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ABSTRACT: Mitophagy is one of the processes that cells use to maintain overall health. An 

E3 ligase, parkin, ubiquitinates mitochondrial proteins prior to their degradation by 

autophagasomes. USP30 is an enzyme that de-ubiquitinates mitochondrial proteins; therefore, 

inhibiting this enzyme could foster mitophagy. Herein, we disclose the structure-activity 

relationships (SAR) within a novel series of highly selective USP30 inhibitors. Two structurally 

similar compounds, MF-094 (a potent and selective USP30 inhibitor) and MF-095 (a 

significantly less potent USP30 inhibitor), serve as useful controls for biological evaluation. We 

show that MF-094 increases protein ubiquitination and accelerates mitophagy. 

 

Mitochondria have a complex life cycle that includes many processes, including: biogenesis, 

fusion, fission, interaction with endoplasmic reticulum and organelle specific degradation by 

mitophagy.
1
 Loss of the mitochondrial membrane electrochemical potential initiates the 

mitophagy process. The depolarization is followed by stabilization of protein kinase PINK1 on 

damaged mitochondria
2
; this is followed by recruitment of the E3 ubiquitin ligase parkin to 

phosphorylated ubiquitin
3
, which results in increased ubiquitination of multiple mitochondrial 

proteins and engulfment by the autophagosome.
4
 Parkin-mediated mitophagy is an important 

process in mitigating cellular damage in many tissues, for example: 1) the liver induced toxicity 

caused by alcohol and acetaminophen
5
 and 2) the kidney damage caused by cisplatin

6
 use. 

Additionally, parkin loss of function is a causal event in autosomal recessive juvenile onset 

parkinsonism
7
. 

The ubiquitination of cellular proteins through the action of E3 ubiquitin ligases is opposed by 

a family of de-ubiquitinating enzymes (DUBs).
8
 The DUB USP30, a cysteine protease,

9
 is 

localized to mitochondria and has been shown to oppose the action of parkin-mediated 

ubiquitination in clearing damaged mitochondria.
10-11

 USP30 is specific for isopeptide bonds 

between the lysine-6 ε-amino group of ubiquitin and the c-terminus of the next member of the 

polyubiquitin chain.
12-13

 In HeLa cells, USP30 has been shown to target the lysine-6 linked 

ubiquitin chains on specific outer membrane proteins while leaving others intact.
12

   

Previously reported inhibitors of USP30 include dodecapeptides and aptamers
14-15

 and the 

triterpene 15-oxaspiramilactone (Figure 1).
9
 Recently some N-cyano pyrrolidines (Figure 1) and 

other heterocycles as USP30 inhibitors have been reported in the patent literature.
16

 Some of the 

N-cyano pyrrolidines in the earlier patent applications were reported to be dual inhibitors of 

USP30 and UCLH1 (ubiquitin C-terminal hydrolases 1) but selectivity data on the other 

compounds have not been reported. These structures bear some resemblance to the known 



  

Cathepsin C inhibitors and are likely covalent inhibitors with cysteine forming an adduct with 

the N-cyano group.
17

  

High-throughput screen led to the identification of racemic phenylalanine derivative 1 as a 

USP30 inhibitor. Compound 1 has an IC50 <1 µM and does not inhibit USP’s 1, 8 and 9 at 10 M 

concentration (Figure 1).
18-20

 We report herein the results of a structure-activity relationship 

(SAR) study of the family of analogs derived from 1 leading to identification of several potent 

and highly selective inhibitors of USP30. These inhibitors are expected to be non-covalent 

inhibitors of USP30. 

 

 

Figure 1. Inhibitors of USP30 

 

A rapid SAR exploration of 1 was enabled by the modular synthetic approach shown in Figure 

2 and Tables 1 - 4.  Analogs of 1 were prepared using a general synthetic route (or with minor 

modifications for compounds 2 - 4) shown in Scheme 1. The compounds were tested for USP30 

inhibition using a biochemical assay that measures the effect of an inhibitor on USP30 cleavage 

of the substrate ubiquitin-rhodamine-110-glycine to give a fluorescent product: rhodamine-110.
21

 

Compounds with IC50< 1 µM were screened for inhibition of USP’s 1, 8 and 9 at 10 M. The 

data on selected compounds is summarized in Table 1. 

 

 

Scheme 1. General Method for Synthesis of Analogs of 1 

A series of positional modifications of 1 established several key structural requirements for 

USP30 inhibitory activity. The racemate and the enantiomers of 1 have similar IC50s suggesting 

that the chirality of the phenylalanine moiety does not contribute significantly to the binding 

affinity to the protein. The three exchangeable hydrogens (two amides and one sulfonamide) are 

essential, since replacement of any one by a methyl group (compounds 2 - 4) results in drastic 

drop in USP30 inhibition. The SAR in the sulfonamide region seemed to be fairly restrictive in 

terms tolerated substitutions. Compound 5 with an additional methylene group between the 



  

sulfonamide and the phenyl ring results in complete loss of USP30 inhibition. The 

ethylsulfonamide analog 6 does not inhibit USP30, whereas compounds containing t-

butylsulfonamide (1) and isopropylsulfonamide (7) inhibit USP30 with IC50s around 0.5 M. 

When the sulfonamide group is replaced with an amide group, the resulting compound ((S)-8 

does not inhibit USP30. The complete loss of inhibition seen with amide (S)-8 indicates a critical 

role the SO2 moiety through either direct binding to USP30 or through its tetrahedral geometry at 

the binding site. Based on these results, the two primary amides and the t-BuNHSO2 group were 

kept constant during exploration of SAR in the other regions. 

The structural correlation between potency with the size of the substituent at the -chiral center 

is shown in Table 1. Benzyl (1) as well as its 4-hydroxy (9) and 4-methoxy (10) analogs, and 

cyclohexylmethyl (17) all show good inhibition; however, the 4-methyl substitution (11) is not 

tolerated. Analogs in which the L-phenylalanine moiety is replaced with glycine, alanine, valine 

and phenylglycine (R
1
 = H, Me, i-Pr and Ph respectively) (12 - 15 in Table 1) moieties do not 

inhibit USP30 up to 10M concentration. Compound 16, where R1 = phenethyl, weakly inhibits 

USP30 (2.2 M). Further SAR was then explored by keeping the (S)-phenylalanine and the 

naphthyl- t-butylsulfonamide moieties unchanged. 

 

Table 1. SAR 

 

Cmpd. R
2
 X R

6
 USP30 IC50 

(M)* 

(R,S)-1 Bn SO2 t-Bu 0.37 

(S)-1 Bn SO2 t-Bu 0.27±0.028 

(R)-1 Bn SO2 t-Bu 0.25 

(R,S)-2 Bn SO2 t-Bu >10 

(R,S)-3 Bn SO2 t-Bu >10 

(R,S)-4 Bn SO2 t-Bu >10 

(R,S)-5 Bn CH2SO2 t-Bu >10 

(R,S)-6 Bn SO2 Et >10 

(R,S)-7 Bn SO2 i-Pr 0.51 

(S)-8 Bn CO t-Bu >10 

(S)-9 4-hydroxybenzyl SO2 t-Bu 0.47±0.21  
(S)-10 4-methoxybenzyl SO2 t-Bu 0.09 

(S)-11 4-methylbenzyl SO2 t-Bu >10 

(S)-12 H SO2 t-Bu >10 

(S)-13 Me SO2 t-Bu >10 

(S)-14 
i
Pr SO2 t-Bu >10 

(S)-15 Ph SO2 t-Bu >10 

(S)-16 Phenethyl SO2 t-Bu 2.27 

(S)-17 cyclohexylmethyl SO2 t-Bu 0.67 



  

*The assay was performed in duplicates and the values were typically within 10% of each other. For select 

compounds, two or more experiments were performed independently. In those instances, the data is reported as 

Mean ± SD 

Table 2. SAR for N-acyl substituent 

 

Cmpd. R
1
 USP30 IC50 

(M) 

Cmpd. R
1
 USP30 

IC50 (M)* 

1 phenyl 0.27±0.028 26 benzyl >10 

18 4-chlorophenyl 0.83 27 2-phenylethyl >10 

19 4-fluorophenyl 0.049 28 benzyloxy >10 

20 4-methylphenyl 2.5 29 cyclopropyl >10 

21 4-methoxyphenyl 9.0 30 cyclopentyl 0.37 

22 4-cyanophenyl 0.27 31 cyclohexyl 0.12±0.0.026 

23 4-hydroxyphenyl >10 32 4,4-difluorocyclohexyl 0.10 

24 2-pyridyl 0.16 33 cycloheptyl 4.3 

25 2-thiazolyl 0.18 34 adamantyl >10 

*The assay was performed in duplicates and the values were typically within 10% of each other. For select 

compounds, two or more experiments were performed independently. In those instances, the data is reported as 

Mean ± SD 

The data summarized in Table 2 demonstrate a significant dependence of inhibition on the 

structure of R1.  Substitutions at the 4-position of the phenyl ring affect USP30 inhibition, e.g. 

the 4-fluorophenyl analog (19) has an IC50 = 0.05 M and compound 23 (R
1
 = 4-hydroxyphenyl) 

showed no inhibition (at 10 µM). Other compounds such as 18, 20 and 22 with R1 = 4-

chlorophenyl, 4-methylphenyl and 4-cyanophenyl, respectively, inhibit USP30 with IC50s 

between 2.5 M and 0.27 M. Electron withdrawing substituents (e.g. F, CN) on the phenyl ring 

are preferred over the electron donating groups (e.g., OMe, OH). Electron deficient 

heteroaromatic rings are preferred in this region as shown by 2-pyridyl (24) and 2-thiazolyl (25) 

with IC50s of 0.16 M and 0.18 M, respectively. For further exploration of the lipophilic 

pocket, the phenyl group was replaced with benzyl (26), phenylethyl (27) and benzyloxy groups 

(28). None of these compounds inhibit USP30 (at 10 µM). Non-aromatic cycloalkyl groups were 

tolerated in this region as evidenced by the USP30 inhibition observed with cyclopentyl (30), 

cyclohexyl (31) and 4,4-difluorocyclohexyl (32) groups. Smaller rings such as cyclopropyl (29) 

or larger rings such as adamantyl (34) resulted in complete loss of USP30 inhibition while the 

cycloheptyl analog (33) showed an order of magnitude decrease in USP30 inhibition.  

As a strategy to reduce the molecular weight and the number of aromatic rings in the 

compounds, 5-amino-naphthalene sulfonamide at the C-terminus of the amino acid core was 

replaced with 4-aminobenzene sulfonamide moiety (Table 3). The N-acyl group and the L-

phenylanine moiety were simultaneously modified using the insights gained from the SAR in the 

naphthylsulfonamide series. Therefore, optimum substituents from Table 1 and Table 2 (R
1

 = 

phenyl, cyclohexyl and 2-pyridyl) were matched with the optimum R
2
 substituents (benzyl, 4-

fluorobenzyl, and cyclohexylmethyl). As anticipated, several compounds inhibit USP30 with 

IC50s < 100 nM as shown in Table 3. All the compounds with IC50s < 1 M were screened for 



  

USP1, USP8 and USP9 inhibition. None of the compounds inhibit these proteases, which 

demonstrate the selectivity of this series of compounds. 

   

Table 3. SAR of Benzenesulfonamide Series for inhibition of USP30 

 

Compd R
1
 R

2
 

USP30 

IC50 (M)* 

35 phenyl benzyl >10 

36 phenyl cyclohexylmethyl 0.23 

37 cyclohexyl benzyl 0.06 ±0.012 (n=3) 

38 cyclohexyl cyclohexylmethyl 0.08 

39 4-fluorophenyl benzyl 0.02 

40 4-fluorophenyl cyclohexylmethyl 0.02 

41 2-fluorophenyl cyclohexylmethyl 0.46 

42 3-fluorophenyl cyclohexylmethyl 0.06 

43 3,4-difluorophenyl cyclohexylmethyl 0.03 

44 4-fluorophenyl 2-thienylmethyl 0.02 

45 cyclohexyl 2-thienylmethyl 0.03 

46 4-fluorophenyl 4-pyridylmethyl 0.02 

47 2-pyridyl benzyl 0.25 

48 2-pyridyl cyclohexylmethyl 0.12 

*The assay was performed in duplicates and the values were typically within 10% of each other. For select 

compounds, two or more experiments were performed independently. In those instances, the data is reported as 

Mean ± SD 

Scheme 2. Synthesis of compounds 29 and 31 

 

 

 



  

Reagents and conditions: a) Acetic anhydride, aq. NaOH (2N), toluene, 100 
°
C, 2 h; b) Chlorosulfuric 

acid, rt, 2.5 h; c) 2-methylpropan-2-amine, Et3N, dry THF, rt, 16 h; d) aq. NaOH (5N), MeOH, 80 
°
C, 

16 h.  

e) Methyl-L-phenylalaninate hydrochloride, EDC-HCl, HOBT, DIPEA, DMF, rt, 16 h; f) LiOH-2H2O, 

THF, MeOH, H2O, rt, 6 h; g) 5-amino-N-(tert-butyl)naphthalene-1-sulfonamide (E), EDC-HCl, HOBt, 

DMF, rt, 48 h.  

 

Since structurally related analogs 31 (MF-094) and 29 (MF-095) have significantly different 

inhibitory activity for USP30, the compounds were used to probe the biology of USP30. The 

synthesis of 31 and 29 is shown in Scheme 2. Both compounds have < 30% inhibitory activity 

for a panel of 22 ubiquitin specific protease assays up to 10 µM at Ubiquigent Ltd (Dundee, 

UK).
22

 The compounds were used to evaluate binding to the active site on the surface of isolated 

mitochondria.
23

 

Mitochondria were isolated from C2C12 myoblasts, which are of murine origin, and the intact 

organelles were exposed to a DUB specific activity based probe, biotin-UbVME (biotin-

ubiquitinylated methyl vinyl ether).
24

 USP30 enzymatic activity results in covalent modification 

of the active site cysteine with biotinylated ubiquitin, which was detected after SDS-PAGE and 

transfer to a membrane as shown in Figure 2. The upper band in Figure 2 has been assigned 

previously as methylcrotonyl CoA carboxylase and propionyl CoA carboxylase;
25

 these enzymes 

were endogenously biotinylated and so appear irrespective of biotin-UbVME. Compound 31 

protected USP30 from modification at concentrations from 0.2 to 5 µM whereas 29 did not 

protect mitochondrial USP30 from modification.  

 

 

Figure 2. Compound 31 protects the active site of endogenous USP30 from modification by 

biotin-UbVME, an activity-based probe. USP30 is indicated by the arrow.  

 

The effects of 31 and 29 were examined in a recently described mitophagy assay that tracks the 

disappearance of bromodeoxyuridine-labelled mitochondrial DNA in terminally differentiated 

C2C12 cells (Figure 3).
26

 Inhibition of USP30 is expected to increase the net rate of ubiquitin 

accumulation on mitochondria by slowing the de-ubiquitination of outer membrane proteins. In 

turn, faster accumulation of ubiquitin will lead to an increased rate of mitophagy. Compound 31 

accelerated the disappearance of BrdU from the mitochondrial DNA after 6 hours. In contrast, 29 

did not elicit a significant effect.   
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Figure 3. C2C12 myotubes were incubated with compounds for 24 hours and the mitochondrial 

DNA was labeled with BrdU for 2 hours. Six hours after labeling, 31 enhanced mitophagy as 

measured by loss of BrdU from mtDNA (p < 0.05 at all concentrations). Compound 29 did not 

enhance mitophagy under the same conditions (ANOVA with Kruskal Wallis post test).   

 

We have identified a chemical series of highly selective USP30 inhibitors. Two structurally 

similar compounds 31 (MF-094) and 29 (MF-095), which inhibit USP30 with IC50s that are at 

least two orders of magnitude different, were used to demonstrate the role of USP30 inhibition in 

accelerating mitophagy in C2C12 myotubes. We believe that compounds 31 and 29 represent 

unique tools to probe the underlying biology of USP30 and further work will be reported in due 

course. 
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1. Selective USP30 inhibitors  

2. Increase protein ubiquitination  

3. Accelerates mitophagy 
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