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Domino Ring Expansion: Regioselective Access to 9-Membered Lactones 
with a Fused Indole Unit from 2-Nitrophenyl-1,3-cyclohexanediones  

David Reyes Loya,a Alexandre Jean,a Morgan Cormier,a Catherine Fressigné,a Stefano Nejrotti,a 
Jérôme Blanchet,b Jacques Maddaluno,a and Michaël De Paolis*,a  

In memory of István E. Markó 

Abstract: The domino anionic fragmentation of 2-nitrophenyl-1,3-

cyclohexanediones containing an electrophilic appendage such as 

aldehyde and epoxide is disclosed. This reaction, initiated by a 

series of nucleophiles, involves the generation of an intermediate 

hydroxylate followed by the regioselective formation and 

fragmentation of an intermediate lactolate into enolate. This 

strategy, devoid of any protecting group, enlarges the initial ring 

and provides an original access to decorated 9-membered lactones 

with a fused indole unit.   

 

With the ability to bind to proteins with a large and rigid structure, 

macrocycles offering multisite interactions, such as medium-sized 

lactones, are pertinent in medicinal chemistry.[1] While the usual 

disconnection of lactones involves the intramolecular reaction of 

carboxylic acid with alcohol, this strategy is delicate when directed 

toward medium-sized lactones due to the risk of intermolecular 

reaction. Alternatives, such as the ring closing metathesis of alkenes 

and alkynes or C‒H oxidation of linear alkenoic acids, emerged for 

the elegant synthesis of large-sized lactones.[2] Another way to 

prepare a lactone without a lactonisation step is based on the ring 

expansion of activated ketones by internal hydroxylate triggering a 

fragmentation (Scheme 1A).[3] Still today, the strategy inspires 

creative access to 10-membered (and more) lactones or lactams by 

employing aza-nucleophiles.[4] We noted though that despite an 

early report from Mahajan with dimedone derivatives[5] and the 

contribution of Rodriguez in the field, anionic fragmentations 

producing strained 9-membered lactones remained scarce.[6] 

The indole and indoline cores are found in numerous natural 

products and biomolecules. Owing to the inherent and competitive 

C‒ and N‒nucleophilicity of indole, regio- and chemoselective 

functionalization at C2/C3 can be tedious without resorting to 

protecting groups, as well as their incorporation into lactones.[7,8] If 

natural products combining medium-sized lactone and indole motifs 

are rather uncommon, the combination of two classic 

pharmacophores is expected to afford new platforms of interest in 

molecular biosciences. 

 

Scheme 1. A) Known anionic fragmentation of diketones and B,C) 
applications to the regio- and diastereoselective ring expansion of 2-
nitrophenyl-1,3-diketone scaffold.  

During a program of total synthesis, we observed that 

treatment of aldehyde 1 with lithium trimethylsilylacetylide led 

directly to 9-membered lactone 2a in 46% yield, dr = 2:1 (Scheme 

1B). This result could be explained by an unprecedented domino 

ring expansion fostered by an anionic fragmentation that was 

initiated by internal hydroxylate.[9] So far, aldehyde 1 had been 

brilliantly employed by Bonjoch and Bosch to access highly 

substituted pyrrolidines en route to complex natural products, a 

reductive amination step with chiral amines warranting the 

desymmetrization of 1.[10] Distinct from this strategy, the domino 

fragmentation of 1 opened different routes to be harnessed, as 

illustrated with lactone 2a in which C-C and C-O bonds were 

created. Incorporating the carbon nucleophile that induced the 

fragmentation, lactone 2a also contained a versatile nitroaryl 

substituent which facilitates the whole process and provides an entry 

to elaborated scaffold once converted into indole. Hence, a route 

toward substituted and strained lactones embedding the indole motif 

IV was developed (Scheme 1C) and applied to several derivatives of 

2-nitrophenyl-1,3-cyclohexanedione I demonstrating interesting 

levels of regio- and diastereoselectivity. Proceeding through 

transient lactolate intermediates II, the methodology encompassed 

the grafting of nucleophiles into the resulting 9-membered ring III 

by reaction with the corresponding aldehydes and epoxides.  

Screening of conditions revealed that the preformation of the 

organocerium reagent of lithium trimethylsilylacetylenide enhanced 

the yield of 2a to 55% (dr = 2:1) from 1 while lactone 2b was 

produced in 30% yield (dr = 4:1) with lithium phenylacetylenide as 
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nucleophile (Scheme 2). Explaining the low yield in 2b, 

deprotonation of the hindered aldehyde 1 and side reactions of the 

nucleophile with ketone and nitroaryl moieties are likely to occur. 

For the same reasons, C(sp2) and C(sp3) nucleophiles (vinyl-, 

allylmagnesium bromide or nBuLi) were found poorly compatible 

with 1.[11] This drawback was overcome by resorting to a 

combination of an allyl pronucleophile (nBu3SnAll) and a mild 

Lewis acid (SnCl4) that converted aldehyde 1 into lactone 2c (67% 

yield, dr = 5:1), a scaffold ready for various synthetic manipulations. 

On the other hand, reduction of 1 with NaBH4 furnished directly 

lactone 2d in 70% yield or lactone 2e in 84% yield by reaction with 

aldehyde 3, derived from dimedone. Applied to -substituted 

aldehyde 4, the reduction warranted a stereoselective access to cis-

lactone 5 in 60% yield (2 steps, dr > 20:1) owing to an anti 

stereoselective protonation step of the enolate intermediate. 

 

Scheme 2. Ring expansion of 1, 3 and 4 by reaction with 

nucleophiles (Ar = 2-NO2Ph). Conditions: a) TMSCCLi or PhCCLi, 
CeCl3, THF, ‒78 °C; b) nBu3SnAll, SnCl4, CH2Cl2, ‒78 °C; c) NaBH4, 
iPrOH/CH2Cl2 or MeOH, 0 °C 

To examine the regioselectivity of the fragmentation, non-

symmetrical 1,3-cyclohexanediones were prepared by a known 

sequence of domino double Michael-cyclization that allows the 

installation of various substituents to the scaffold which, once 

assembled, could be arylated and allylated in position 2 (see SI for 

details).[12] As the reaction of the aldehydes with NaBH4 could 

deliver two regioisomers, we were curious to analyse the outcome of 

the fragmentation (Scheme 3). A case in point, the isomerically pure 

trans-6[13] led to lactone 7 (X-ray) in 40% yield (Scheme 3A), as a 

single regio- and diastereoisomer. In this case, the process required a 

basic treatment (K2CO3, THF, 80 °C) to complete the fragmentation 

and convert the various intermediates of the reaction into 7. Whether 

this treatment could also promote the epimerization of dia-7 into 7 

in the event of its formation could not be determined. At any rate, a 

mixture of cis/trans-6 (dr = 1:1) solely led to isomerically pure 7 in 

50% yield (3-step) upon reductive and basic treatment (Eq. 2).[14]  

To investigate the regioselectivity of the process, we looked at 

the electrophilic character of C(2) and C(6) in sodium alcoholate 8, 

the starting point of the process. DFT calculations (M06-2X 

continuum MeOH) and NBO analysis revealed that the most 

hindered carbonyl ‒ flanked by two quaternary carbons ‒ is more 

electropositive (C(2) = +0.703 e) than the less hindered one (C(6) = 

+0.658 e). In an attempt to discern the role of the nitro substituent, 

DFT calculations were also performed on a similar substrate 

deprived of the nitro moiety (Ar = Ph). They still indicate a disparity 

of electropositivity between C(2) (+0.684 e) and C(6) (+0.657 e) but 

the difference was ebbed.[15] These calculations suggest therefore a 

significant electronic effect of NO2-substituent that could emphasise 

the regioselectivity of the attack by increasing the electropositivity 

of C(2). Yet, it is very likely that electronic guise only partially 

explain the observed regioselectivity. Hence steric hindrance of the 

quaternary carbon combined to considerations regarding the Bürgi-

Dunitz angle of the alkoxide trajectory could indeed induce the 

formation of an amount of the isomeric lactol intermediate 8b along 

with 8a, the privileged isomer due to the high electrophilic character 

at C(2). But these two isomers could well be in thermodynamic 

equilibrium, as well as the enolates lactones 8c and 8d resulting 

from their respective fragmentations. And a shift of these equilibria 

leading to the regioselective production of isomer 8c is conceivable 

under the assumption that the steric hindrance of the quaternary 

carbon acts as an impediment to the transannular Dieckmann 

reaction of the enolate with the lactone moiety in 8c. In any case, the 

exquisite selectivity of the whole process is worth underlining: a 

single regio- and diastereoisomer was observed where four were 

expected.  

With a less congested substrate however, such as cis-10, the 

regioselectivity of the intramolecular nucleophilic attack was 

minored (Scheme 3C). Hence, lactones 11/11’ were produced in a 

ratio of 3:1 (50 % yield). Incidentally, the fragmentation of the 

intermediates occurred spontaneously without the need of 

subsequent basic treatment. Respectively functionalized with ester 

and nitrile appendage, the cis/trans aldehydes 12 and 14 were 

converted into the lactones 13 and 15 (Scheme 3D) in 70 % and 

58% yields (2-step including the ozonolysis of the olefin not shown) 

with regioselectivity but modest diastereoselectivity in both 

cases.[16,17]   

 

Scheme 3. Fragmentation of aldehydes 8, 10, 12 and 14 (Ar = 2-
NO2Ph), dr determined by 

1
H NMR spectroscopy (300 MHz). 

Conditions: a) NaBH4, iPrOH/CH2Cl2, 0 °C; b) K2CO3, THF, 80 °C; c) 
O3, CH2Cl2, ‒78 °C. 

Encouraged by the stereoselective formation of 7 by reduction 

of aldehyde 6 (see above), we examined the diastereoselectivity of 

the process with carbon nucleophiles. The domino reaction would 

produce lactones with three stereocenters but we inferred that a level 

of stereocontrol could be observed. Pleasingly, allylation of 

cis/trans-6 (dr = 1:1) afforded after basic treatment, lactones trans-

16 and cis-16 (42% yield, 3 steps from 9), two diastereoisomers out 

of four possible (Scheme 4). Considering the regioselectivity issue, 

the result is even more interesting since only two isomeric lactones 

were formed out of eight possible. It is especially noteworthy the 

secondary hydroxylate still reacted, in spite of its own hindrance, at 

the most hindered ketone. In the next case, straightforward 

hydroalkynylation of aldehyde trans-12 gave lactone 17 in good 
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yield (50% yield, 2-step) with ester and alkyne appendages. A 

complex isomeric mixture was however observed which was not 

surprising given the results obtained with hydride (Scheme 3D). Yet, 

subsequent reduction of the nitro group gave indole 18 in 70% yield 

with modest stereoselectivity (dr = 3:2) but with complete 

regioselectivity.[16]  

 

Scheme 4. Conditions (Ar = 2-NO2Ph): a) nBu3SnAll, SnCl4, CH2Cl2, 

‒78 °C; b) TMSCCLi, CeCl3, THF, ‒78 °C; c) K2CO3, THF, 80 °C; d) 
Zn, AcOH, 40 °C.  

Moreover, we wondered if the epoxide 19a could be included 

in the panoply of electrophiles undergoing the domino process 

(Scheme 5). Gratifyingly, mild nucleophiles such as NaN3 reacted 

efficiently with 19a in the presence of CeCl3 providing azido lactone 

20a in excellent yield (94%, dr = 1:2, cis/trans).[18] Alternatively, 

ring opening of the epoxide 19a was effected with MgBr2●OEt2 

leading to bromo lactone 21 in 77% yield (dr = 2:1).[19] When 

exposed to NaN3/CeCl3, the more sensitive epoxide 19b gave azido 

lactone 20b and hydrogenation in the presence of Boc2O was 

conducted yielding amino indole 22n (47%). Concisely, the route 

leads to a scaffold containing strained and substituted lactone with a 

fused indole and amine appendage.  

Scheme 5. Ring expansion of epoxides 19a,b and 23 (Ar = 2-NO2Ph), 
conditions: a) NaN3, CeCl3.7H2O, CH3CN/H2O, 80 °C; b) MgBr2●OEt2, 
THF, 70 °C; c) H2, Pd/C, Boc2O, MeOH. brsm = based on recovered 
starting material. 

With the hindered epoxide 23 (dr = 10:2), the domino 

sequence produced azido lactone 24 in 61% yield (72% conversion) 

with a level of stereoselectivity (dr = 10:1:2.5:1), the major isomer 

being identified by 2D NMR spectroscopy.   

In addition to the highly substituted lactone 18, various 

lactones 22a-q were generated upon reductive treatment of the 

corresponding nitroaryl lactones with alkyl, alkyne, alkene, ester, 

nitrile and amino appendages that are described in Figure 1. 

Circumventing the need for protecting groups, an access to 

functionalized lactones with a fused indole was thus established. To 

complement the study and illustrate the versatility of the scaffold, 

synthetic manipulations were carried out. To that end, the 

diastereoselective oxidation of indole 22m was achieved with 

mCPBA in THF, this solvent being crucial for the stereoselectivity 

of the transformation (Scheme 6). Embedded into the 9-membered 

lactone, hydroxyindolenine 25 was obtained in 80% yield.[20] 

Furthermore, trans esterification of 25 provided furoindoline 26 

(78% yield) while exposure of 25 to LiHMDS afforded 

pyridoindolinic lactone 27 in excellent yield (90%).[21] 

Scheme 6. Conditions: a) mCPBA, THF, 0 °C; b) MeONa, MeOH, 
80 °C; c) LiHMDS, THF, ‒78 °C. mCPBA = 3-chloroperbenzoic acid, 
LiHMDS = lithium hexamethyldisilazide. 

In summary, an unprecedented domino process in the field of 

anionic fragmentation was illustrated from substituted 2-nitroaryl-

1,3-cyclohexanediones bearing aldehyde and epoxide electrophilic 

appendages. Mild nucleophiles were best suited to initiate the 

fragmentation process, forging various bonds and leading to 9-

membered lactones with the nucleophile incorporated into the 

scaffold. The counter-intuitive regioselectivity of the attack opened 

a route to functionalized lactones. Investigated by DFT calculations, 

the origin of the regioselectivity could initially rely on the higher 

electrophilic character of the most hindered ketone subtlety 

emphasised by the electronic effect of the nitro moiety. The 

stereoselectivity issues were also explored with promising results for 

a future asymmetric access to this class of rigid lactones. Once 

converted into lactones with a fused indole unit, appendages are 

available for functionalization or interactions with biological hosts. 

Alternatively, they were easily converted into elaborated 

hydroxyindolenine, furoindoline and pyridoindoline.  
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Figure 1. Preparation of lactones 22a-q from the corresponding nitroaryl precursors, conditions: a) Zn, AcOH, 40 °C; b) H2, Pd/C, MeOH, rt; c) 
H2, Pd/C, Ac2O, THF/tBuOH, rt; d) H2, Pd/C, Boc2O, MeOH, rt. 
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