Contents lists available at SciVerse ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

Original article

Solvent effects on oxygen atom transfer reaction between manganese(V)-oxo corrole and alkene

Lan Yu^a, Qi Wang^a, Lu Dai^a, Wei-Ying Li^a, Rong Chen^a, Mian HR Mahmood^a, Hai-Yang Liu^{a,*}, Chi-Kwong Chang^{b,*}

^a Department of Chemistry, South China University of Technology, Guangzhou 510640, China ^b Department of Chemistry, Michigan State University, E. Lansing, MI 48824, USA

ARTICLE INFO

Article history: Received 16 January 2013 Received in revised form 28 February 2013 Accepted 3 March 2013 Available online 19 April 2013

Keywords: Corrole Mn(V)-oxo corrole Oxygen atom transfer reaction Solvent effect

ABSTRACT

Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo ($F_{15}CMn(V)$ -oxo), 5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo ($F_{10}CMn(V)$ -oxo), 5,15-bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo ($F_5CMn(V)$ -oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo ($F_6CMn(V)$ -oxo) with a series of alkene substrates in different solvents were determined by UV–vis spectroscopy. The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.

© 2013 Hai-Yang Liu, Chi-Kwong Chang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

1. Introduction

Many biological reactions involve oxygen atom transfer (OAT) from a transition metal active center to the substrates [1]. High-valent metal-oxo complexes are critical to a large class of metalloenzymes involved in OAT reaction [2,3]. Manganese(V)-oxo porphyrins have long been recognized as an active species in OAT reactions [4]. Corrole is an aromatic $18-\pi$ electron macrocycle that bears a close resemblance with porphrin [5]. Compared to the transient Mn(V)-oxo porphyrin [6], Mn(V)-oxo corrole is more stable and thus provides an ideal mechanistic probe for the catalytic oxidation of organic substrates.

The first synthesis of manganese(V)-oxo was achieved by oxidation of manganese 5,10,15-tris(pentafluorophenyl)corrole [(TPFC)Mn(III)] with iodosylbenzene (PhIO) or ozone as an oxidant [7], albeit laser flash photolysis may also be used [8]. Electron-deficient perfluorinated Mn(V)-oxo corrole was found to be more reactive towards a cyclooctene substrate [9], and the presence of an axial ligand also enhanced the reactivity of Mn(V)-oxo corrole [10]. The direct evidence of OAT between Mn(V)-oxo and alkene came from the ¹⁸O-labeling experiments using a highly bulky Mn(V)-oxo corrole complex [11]. DFT calculations indicated that

* Corresponding authors.

the reactivity of β -brominated Mn(V)-oxo corrole is more related to the spin state changes [12]. It is well-known that solvent plays important role in the catalytic oxidation reactions [13] and solvent effects have previously been observed in chromium-oxo corroles [14] and molybdenum-oxo corroles [15] Herein, we wish to report the solvent effects on the OAT reaction between manganese(V)oxo corroles and alkenes. The investigated manganese(V)-oxo corrole species are shown in Scheme 1.

2. Experimental

Mn(III) corroles were prepared according to our previously reported procedure [16]. The corresponding Mn(V)-oxo corroles were also prepared according to reported method [7,9]. Typically, iodosobenzene (PhIO) was added to a solution of Mn(III) corrole ($\sim 3.0 \times 10^{-5}$ mol/L) (Mn(III) corrole/PhIO molar ratio is 1:10), and the solution color turned into red gradually. After reaction, superfluous PhIO was removed by flash chromatography on basic alumina. It is noteworthy that Mn(V)-oxo corroles could not be prepared by the same method in THF or DMSO.

3. Results and discussion

Mn(V)-oxo corroles are unstable and will gradually decompose and finally return to the corresponding Mn(III) corrole in general. However, the more electron-rich $F_5CMn(V)$ -oxo and $F_0CMn(V)$ oxo will gradually change to Mn(IV) corrole in toluene and

1001-8417/\$ – see front matter © 2013 Hai-Yang Liu, Chi-Kwong Chang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. http://dx.doi.org/10.1016/j.cclet.2013.03.029

E-mail addresses: chhyliu@scut.edu.cn (H.-Y. Liu), changc@msu.edu (C.-K. Chang).

Fig. 1. Self-decay and pseudo-first-order reaction rate constants of manganese-oxo corroles with substrates (25.0 °C ± 0.1 °C) in different solvents.

dichloromethane (DCM), as indicated by UV–vis spectra. These two Mn(V)-oxo species could only return to Mn(III) corrole in DMF or DMAc solutions, which may be related to the stability of electron-rich Mn(III) corrole in these solvents. It was also observed that these electron-rich Mn corroles prefer to exhibit Mn(IV) complex in DCM [17]. The self-decay rate constants (*k*) of Mn(IV) corroles were determined by monitoring the absorption maximum of Soret band (left arm) at (25.0 ± 0.1) °C and the data are shown in Fig. 1. It can be seen that in toluene and DCM, the self-decay rate constants follow the order: $F_{15}CMn(V)$ -oxo > $F_{10}CMn(V)$ -oxo > $F_{5}CMn(V)$ -oxo < $F_{0}CMn(V)$ -oxo in DMF, DMAc. This indicates that solvent has a significant effect on the self-decay process of Mn(V)-oxo corroles.

Pseudo-first order reaction rate constants (k_{obs}) between Mn(V)oxo corroles and alkene substrates in different solvents are also shown in Fig. 1. Here, k_{obs} was measured by the reaction of Mn(V)oxo corrole and a large excess of substrates ([substrate]/[Mnoxo] = 1000). In all these cases, the addition of alkene substrate was found to accelerate the decay of Mn(V)-oxo corrole significantly. This is caused by the OAT reaction between Mn-oxo corrole and alkene. The rate constants of limonene, α -pinene and β -pinene are much larger than that of styrene due to the presence of more

Scheme 1. Structures of free base corroles and their Mn complexes.

electron-rich alkene double bond (Fig. 1). The difference in rate constants between limonene, α -pinene and β -pinene are consistent with the enhanced reactivity of Mn(V)-oxo triphenylcorrole towards the less-substituted and electron-rich alkene [11]. In toluene and DCM, *pseudo*-first order rate constants (k_{obs}) follow the order: $F_{15}CMn(V)-oxo > F_{10}CMn(V)-oxo > F_{5}CMn(V)-oxo > F_{0}CMn(V)-oxo > F_{0}CMn$ oxo. This is in accordance with the electronic demand of Mn(V)-oxo corroles. As the OAT reaction between Mn(V)-oxo corrole and alkene is an electrophilic reaction, it is expected that more electrondeficient Mn(V)-oxo corroles would be more reactive. This means a direct OAT reaction between Mn(V)-oxo corrole and alkene substrates could have occurred in this case. Interestingly, in DMF and DMAc, the *pseudo*-first order rate constants (k_{obs}) follow a reversed order: $F_{15}CMn(V)$ -oxo < $F_{10}CMn(V)$ -oxo < $F_5CMn(V)$ $oxo < F_0CMn(V)$ -oxo. This is contradictory to the reactivity of Mn(V)-oxo corroles based on electronic demand. Similar phenomenon was also observed by Mn(V)-oxo corroles generated by laser flash photolysis [8]. It was rationalized by the generation of a higher valent Mn(VI)-oxo species via a disproportionation process of the Mn(V)-oxo corrole. The more electron-rich Mn(V)-oxo corroles undergo the disproportionation reaction more easily. In DMF and DMAc, electron-rich F₀CMn(V)-oxo exhibited the largest reaction rate constants to all examined substrates, and the k_{obs} of alkene with electron-rich double bonds are also much higher. This indicates the formation of new reactive F₀CMn-oxo species in these solvent systems. These observations also suggested that OAT reaction of Mn(V)-oxo corrole and alkene substrates may proceed via different mechanisms in different solvents.

4. Conclusion

In conclusion, we report the first observation of solvent effect on the OAT reaction between Mn(V)-oxo corroles and alkene substrates. The reaction may proceed either through a direct OAT between Mn(V)-oxo and alkene or through a high-valent Mn-oxo species generated *via* a disproportionation process, and is strongly solvent-dependent. Further investigations on how the solvent affects the reactivity of Mn(V)-oxo corroles in OAT reactions are underway.

Acknowledgment

The financial support from the National Natural Science Foundation of China (Nos. 20971046 and 21171057) is gratefully acknowledged.

References

- [1] J. McMaster, C.D. Garner, E.I. Stiefel, Hydrogen, carbon, and sulfur metabolim, in: I. Bertini, H.B. Gary, E.I. Stiefel, et al. (Eds.), Biological Inorganic Chemistry, Structure and Reactivity, University Science Books, Sausalito, California, 2007, pp. 443–555.
- [2] Y. Mishina, C. He, Oxidative dealkylation DNA repair mediated by the monouclear non-heme iron AlkB proteins, J. Inorg. Biochem. 100 (2006) 670–678.
- [3] M. Dekker, Metals ions in biological system, in: A. Sigel, H. Sigel (Eds.), Molybdenum and Tungsten: Their Roles in Biological Processes, vol. 39, CRC Press Inc., New York, 2002.
- [4] K.A. Prokop, H.M. Neu, S.P. de Visser, et al., A manganese(V)-oxo β-cation radical complex: influence of one-electron oxidation on oxygen-atom transfer, J. Am. Chem. Soc. 133 (2011) 15874–15877.
- [5] C. Erben, S. Will, K.M. Kadish, Metallocorroles: molecular structure, spectroscopy and electronic states, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin Handbook, vol. 2, Academic Press Inc., San Diego, CA, 2000, pp. 233–295.
- [6] R. Zhang, M. Newcomb, Laser flash photolysis formation and direct kinetic studies of manganese(V)-oxo porphyrin intermediates, J. Am. Chem. Soc. 125 (2003) 12418–12419.

- [7] Z. Gross, G. Golubkov, L. Simkhovich, Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V) corrole, Angew. Chem. Int. Ed. 39 (2000) 4045–4047.
- [8] R. Zhang, D.N. Harishchandra, N. Newcomb, Laser flash photolysis generation and kinetic studies of corrole-manganese(v)-oxo intermediates, Chem. Eur. J. 11 (2005) 5713–5720.
- [9] H.Y. Liu, T.S. Lai, L.L. Yeung, et al., First synthesis of perfluorinated corrole and its Mn=O complex, Org. Lett. 5 (2003) 617–620.
- [10] H.Y. Liu, H. Zhou, LY. Liu, et al., The effect of axial ligand on the reactivity of oxomanganese(V) corrole, Chem. Lett. 36 (2007) 274–275.
- [11] H.Y. Liu, F. Yam, Y.T. Xie, et al., A bulky bis-pocket manganese(V)-oxo corrole complex: observation of oxygen atom transfer between triply bonded Mn^V≡O and alkene, J. Am. Chem. Soc. 131 (2009) 12890–12891.
- [12] C. Zhu, J. Liang, B. Wang, et al., Significant effect of spin flip on the oxygen atom transfer reaction from (oxo)manganese(v) corroles to thioanisole: insights from density functional calculations, Phys. Chem. Chem. Phys. 14 (2012) 12800–12806.
- [13] T. Michel, D. Betz, M. Cokoja, et al., Epoxidation of alpha-pinene catalyzed by methyltrioxorheniurn(VII): influence of additives, oxidants and solvents, J. Mol. Catal. A: Chem. 340 (2011) 9–14.
- [14] R.S. Czernuszewicz, V. Mody, A. Czader, et al., Why the chromyl bond is stronger than the perchromyl bond in high-valent oxochromium(IV,V) complexes of tris(pentafluorophenyl)corrole, J. Am. Chem. Soc. 131 (2009) 14214–14215.
- [15] V.V. Mody, M.B. Fitzpatrick, S.S. Zabaneh, et al., Solvent effects on the electronic and vibrational properties of high-valent oxomolybdenum(V) 5,10,15-triphenylcorrole probed by UV-visible and resonance Raman spectroscopy, J. Porphyrins Phthalocyanines 13 (2009) 1040–1052.
- [16] P. Lian, H.Y. Liu, L. Chen, et al., Demetalation of manganese corroles, Chin. J. Inorg. Chem. 25 (2009) 1420–1425.
- [17] H.Y. Liu, M.H.R. Mahmood, S.X. Qiu, C.K. Chang, Recent developments in manganese corrole chemistry, Coordin. Chem. Rev. 257 (2013) 1306–1333.