

0040-4039(95)01433-0

Synthesis of an Analog of Biosynthetic Precursor Ia of Lipid A by an Improved Method: A Novel Antagonist Containing Four (S)-3-Hydroxy Fatty Acids

Koichi Fukase^a, Wen-Chi Liu^a, Yasuo Suda^a, Masato Oikawa^a, Akira Wada^a, Saeko Mori^a, Arthur J. Ulmer^b, Ernst Th. Rietschel^b, and Shoichi Kusumoto^a

*Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

^bForschungsinstitut Borstel, Parkallee 22, 23845, Borstel, Germany

Abstract: Synthesis of an analog of a biosynthetic precursor of lipid A containing four (S)-3hydroxytetradecanoic acids was effected via an improved synthetic route to investigate the relationship between the bioactivity and the chirality of the 3-bydroxy fatty acid residues in lipid A. The S-analog inhibited endotoxin-induced interleukin-6 (IL-6) production from human peripheral whole blood cells more strongly than the natural-type biosynthetic precursor with (R)-bydroxy acids, a known antagonist of LPS-induced cytokine release in human peripheral blood mononuclear cells.

Lipopolysaccharide (LPS), also termed endotoxin, is a cell surface amphiphile characteristic of Gramnegative bacteria. LPS induces various cytokines to exhibit potent toxic activity such as pyrogenicity or lethality as well as beneficial activities such as antitumor activity.¹ LPS consists of a glycolipid component called lipid A covalently bound to a polysaccharide portion. Our previous total synthesis of *Escherichia coli* lipid A 1 unequivocally demonstrated that lipid A is the chemical entity responsible for the typical biological activities of LPS.^{2,3} Although the number and the structure of fatty acids in lipid A strongly influence its biological activities, ^{1,4,5} the relationship between the bioactivity and the chirality of 3-hydroxy fatty acids has not been studied yet. We, therefore, initiated the synthesis of unnatural-type lipid A analogs containing (S)-3-hydroxy fatty acids.

We have previously found that a biological precursor ("precursor Ia") (2) of lipid A inhibited the LPSinduced production of various cytokines from human peripheral blood mononuclear cells.⁴ This compound contains four moles of (R)-3-hydroxytetradecanoic acid but lacks non-hydroxylated acids present in 1. Endotoxin antagonists are important as a tool to investigate the mechanism of LPS action and as pharmaceutical agents for treatment of endotoxin-related diseases such as endotoxin-shock.^{1,5,6} We synthesized in the present study a new analog 3 of precursor Ia containing four (S)-3-hydroxytetradecanoic acids.

(S)-3-Hydroxytetradecanoic acid (5) was prepared through Lipase-catalyzed transesterification⁷ of racemic methyl 3-hydroxytetradecanoate (4).⁸ The enzyme reaction was stopped when the 50% of the starting racemic 4 was transformed, and then the S-rich acetylated product was separated by silica-gel column chromatography. The O-acetyl group and methyl ester were then removed by acidic and alkaline hydrolysis, respectively. Fractional crystallization of the resulting S-rich hydroxy fatty acid as (S)-(-)- α -methylbenzyl amine (MBA) salt for two times gave the optically pure (S)-3-hydroxytetradecanoic acid (5) [[α]_D²⁴ = +15.4 (c 1.00, CHCl₃)] in 25% yield from racemic 4.

The synthesis of S-analog 3 was carried out via an improved synthetic route as follows. The coupling of the two monosaccharides was accomplished by use of a glycosyl trichloroacetimidate as a donor to give the desired $\beta(1\rightarrow 6)$ disaccharide in a higher yield than the Königs-Knorr and oxazoline methods in our previous works.^{2,3,9} The *o*-xylidene group was employed in place of the phenyl group in the previous work for protection of the 4'-phosphate.¹⁰ The *o*-xylidene group is stable enough through the sequence of transformation and can be readily removed by catalytic hydrogenolysis simultaneously with the benzyl groups. The removal of all the protecting groups at the final step was thus effected in one single step of hydrogenolysis.

The glycosyl donor 12 was prepared from N-(2,2,2-trichloroethoxycarbonyl)-D-glucosamine (N-Troc-Dglucosamine, 6). Ally glycosidation and subsequent benzylidenation gave a 4,6-O-protected α -ally glycoside 7. After 3-O-acylation of 7 with (S)-3-benzyloxytetradecanoic acid prepared from 5 in a manner similar to the preparation of the corresponding (R)-isomer,^{2,3} regioselective reductive cleavage of the benzylidene group in 8 gave 6-O-protected 9. Phosphitylation of the 4'-hydroxyl group in 9 with 2-diethylamino-1,3,2benzodioxaphosphepane proceeded smoothly in the presence of tetrazole.¹⁰ The resulting phosphite was oxidized with mCPBA to give the phosphate 10 in good yield. The allyl group in 10 was cleaved to give 11.^{11,12} Compound 11 was allowed to react with CCl₃CN in the presence of Cs₂CO₃¹³ as a catalyst to give glycosyl trichloroacetimidate 12 to be used as the donor. The glycosyl acceptor 13 was prepared from 4,6-Oisopropylidenated allyl glycoside of N-Troc-D-glucosamine via 3-O-acylation followed by removal of the isopropylidene group. Coupling of 12 with 13 was effected by use of trimethylsilyl triflate (TMSOTf) in 1,2dichloroethane to give the disaccharide 14 in good yield: the $\beta(1\rightarrow 6)$ structure of 14 was confirmed by ${}^{1}H{}^{-1}H$ COSY and HMBC spectra. After cleavage of the Troc groups of 14, two moles of (S)-benzyloxytetradecanoic acid were introduced to the 2- and 2'-amino groups of the product. The allyl group in fully acylated 15 was then cleaved to give 16 which possesses a free 1-hydroxyl group. 10-O-Phosphorylation of 16 was carried out via 1-O-lithiation with BuLi and subsequent treatment with tetrabenzyl diphosphate as in our previous synthetic study.^{2,3,9,14} The protected 1,4'-bisphosphate 17 was purified by silica-gel chromatography. Finally, one-step hydrogenolytic deprotection (7 kg/cm² of H₂) with Pd-black gave the desired free S-analog 3 in good yield, which was effectively purified by centrifugal partition chromatography (CPC) (butanol-THF- $H_2O = 45:35:100$)

on a Model LLB-M apparatus (Sanki Engineering LTD, Kyoto, Japan).¹⁵ The structure of 3 was confirmed by negative FAB-MS [m/z 1403.9 [(M-H)⁻]].

In preliminary experiments, the activities of S-analog 3 and synthetic precursor Ia 2 to inhibit the induction of interleukin 6 (IL-6) by LPS was determined.¹⁶ A mixture consisting of test sample, LPS (*E. coli* 0111:B4; Sigma Chemicals Co.), and heparinized human peripheral whole-blood collected from an adult volunteer in RPMI 1640 medium (Flow Laboratories, Irvine, Scotland) was incubated at 37°C in 5% CO₂ for 24 h. The levels of induced IL-6 were measured by means of enzyme-linked immunosorbent assay (ELISA). Both 3 and 2 effectively inhibited the IL-6 production induced by LPS as shown in Figure 1. Quite interestingly, the inhibitory activity of S-analog 3 was obviously stronger than that of R-form 2.

S-Analog 3 of precursor la was successfully synthesized as described in 4.5% yield from N-Troc-Dglucosamine (6). Further detailed study on the bioactivity of 3 is currently under progress.

Acknowledgments: The authors are grateful to Mr. Tamio Mase of Amano Pharmaceutical Co., Ltd. (Aichi, Japan) for the generous gift of lipase, Amano PS. The authors would also like to thank to Dr. Jun Hiratake and Prof. Jun'ichi Oda of Kyoto University for their kind advice on acylation by lipase and Dr. Yutaka Watanabe of Ehime University for the invaluable information on phosphorylation with 2-diethylamino-1,3,2-benzodioxa-

phosphepane. This work was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas No. 06240105 from the Ministry of Education, Science and Culture, Japan.

Figure 1. Inhibitory activity of (R)-fatty acid containing lipid A precursor Ia and its S-analog on the induction of interleukin-6 (IL-6) in human peripheral whole blood cells.

References and Notes

- 1. Rietschel, E. Th.; Kirikae, T.; Schade, F. U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A. J.; Zähringer, U.; Seydel, U.; Di Padova, F.; Schreier, M.; Brade, H. FASEB J. 1994, 8, 217-225.
- Imoto, M.; Yoshimura, H.; Yamamoto, M.; Shimamoto, T.; Kusumoto, S.; Shiba, T. Bull. Chem. Soc. Jpn. 1987, 60, 2197-2204.
- 3. Imoto, M.; Yoshimura, H.; Shimamoto, T.; Sakaguchi, N.; Kusumoto, S.; Shiba, T. Bull. Chem. Soc. Jpn. 1987, 60, 2205-2214.
- 4. Feist, W.; Ulmer, A. J.; Wang, M.-H.; Muschold, J.; Schlüter, C.; Gerdes, J.; Herzbeck, H.; Brade, H.; Kusumoto, S.; Diamantstein, T.; Rietschel, E. Th.; Flad, H.-D. FEMS Microbiol. Immunol. 1992, 89, 73-90, and references cited therein.
- Christ, W. J.; Asano, O.; Robidoux, A. L. C.; Perez, M.; Wang, Y.; Dubuc, G. R.; Gavin, W. E.; Hawkins, L. D.; McGuinness, P. D.; Mullarkey M. A.; Lewis, M. D.; Kishi, Y.; Kawata, T.; Bristol, J. R.; Rose, J. R.; Rossignol, D. P.; Kobayashi, S.; Hishinuma, I.; Kimura, A.; Asakawa, N.; Katayama, K.; Yamatsu, I. Science 1995, 268, 80-83.
- 6. Heine, H.; Brade, H.; Kusumoto, S.; Kusama, T.; Rietschel, E. Th.; Flad, H.-D.; Ulmer, A. J. J. Endotoxin Res. 1994, 1, 14-20.
- 7. Nakatani, T.; Hiratake, J.; Yoshikawa, K.; Nishioka, T.; Oda, J. Biosci. Biotech. Biochem. 1992, 56, 1118-1123.
- Optically active (R)- and (S)-3-hydroxytetradecanoic acids were also prepared by lipase catalyzed acylation of racemic 3-hydroxytetradecanoic acid: Sugai, T.; Ritzén, H.; Wong, C.-H. Tetrahedron: Asymmetry 1993, 4, 1051-1058.
- 9. Fukase, K.; Kurosawa, M.; Kusumoto, S. J. Endotoxin Res. 1994, 1, 149-163, and references cited therein.
- 10. Watanabe, Y.; Komada, Y.; Ebisuya, K.; Ozaki, S. Tetrahedron Lett. 1990, 31, 255-256.
- 11. Oltvoort, J. J.; van Boeckel, C. A. A.; de Koning, J. H.; van Boom, J. H. Synthesis, 1981, 305-308.
- 12. Nashed, M. A.; Anderson, L. J. Chem. Soc. Chem. Commun. 1982, 1274-1276.
- 13. Urban, F. J.; Moore, B. S.; Breitenbach, R. Tetrahedron Lett. 1990, 31, 4421-4424.
- 14. Inage, M.; Chaki, H.; Imoto, M.; Shimamoto, T.; Kusumoto, S.; Shiba, T. Tetrahedron Lett., 1983, 24, 2011-2014.
- Suda, Y.; Kirikae, T.; Shiyama, T.; Yasukochi, T.; Kirikae, F.; Nakano, M.; Rietschel, E. Th.; Kusumoto, S. Biochim. Biophys. Res. Commun. 1995, 310, 678-685.
- Suda, Y.; Tochio, H.; Kawano, K.; Takada, H.; Yoshida, H.; Kotani, S.; Kusumoto, S. FEMS Immun. Med. Microbiol. in press.

(Received in Japan 29 June 1995; revised 27 July 1995; accepted 28 July 1995)