(9)	4.0
C(42)	6349(9)	4823(5)	9092(9)	4.9
C(43)	6689(10)	5450(6)	9101(11)	6.1
C(44)	6236(10)	5735(6)	8018(12)	6.4
C(45)	5441(10)	5392(5)	6920(11)	5.5
C(46)	5061(8)	4776(5)	6903(9)	4.6
C(51)	9512(7)	1667(5)	10756(8)	4.0
C(52)	10352(8)	2084(5)	11626(9)	4.9
C(53)	11426(8)	1932(6)	11690(10)	5.5
C(54)	11635(8)	1360(6)	10910(11)	5.4
C(55)	10824(9)	925(6)	10075(10)	5.7
C(56)	9765(8)	1086(5)	10002(9)	4.6
C(61)	7703(7)	996(5)	11081(9)	4.1
C(62)	8430(9)	802(5)	12219(9)	5.0
C(63)	8300(11)	189(6)	12525(11)	6.4
C(64)	7436(11)	-218(7)	11722(14)	7.4
C(65)	6700(10)	-216(7) -33(6)	10594(14)	7.4
C(66)	6843(9)	- 33(6) 582(6)	10280(11)	5.7
C(71)	7778(7)	2689(5)	11671(8)	4.0
C(71)	8245(8)			
	8243(8) 7989(10)	3298(5) 3915(6)	11871(9) 12594(10)	4.6 5.8
C(73) C(74)	7989(10) 7206(10)	3915(6) 3922(6)	12594(10)	5.8 6.2
		3922(6) 3313(6)	13043(10)	6.2 5.7
C(75)	6716(10)			
C(76)	6981(8)	2694(5)	12163(9) 3948(18)	4.4 12.5
C(81)	1052(16)	4788(11)	<i>37</i> 40(10 <i>)</i>	14.3

TABLE 2. (continued)

Atom	x	у	z	$B_{\rm eq}$
C(82)	1172(15)	4291(11)	3014(20)	12.6
C(83)	539(16)	4397(12)	1776(18)	13.6
C(84)	-169(14)	4946(11)	1536(16)	11.6
C(85)	-332(16)	5474(11)	2523(19)	13.6
C(86)	306(15)	5390(10)	3750(16)	11.7

3. Results and discussion

3.1. Preparation of silyldiazenido complexes using a mixture of R_3SiCl and NaI

Treatment of cis-[W(N₂)₂(PMe₂Ph)₄] (1) with 2 equiv of Me₃SiCl in the presence of excess NaI at 50°C in benzene gave trans-[WI(NNSiMe₃)(PMe₂Ph)₄] (2) in 78% yield. The isolated yield of 2 prepared by this method was slightly higher than that from the reaction of 1 with Me₃SiI (ca. 70%) [4b]. Since a variety of chlorosilanes is readily available from commercial sources, this reaction system provides a quite convenient method to prepare numerous silylated dinitrogen complexes. Thus the analogous reaction of 1 with a mixture of R₃SiCl and excess NaI afforded a series of new silyldiazenido complexes trans-[WI(NNSiR₃)(P-Me₂Ph)₄] (R₃ = Me₂Et (3), Et₃ (4), Me₂Ph (5), MePh₂ (6), Ph₃ (7), (MeO)Me₂ (8), (MeO)₂Me (9)) in ca. 30–70% yields (eqn. (3)).

cis-
$$[W(N_2)_2(PMe_2Ph)_4] + R_3SiCl + excess NaI \longrightarrow$$

$$1$$
trans- $[WI(NNSiR_3)(PMe_2Ph)_4]$ (3)
$$3-9$$

Despite the presence of a more than stoichiometric amount of silyl compounds, none of these reactions gave the disilylated products. The other silylation reactions using Me_3SiX (X = I, CF_3SO_3) [4] or $R_3SiCo(CO)_4$ [9] reported previously also afford uniquely the monosilylated complexes. It is to be noted that the disilylation of a coordinated dinitrogen has been observed only in the reactions of 1 and cis- $[Mo(N_2)_2(PMe_2Ph)_4]$ (10) with a $ClMe_2SiCH_2CH_2SiMe_2Cl/NaI$ mixture as described elsewhere, which resulted in the formation of disilylhydrazido(2 –) complexes mer- $[MI_2(NNSiMe_2CH_2CH_2SiMe_2)(PMe_2Ph)_3]$ (M = Mo, W) [1,5].

On the other hand, when 2 equiv of 1 was allowed to react with p-ClMe₂SiC₆H₄SiMe₂Cl and excess NaI, a dinuclear complex with bridging silyldiazenido ligand [(PhMe₂P)₄IW(NNSiMe₂-p-C₆H₄SiMe₂NN)WI(PMe₂-Ph)₄] (11) was obtained in 57% yield.

Since 1 does not react with R₃SiCl in the absence of NaI, the silylation reactions reported here presumably proceed via an initial formation of R₃SiI in situ. Subsequent electrophilic attack of R₃SiI at the terminal nitrogen atom might afford the silyldiazenido complexes [1]. Isolated yields of methoxysilyldiazenido complexes 8 and 9 were considerably lower than those of 2-7 and 11. This may be ascribed at least in part to the low stability of the silyldiazenido ligands in 8 and 9, since it has been reported that the electronegative groups on a Si atom decrease the thermostability of silyldiazenes R₃SiN=NSiR'₃ [10].

Spectroscopic data for 2-9 and 11 are summarized in Table 3. Two characteristic IR bands assignable to $\nu(N=N)$ and $\nu(SiN)$ are observed for all complexes, whose values vary substantially depending upon the nature of the substituents on the Si atoms. In their ¹H NMR spectra, the methyl protons of PMe₂Ph ligands appear as a broad singlet, which suggests that all PMe₂Ph ligands occupy equivalent positions and the silyldiazenido and iodide ligands are sited in the *trans* positions as confirmed previously for 2 by X-ray analysis [4b].

Dichlorosilanes R_2SiCl_2 (R = Me, Et, Ph) and hy-

TABLE 3. IR and ¹H NMR data for silylated and germylated dinitrogen complexes trans-[WI(NNER₃)(PMe₂Ph)₄] (E = Si (2-9), Ge (12a, 13)), [(PMe₂Ph)₄IW(NNSiMe₂·p·C₆H₄SiMe₂NN)Wi(PMe₂Ph)₄] (11) and mer-[WI₂(NNHER₃)(PMe₂Ph)₄] (E = Si, Ge (12b))

ER ₃		IR ^a	1R ^a ¹ H NMR ^b		
(a) Diazeni	ido complexes				
2	SiMe ₃ ^c	1580	$\nu(NN)$	0.47	(s, 9H, Si- <i>Me</i>)
	·	1246	δ(SiMe)	1.73	(broad s 24H, P-Me)
		873	$\nu(SiN)$		
3	SiMe ₂ Et	1575	$\nu(NN)$	0.50	(s, 6H, Si- <i>Me</i>)
	_	1240	δ(SiMe)	0.91	$(q, 2H, Si-CH_2)$
		863	$\nu(SiN)$	1.29	$(t, 3H, CH_2-Me)$
				1.77	(broad s, 24H, P-Me)
ļ	SiEt ₃	1570	$\nu(NN)$	0.98	$(q, 6H, Si-CH_2)$
	_	855	$\nu(SiN)$	1.25	$(t, 9H, CH_2-Me)$
				1.73	(broad s, 24H, P-Me)
5	SiMe ₂ Ph	1560	$\nu(NN)$	0.70	(s, 6H, Si-Me)
	-	1240	δ(SiMe)	1.70	(broad s, 24H, P-Me)
		880	$\nu(SiN)$		
6	SiMePh ₂	1545	$\nu(NN)$	0.99	(s, 3H, Si-Me)
	-	1245	δ(SiMe)	1.66	(broad s, 24 H, P-Me)
		865	ν(SiN)		
7	SiPh ₃	1545	$\nu(NN)$	1.63	(broad s, 24H, P-Me)
	•	860	ν(SiN)		
3	SiMe ₂ (OMe)	1555	$\nu(NN)$	0.46	(s, 6H, Si- <i>Me</i>)
	_	1248	δ(SiMe)	1.74	(broad s, 24H, P-Me)
		875	ν(SiN)	3.66	(s, 3H, O-Me)
9	SiMe(OMe) ₂	1525	$\nu(NN)$	0.48	(s, 3H, Si- <i>Me</i>)
		1250	δ(SiMe)	1.76	(broad s, 24H, P-Me)
		885 ^d	ν(SiN)	3.67	(s, 6H, O- <i>Me</i>)
1		1541	$\nu(NN)$	0.81	(s, 12H, Si- <i>Me</i>)
		1244	δ(SiMe)	1.77	(broad s, 48H, P-Me)
		858	ν(SiN)		
2a	GeMe ₃	1530	$\nu(NN)$	0.36	(s, 9H, Ge- <i>Me</i>)
				1.74	(broad s, 24H, P-Me)
3	GePh ₃	1510	$\nu(NN)$	1.64	(broad s, 24H, P-Me)
b) Hydraz	rido(2 —) complexes				
	SiMe ₃ c	3250	$\nu({ m NH})$	-0.07	(s, 9H, Si-Me)
	-	1360	$\nu(NN)$	1.41	(d, 6H, P-Me)
		1254	δ(SiMe)	2.08	(s, 1H, N-H)
		842	ν(SiN)	2.24	(2t, 12H, P-Me)
2ъ	GeMe ₃	3260	$\nu(NH)$	0.20	(s, 9H, Ge- <i>Me</i>)
		1351	ν(NN)	1.55	(d, 6H, P- <i>Me</i>)
				2.30	(t, 6H, P-Me)
				2.36	(t, 6H, P-Me)
				2.88	(s, 1H, N-H)

a cm⁻¹; KBr disks. b δ; C₆D₆ solution; phenyl protons omitted. c Ref. 4b. d Obscured by the absorptions of the PMe₂Ph ligand.

dridochlorosilanes R_2 HSiCl ($R_2 = Me_2$, MeCl, Ph_2 , PhCl) also reacted with 1 under the analogous conditions, but no silylated dinitrogen complexes could be isolated from the reaction mixtures.

3.2. Preparation of germylated dinitrogen complexes

When 1 was treated with R_3 GeCl in the presence of excess NaI at 50°C in benzene, novel germyldiazenido complexes trans-[WI(NNGeR₃)(PMe₂Ph)₄] (R = Me (12a), Ph (13)) were formed as orange crystals in ca. 20 and 55% yields, respectively (eqn. (4)).

$$\begin{array}{c|c}
N & \parallel \\
N & N \\
P & \downarrow N \\
P & \downarrow N \\
P & + R_3 GeCl/NaI \longrightarrow
\end{array}$$

1: $P = PMe_2Ph$

As observed in Si-N bond formation described above, germylation did not occur in the absence of NaI. IR and 1H NMR data for 12a and 13 listed in Table 3 correspond well to those for the silyldiazenido complexes. In the IR spectra there appears a strong band characteristic of ν (N=N) at 1530 (12a) or 1510 cm⁻¹ (13), respectively. The ν (N=N) values for 12a and 13 are significantly lower than those for the silyl analogues 2 (1580 cm⁻¹) and 7 (1545 cm⁻¹). In their 1H NMR spectra, the methyl protons of PMe₂Ph ligands appear as a broad singlet, indicating that the *trans* structure is plausible also for 12a and 13.

From the reaction using a mixture of Me₃GeCl/NaI, in addition to orange crystals of 12a brown crystals were isolated in low yield. The IR and ¹H NMR data for the latter are diagnostic of the formulation of this byproduct as a trimethylgermylhydrazido(2 –) complex mer-[WI₂(NNHGeMe₃)(PMe₂Ph)₃] (12b), if compared with those for the trimethylsilylhydrazido-(2 –) complex mer-[WI₂(NNHSiMe₃)(PMe₂Ph)₃] (Table 3). Complex 12b presumably results from the further reaction of 12a with HI, which is generated in situ by the reaction of Me₃GeCl/NaI and adventitious moisture. Thus only 12a could be isolated under the extremely dry reaction conditions. A similar mecha-

Fig. 1. ORTEP diagram of trans-[WI(NNGePh₃)(PMe₂Ph)₄]·C₆H₆ (13·C₆H₆), showing the atom-labeling scheme. The solvent molecule has been omitted.

nism has already been proposed for the concurrent formation of trimethylsilylhydrazido(2 –) complexes [MX₂(NNHSiMe₃)(PMe₂Ph)₃] or [MX(NNHSiMe₃)-(dpe)₂]X with trimethylsilyldiazenido complexes [MX(NNSiMe₃)(P)₄] [4].

Trimethylgermylated dinitrogen complexes 12 are much less stable than the silyl analogues, which resulted in their lower isolated yields and the failure in further purification of 12 by recrystallization from benzene/hexane. This accords with the stability of germyl-diazenes R₃GeN=NR' being lower than that of the corresponding silyldiazenes [10]. In contrast, 13 could be obtained in higher yield and recrystallized from benzene/hexane.

3.3. Structure of trans- $[WI(NNGePh_3)(PMe_2Ph)_4] \cdot C_6H_6 (13 \cdot C_6H_6)$

X-ray crystallography of 13 was performed to confirm the structure of the germyldiazenido complexes [11*]. Figure 1 depicts the molecular structure of 13 and selected bond distances and angles are given in Table 4.

The crystal of 13 consists of two molecules of the W complex packed with two benzene molecules in the unit cell. The complex 13 has a slightly distorted octa-

^{*} Reference number with asterisk indicates a note in the list of references.

hedral geometry. Four PMe₂Ph ligands lie on the basal plane whereas triphenylgermyldiazenido and iodide ligands occupy the remaining sites in the trans positions. The W-N-N bond angle in the germyldiazenido ligand is essentially linear (168.2(6)°). The W-N distance (1.809(6) Å) is indicative of some multiple bond character and the N-N bond length of 1.248(10) Å is comparable to that of the common N-N double bond (ca. 1.24 A) [12]. These structural features correspond well to those of the related silyldiazenido complexes 2 (W- $N-N = 168(2)^{\circ}$; W-N = 1.82(2), N-N = 1.24(3) Å) [4b] and trans-[Mo(NNSiMePh₂)(dpe)₂](μ-OC)Co(CO)₃ (14) $(Mo-N-N = 177(1)^\circ; Mo-N = 1.801(9), N-N =$ 1.21(1) Å) [9]. The Ge-N bond length of 1.861(7) Å is within the range of common Ge-N single bond lengths (1.82-1.86 Å) and comparable to the values reported for germylamines such as N(GeH₃)₃ (1.836(5) Å [13]), $LiN(GeMe_3)_2$ (trimer ca. 1.81-1.88 Å [14]) and Mes₃GeNH₂ (1.854(3) Å [15]). These bond lengths observed in the germyldiazenido ligand in 13 are consistent with the description of this ligand as W=N=N-GeR₃. However, the N-N-Ge angle of 134.2(6)° is much larger than the 120° expected for the sp² hybridized terminal N atom. This might be attributable to the steric repulsion of the Ph₃Ge group against the PMe₂Ph ligands in cis positions. Such distortion in the diazenido ligands has also been demonstrated in the silyldiazenido complexes 2 [4b] and 14 [9] $(N-N-Si = 152(2), 152(1)^\circ)$ and in some alkyl or aryldiazenido complexes such as trans-[MoI(NNC₆H₁₁Xdpe)₂] [16] and mer, trans-[RuCl₃

TABLE 4. Selected bond distances (Å) and angles (deg) in trans-[WI(NNGePh₃)(PMe₂Ph)₄]·C₆H₆ (13·C₆H₆)

(a) Bond distances			
W-I	2.910(2)	W-P(1)	2.503(3)
W-P(2)	2.530(2)	W-P(3)	2.503(3)
W-P(4)	2.514(2)	W-N(1)	1.809(6)
N(1)-N(2)	1.248(10)	Ge-N(2)	1.863(7)
Ge-C(51)	1.964(10)	Ge-C(61)	1.967(11)
Ge-C(71)	1.950(9)		
(b) Bond angles			
I-W-P(1)	93.54(6)	I-W-P(2)	80.13(6)
I-W-P(3)	90.81(6)	I-W-P(4)	84.24(6)
I-W-N(1)	175.7(2)	P(1)-W-P(2)	89.67(8)
P(1)-W-P(3)	175.48(7)	P(1)-W-P(4)	91.31(8)
P(1)-W-N(1)	89.0(3)	P(2)-W-P(3)	92.30(8)
P(2)-W-P(4)	164.37(7)	P(2)-W-N(1)	96.5(2)
P(3)-W-P(4)	87.89(8)	P(3)-W-N(1)	86.7(3)
P(4)-W-N(1)	99.2(2)	N(2)-Ge-C(51)	111.7(4)
N(2)-Ge-C(61)	98.9(4)	N(2)-Ge-C(71)	115.3(3)
C(51)-Ge-C(61)	106.7(4)	C(51)-Ge-C(71)	111.7(4)
C(61)-Ge-C(71)	111.6(5)	W-N(1)-N(2)	168.2(6)
Ge-N(2)-N(1)	134.2(6)		

TABLE 5. Conversion of N_2 gas into silylamines catalyzed by cis- $[Mo(N_2)_2(PMe_2Ph)_4]$ (10) ^a

Chlorosilanes	Yield of silylamines b (mol/Mo atom)	Major byproduct c	
ClSiPhMe ₂	0.2	PhMe2SiSiMe2Ph	
ClSiEt ₃	3.0	Et ₃ SiSiEt ₃	
ClSiMe ₂ H d,e	1.9	HMe ₂ SiSiMe ₂ H	
ClSiMe ₂ (OMe) d	7.0	(MeO),SiMe,	
ClSiMe(OMe) ₂ d	3.1	(MeO) ₃ SiMe	
ClSiMe ₂ Cl	1.5	(Me,Si) _n f	
(CIMe ₂ SiCH ₂) ₂ ^g	1.9	2 "	
ClGeMe ₃ h	0.6	Me ₃ GeGeMe ₃	
ClSiMe ₃ d,i	7.5 ^j	Me ₃ SiSiMe ₃	
ClSiEtMe ₂ d,i	4.4 ^j	EtMe ₂ SiSiMe ₂ Et	

^a Reaction conditions: chlorosilane, 10 mmol; Na microdispersion, 10 mmol; THF, 6.5 ml; complex **10**, 0.1 mmol; N₂, 1 atm; 30°C; 4 h. ^b Yields determined as NH₃ after hydrolysis. ^c Characterized by GLC and GC-MS. ^d N(SiR₃)₃ was formed. ^e 0°C; 15 h. ^f Characterized by IR; ref. 22. ^g Na microdispersion, 20 mmol. ^h ClGeMe₃, 5 mmol; Na microdispersion, 5 mmol; THF, 3.3 ml; complex **10**, 0.05 mmol. ⁱ Ref. 3. ^j Yield of N(SiR₃)₃ determined by GLC.

 $(NNC_6H_4CH_3-p)(PPh_3)_2$ · (S) (S = CH_2CI_2 [17], acetone [18]) (N-N-C = 132(1), 137.1(5), 136(1)°).

3.4. Catalytic conversion of N_2 gas into silylamines using $cis-[Mo(N_2)_2(PMe_2Ph)_4]$ (10)

The catalytic reaction forming trimethylsilylamines shown in eqn. 1 has now been extended to the reaction systems involving various chlorosilanes and Me₃GeCl.

Reactions were carried out under the conditions which exhibited the highest catalytic activity with respect to the N(SiMe₃)₃ and HN(SiMe₃)₂ formation, viz, in THF at 30°C by using Na microdispersion as a reducing reagent and 10 as a catalyst. The total yield of silylated N₁ products was determined as the amount of NH₃ produced after hydrolysis of the reaction mixture. As summarized in Table 5, most reaction systems afforded significant amounts of NH₃. No hydrazine was detected after the workup of the reaction mixture from any run. The yield of NH₃ is much affected by the nature of the substituent attached to the Si atom and the increase in steric bulk apparently results in the decrease in the yield of NH₃ (Me₃ > EtMe₂ > Et₃ > PhMe₂). Formation of the trissilylamines in the resultant reaction mixtures was confirmed for several systems by GC-MS study (Table 5), while no N(SiEt₃)₃ was detected in the product solution from Et SiCl despite the formation of 3.0 mol NH₃/Mo atom after hydrolysis. This suggests that the N₁ products from those reactions which involve bulky chlorosilanes are formed predominantly as sodium amides such as NaN(SiR₃)₂ under these conditions. Degradation of trimethylsilyldiazenido complexes trans-[MoI(NNSi-Me₃(PMe₂Ph)₄ and 2 into sodium amides such as

NaN(SiMe₃)₂ and NaNH(SiMe₃) upon reduction with Na has been clarified in detail already [4c].

In these reactions using monochlorosilanes, the major characterizable byproducts are disilanes, whose formation is also accelerated by 10. Methoxy monosilanes, observed as the major byproduct from the reactions with methoxychlorosilanes, might be generated after successive disproportionation reactions of initially formed methoxydisilanes (MeO)Me₂SiSiMe₂(OMe) and (MeO)₂MeSiSiMe(OMe)₂ in the presence of the Mo catalyst (eqns. (5), (6)). Similar base catalyzed or thermal redistribution reactions of methoxydisilanes to monosilanes have been reported previously [19–21].

$$(MeO)_2Me_2Si + [Me_2Si:]$$
 (5)

 $(MeO)_2MeSiSiMe(OMe)_2 \longrightarrow$

$$(MeO)_3MeSi + [(MeO)MeSi:]$$
 (6)

We have also carried out a catalytic conversion of N₂ gas into germylamines using Me₃GeCl instead of R₃SiCl. However, a major reaction product was Me₃GeGeMe₃ and trisgermylamine N(GeMe₃)₃ was not detected in the reaction mixture from a GC-MS criteria, although 0.6 mol NH₃/Mo atom was obtained after hydrolysis.

Acknowledgments

We thank Professor Kunio Mochida of Gakushuin University for a gift of Me₃GeCl. Financial support by the Ministry of Education, Science, and Culture of Japan is greatly appreciated.

References and notes

- 1 Part XL: H. Oshita, Y. Mizobe and M. Hidai, Organometallics, 11 (1992) 4116.
- 2 See the following reviews and references therein: (a) M. Hidai and Y. Mizobe, in P.S. Braterman (ed.), Reactions of Coordinated Ligands, Plenum Press, New York, 1989, Vol. 2, p. 53; (b) M. Hidai, in T.G. Spiro (ed.), Molybdenum Enzyme, John Wiley and Sons, New York, 1985, p. 285; (c) H.M. Colquhoun, Acc. Chem. Res., 17 (1984) 23; (d) R. Henderson, G.J. Leigh and C.J. Pickett, Adv. Inorg. Chem. Radiochem., 27 (1983) 197; (e) T.A. George, in L.H. Pignolet (ed.), Homogeneous Catalysis with Metal Phosphine

- Complexes, Plenum Press, New York, 1983, Chap. 13; (f) J.R. Dilworth and R.L. Richards, in G. Wilkinson, F.G.A. Stone and E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1982, Vol. 8, p. 1073; (g) J. Chatt, J.R. Dilworth and R.L. Richards, Chem. Rev., 78 (1978) 589.
- 3 K. Komori, H. Oshita, Y. Mizobe and M. Hidai, J. Am. Chem. Soc., 111 (1989) 1939.
- 4 (a) K. Komori, T. Kodama, D.-M. Jin, T. Takahashi, Y. Uchida and M. Hidai, Chem. Lett., (1983) 465; (b) M. Hidai, K. Komori, T. Kodama, D.-M. Jin, T. Takahashi, S. Sugiura, Y. Uchida and Y. Mizobe, J. Organomet. Chem., 272 (1984) 155; (c) K. Komori, S. Sugiura, Y. Mizobe, M. Yamada and M. Hidai, Bull. Chem. Soc. Jpn., 62 (1989) 2953.
- 5 H. Oshita, Y. Mizobe and M. Hidai, Chem. Lett., (1990) 1303.
- 6 W. Hussain, G.J. Leigh, H.M.-Ali, C.J. Pickett and D.A. Rankin, J. Chem. Soc., Dalton Trans., (1984) 1703.
- 7 (a) J. Arnold, T.D. Tilley, A.L. Rheingold and S.J. Geib, Organometallics, 6 (1987) 473; (b) C.C. Cummins, G.D. Van Duyne, C.P. Schaller and P.T. Wolczanski, Organometallics, 10 (1991) 164.
- 8 International Tables for X-ray Crystallography, Kynoch Press, Birmingham, UK, 1974, Vol. IV.
- 9 A.C. Street, Y. Mizobe, F. Gotoh, I. Mega, H. Oshita and M. Hidai, Chem. Lett., (1991) 383.
- 10 N. Wiberg, Adv. Organomet. Chem., 23 (1984) 131 and references cited therein.
- 11 Trials to determine the detailed structures of 12a and 12b by the X-ray analyses were unsuccessful because of the extreme instability of these compounds under the conditions of the X-ray data collection.
- 12 R. Allmann, in S. Patai (ed.), The Chemistry of the Hydrazo, Azo and Azoxy Groups, Part 1, John Wiley and Sons, New York, 1975, Chap. 2.
- C. Glidewell, D.W.H. Rankin and A.G. Robiette, J. Chem. Soc. (A), (1970) 2935.
- 14 M. Rannenberg, H.-D. Hausen and J. Weidlein, J. Organomet. Chem., 376 (1989) C27.
- 15 M. Rivière-Baudet, M. Morère, J.F. Britten and M. Onyszchuk, J. Organomet. Chem., 423 (1992) C5.
- 16 C.S. Day, V.W. Day, T.A. George and I. Tavanaiepour, Inorg. Chim. Acta., 45 (1980) L54.
- 17 B.L. Haymore and J.A. Ibers, Inorg. Chem., 14 (1975) 3060.
- 18 J.V. McArdle, A.J. Schultz, B.J. Corden and R. Eisenberg, *Inorg. Chem.*, 12 (1973) 1676.
- 19 J.W. Ryan, J. Am. Chem. Soc., 84 (1962) 4730.
- 20 (a) W.H. Atwell and D.R. Weyenberg, J. Organomet. Chem., 5 (1966) 594; (b) W.H. Atwell and D.R. Weyenberg, J. Organomet. Chem., 7 (1967) 71; (c) W.H. Atwell, L.G. Mahone, S.F. Hayes and J.G. Uhlmann, J. Organomet. Chem., 18 (1969) 69.
- 21 H. Watanabe, K. Higuchi, T. Goto, T. Muraoka, J. Inose, M. Kageyama, Y. Iizuka, M. Nozaki and Y. Nagai, J. Organomet. Chem., 218 (1981) 27.
- 22 L.F. Brough and R. West, J. Am. Chem. Soc., 103 (1981) 3049.