

0040-4039(95)00703-2

Stereoselective Introduction of a Bromo- (or Chloro-) Difluoromethyl Allylic Group

Frédérique Tellier^{1*} and Raymond Sauvêtre²

 1- Unité de Phytopharmacie et des Médiateurs Chimiques, INRA, Route de Saint-Cyr, 78026 Versailles, France
2- Laboratoire de Chimie des Organoéléments, associé au CNRS, Université P. et M. Curie, boîte 183, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract: A highly regio- and stereo-selective method for the introduction of a bromo- (or chloro-) difluoromethylene group into various unsaturated systems is described. The key step is the treatment of 1,1-difluoro-1-alken-3-ols with thionyl bromide or chloride.

Fluorinated organic molecules attract much attention due to their unique biological properties. The replacement of hydrogen atoms by fluorine atoms in biological molecules causes a relatively small steric perturbation but leads to major changes in hydrophobicity and polarity factors^{1,2}. Some syntheses allowing the preparation of products in which a methylene group α to the double bond is replaced by a CF₂ group have been described. The incorporation of the CF₂X (X=Br,Cl) moiety in an allylic position of intermediate synthons appears to be a potent tool for the construction of more elaborate molecules³⁻⁹.

Herein, we describe the synthesis of 1-bromo (or 1-chloro)-1,1-difluoro-2-alkenes 2 through the reaction of thionyl bromide (or chloride) with 1,1-difluoro-1-alken-3-ols 1 (readily obtained by addition of difluorovinyllithium to carbonyl compounds¹⁰).

$$R^{1}R^{2}C=O \xrightarrow{1) CF_{2}=CHLi} R^{1}R^{2}C(OH)CH=CF_{2} \xrightarrow{1) SOX_{2}} R^{1}R^{2}C=CH-CF_{2}X \quad (X=Br,CI)$$

The results of this halogenation are summarized in the following table. The reaction proceeds in diethyl ether in a few hours at room temperature¹¹, and the alkenes 2 are S_N^2 substitution products, afforded with high stereoselectivity (if R^2 =H, the *E* isomer is \geq 99% except for R^1 =alkynyl). The results obtained suggest that the halogenation process involves a transition state with significant carbocation character (previously, we have described such S_N^2 substitution reactions on the same alcohols 2 by a fluorinating agent¹² or a hydride¹³).

R ¹	R ²	x	Yield ^a	E/Z ^b	¹⁹ F NMR-&(ppm)/CFCl ₃		Experimental conditions
			(%)		Е	Z	(h/⁰ C)
n-Hex	Н	Cl	76	99/ 1	-49.8	-45.0	24/20
n-Hex	н	Br	81	99/1	-44.3	-39.0	3/20
(CH ₂)5		Cl	5	-	-41.6		6/20
(CH ₂) ₅		Br	75	-	-35.7		1/20
Thienyl	Н	Cl	50	100/0	-49.1	-	6/20
Thienyl	Н	Br	60	100/0	-44.1	-	3/20
CH ₃ -CH=CH	Н	Cl	50 [°]	99/1	-49.0(E,E)	-44.2(Z,E)	6/20
СН₃-СН=СН	н	Br	56	99/1	-43.6(E,E)	-38.0(Z,E)	3/20
n-Bu-C≡C	Н	Cl	10	92/8	-51.4	-48.0	6/20
n-Bu-C≡C	Н	Br	68	88/12	-46.6	-42.6	3/20

a- Yield for the second step (reaction with SOX₂) in distilled product (except thienyl)

b- E/Z ratio determined by ¹⁹F NMR

c-1:1 Mixture of the two possible S_N2^r regioisomers, MeCHClCH=CH-CH=CF₂ and Me(CH=CH)₂CF₂Cl

In conclusion, this route appears to provide a general and highly regio- and stereo-selective methodology for the allylic introduction of a bromo- (or chloro-) difluoromethyl group into various unsaturated systems; the products obtained constitute useful precursors for synthesizing more complex fluorinated molecules.

Acknowledgements: This work was supported by INRA and CNRS, and authors are indebted to Elf-Atochem for a generous gift of 1,1-difluoroethylene.

References and notes

- 1- Prestwich, G.D. Pestic. Sci. 1986, 37, 430-440.
- 2- Prestwich, G.D.; Sun, W.C.; Mayer, M.S.; Dickens, J.C. J. Chem. Ecol. 1990, 16, 1761-1789.
- 3- Fujita, M.; Hiyama, T. Tetrahedron Lett. 1986, 27, 3659-3660.
- 4- Kwok, P.Y.; Muellner, F.W.; Chen, C.K.; Fried, J. J. Am. Chem. Soc. 1987, 109, 3684-3692.
- 5- Masnyk, M.; Fried, J.; Roelofs, W. Tetrahedron Lett. 1989, 30, 3243-3246.
- 6- Ishihara, T.; Miwatashi, S.; Kuroboshi, M.; Utimoto, K. Tetrahedron Lett. 1991, 32, 1069-1072.
- 7- Tsukamoto, T.; Kitazume, T. Synlett 1992, 977-979.
- 8- Sun, W.C.; Ng, C.S.; Prestwich, G.D. J. Org. Chem. 1992, 57, 132-137.
- 9- Hu, C.M.; Chen, J. J. Fluorine Chem. 1994, 66, 25-26.
- 10- Sauvêtre, R.; Normant, J.F. Tetrahedron Lett. 1981, 22, 957-958.
- 11- SOX₂ (0.025 mol) is added at -80°C (X=Br) or -20°C (X=Cl) to a solution of crude alcohol 1 (0.015 mol)
- in Et₂O (60 ml). Stirring is continued at 20°C (see table) and the solution is diluted by addition of water.
- 12- Tellier, F.; Sauvêtre, R. Tetrahedron Lett. 1991, 32, 5963-5964.
- 13- Tellier, F.; Sauvêtre, R.; Normant, J.F.; Chuit, C. Tetrahedron Lett. 1987, 28, 335-336.

(Received in France 7 March 1995; accepted 13 April 1995)