May 1987 Communications 493 the deprotonation of the 2-pyrazoline-5-ones. This possibility to react pyrazolones under neutral conditions is also of interest in comparison to the results of Weygand and Steglich et al, who reacted acyclic C-nucleophiles in their activated forms like carbanions¹² or Grignard reagents^{13,14} with *N*-acylaldimines. | 1 | R ¹ | \mathbb{R}^2 | | |---|---|--|--| | a | $C_0\Pi_5$ | CH ₃ | | | b | C_6H_5 | $C_2\tilde{H_8}$ | | | c | C_8H_5 | t - $C_A H_9$ | | | d | C_6H_5 | C_6H_5 | | | e | 2,4,6-Cl ₃ C ₆ H ₂ | CH ₃ | | | f | CH ₃ | CH ₃ | | | 2 | R 3 | | | | a | CH ₃ | mana and an angga pampana and an angga pampana an an an angga pampana an an an angga pampana an an an angga pa | | | b | $C_6 \vec{H}_5$ | | | | c | OC_2H_5 | | | ## 3 \mathbb{R}^1 \mathbb{R}^2 R^3 C_6H_5 a CH_3 CH b CH_3 C_6H_5 C_6H_5 CH₃ OC_2H_5 d CH_3 C_6H_5 C_2H_5 CH_3 C_eH_e C.H. CH. C_6H_5 CoH₅ C_6H_8 2,4,6-Cl₃C₆H₃ $\mathrm{CH_3}$ CH_3 CH_3 CH, CH_3 ## A Convenient Synthesis of Novel 1,3,4-Substituted 2-Pyrazol-ine-5-ones Dieter Sicker, Winfried Böhlmann, Detlef Bendler, Gerhard Mann* Sektion Chemie der Karl-Marx-Universität Leipzig, Talstraße 35, DDR-7010 Leipzig, German Democratic Republic A number of new 1,3,4-substituted 2-pyrazoline-5-ones 3a-i have been prepared by addition of 1,3-substituted 2-pyrazoline-5-ones 1a-f to trichloroacetaldimine derivatives 2a-c. The 2-pyrazoline-5-one ring system has been extensively studied. However, investigations on 2-pyrazoline-5-ones possessing a substituent, which is attached to the 4-position by a C—C single bond are only a few. Thus, 4-benzyl derivatives were synthesized by reduction of the corresponding 4-arylidene compounds. 4-Benzoyl derivatives, useful for heavy metal extraction and as herbicides arise from acylation with benzoyl chloride. 4-The 4-bromo compound was shown to undergo nucleophilic substitution by carbanions. Furthermore, 4-C-substituted 2-pyrazoline-5-ones were obtained by condensation with hydroxy compounds, by Mannich reaction. Vilsmeier synthesis and Michael additions to vinylogous carbonyl compounds and to 4-(3-methyl-5-oxo-1-phenyl-2-pyrazoline-4-ylidene)-3-methyl-1-phenyl-2-pyrazoline-5-one (pyrazolone blue) forming trimeric 2-pyrazoline-5-ones. We have now found that the reaction of 1,3-substituted 2-pyrazoline-5-ones 1a-f with trichloroacetaldimine derivatives 2a-c gives the 1,3,4-substituted 2-pyrazoline-5-ones 3a-i (Table). The 2-pyrazoline-5-ones add as heterocyclic C-nucleophiles to the heterovinylogous carbonyl compounds 2. The reaction thus proceeds as a Hetero-Michael addition. It is carried out preferably in an absolute apolar aprotic solvent like benzene. It is noteworthy that in contrast to many vinylogous carbonyl compounds the trichloroacetaldimine derivatives 2a-c, due to the trichloromethyl group as a strong acceptor, show such a tendency for addition to a CH-acidic compound that all reactions could be realized without addition of base for It was ruled out on the basis of spectroscopic data that the compounds 1a-f reacted in their NH- or OH-tautomeric forms¹⁵ with the imines 2, which would have resulted in the formation of constitutional isomeric adducts of 3. In summary, the procedure described here ¹⁶ gives rise to a new class of 4-substituted 2-pyrazoline-5-ones by means of a simple addition reaction of 2-pyrazoline-5-ones to highly reactive trichloroacetaldimine derivatives as azavinylogous carbonyl compounds. Melting points were determined on a Boetius micro hotstage and are uncorrected. The ¹H-NMR spectra were recorded on a TESLA BS 487C spectrometer (80 MHz). The IR spectra were measured on a VEB Carl Zeiss Jena spectrometer UR 20. The mass spectra were recorded on a Varian MAT CH6 spectrometer at an ion source temperature of 200°C. The starting 2-pyrazoline-5-ones $1\mathbf{a}$, $^{17}1\mathbf{b}$, $^{18}1\mathbf{c}$, $^{19}1\mathbf{d}$, $^{20}1\mathbf{e}^{21}$ and $1\mathbf{f}^{21}$ as well as the starting imines N-(2,2,2-trichloroethylidene)acetamide ($2\mathbf{a}$), ^{22}N -(2,2,2-trichloroethylidene)benzamide ($2\mathbf{b}$) and N-(2,2,2-trichloroethylidene)carbamic acid ethyl ester ($2\mathbf{c}$), were prepared according to the literature procedures. Compound $2\mathbf{b}$ after distillation (b.p. 105-107 °C/0.7 mbar) solidified to yellow crystals (m.p. 46-47.5 °C, 55 %). ## 2-Acylamino-1,1,1-trichloro-2-(1,3-substituted-2-pyrazoline-5-on-4-yl)-ethanes 3a-i; General Procedure: The starting substituted 2-pyrazoline-5-one 1 (Table) (0.01 mol) is dissolved in absolute benzene (50 ml). A solution of the corresponding Table. Compounds 3 Prepared | Reactants | Product | Yield
(%) | m.p. (°C)
(solvent) | Molecular
Formula ^a | IR (KBr)
v _{C=0} (cm ⁻¹) | 1 H-NMR
(solvent/HMDS _{int})
δ (ppm) | MS <i>m/e</i> (rel.inten., %) | |-----------|-----------------|--------------|---------------------------------|--|--|---|--| | 1a + 2a | 3a | 66 | 179–180
(acetone) | C ₁₄ H ₁₄ Cl ₃ N ₃ O ₂
(362.6) | 1705 | (CDCl ₃): 1.97 (s, 3H);
2.19 (s, 3H); 5.71 (s, 1H);
6.32 (d, 1H, $J = 11 \text{ Hz}$);
6.72 (d, 1H, $J = 11 \text{ Hz}$);
7.1–7.8 (m, 5H) | 361 (M°, 0.3); 284 (0.1); 188 (1); 174 (71); 146 (10); 91 (25); 77 (62); 43 (100) | | 1a + 2b | 3b* | 50 | 139–140
(hexanc/
acetone) | C ₁₉ H ₁₆ Cl ₃ N ₃ O ₂
(424.6) | 1675 | (Acetone-d ₆): 2.11 (s, 3H); 5.81 (s, 1H); 6.66 (d, 1H, $J = 10 \text{ Hz}$); 7.0-8.0 (m, 10H); 9.02 (d, 1H, $J = 10 \text{ Hz}$) | 423 (M*, 0.1); 388
(0.1); 250 (1); 215
(0.2); 174 (19); 105
(100) | | 1a + 2c | Зс | 53 | 123-124
(hexane) | C ₁₅ H ₁₆ Cl ₂ N ₃ O ₃
(392.6) | 1720 | (CCl ₄): 1.13 (t, 3H, J
= 7 Hz); 2.15 (s, 3H);
4.12 (q, 2H, J = 7 Hz);
5.62 (s, 1H); 5.92 (d, 1H,
J = 3 Hz); 7.0-7.8 (m,
5H) | 391 (M ⁺ , 0.2); 346 (0.1); 218 (3); 174 (97); 146 (12); 91 (30); 77 (100) | | 1b + 2a | 3d | 90 | 144-145
(hexane/
acetone) | C ₁₅ H ₁₆ Cl ₃ N ₃ O ₂ (376.6) | 1690 | (CDCl ₃): 1.12 (t, 3H, J
= 8 Hz); 1.95 (s, 3H);
2.51 (q, 2H, J = 8 Hz);
5.68 (s, 1H); 6.31 (d, 1H,
J = 10 Hz); 7.0-7.8 (m,
5H) | 375 (M ⁺ , 0.1); 316 (0.1); 298 (0.5); 188 (39); 146 (7); 91 (7); 77 (54); 43 (100) | | 1c + 2a | 3e | 87 | 142-143
(hexane/
acetone) | C ₁₇ H ₂₀ Cl ₃ N ₃ O ₂ (404.7) | 1670 | (CCl ₄): 1.24 (s, 9H); 1.88 (s, 3H); 4.38 (s, 1H); 6.20 (d, 1H, <i>J</i> = 10 Hz); 6.59 (d, 1H, <i>J</i> = 10 Hz); 6.9-7.8 (m, 5H) | 403 (M*, 0.5); 368
(0.1); 326 (0.1); 216
(45); 174 (16); 146
(11); 91 (5); 77 (23); 43
(100) | | 1d + 2a | 3f | 61 | 143-145
(hexane/
acetone) | C ₁₉ H ₁₆ Cl ₃ N ₃ O ₂ (424.6) | 1695 | (CDCl ₃): 1.99 (s, 3H);
6.20 (s, 1H); 6.40 (d, 1H,
J = 10 Hz); 6.63 (d, 1H, $J = 10 Hz$); 7.0–7.9 (m,
10H) | 423 (M ⁺ , 0.2); 306 (0.1); 236 (20); 146 (28); 91 (13); 77 (36); 43 (100) | | 1d + 2b | 3g ^b | 54 | 137–138
(hexane) | C ₂₄ H ₁₈ Cl ₃ N ₃ O ₂
(486.7) | 1680 | (CDCl ₃): 6.35 (s, 1H);
6.64 (d, 1H); $J = 10 \text{ Hz}$);
6.95 (d, 1H, $J = 10 \text{ Hz}$);
7.1–7.8 (m, 15H) | 236 (17); 194 (2); 105 (100) 91 (18); 77 (94) | | 1e + 2a | 3h ^b | 50 | 146-147
(hexane/
acetone) | C ₁₄ H ₁₁ Cl ₆ N ₃ O ₂ (465.9) | 1700 | (CDCl ₃): 2.05 (s, 3H);
2.20 (s, 3H); 5.65 (s, 1H);
6.24 (d, 1H, $J = 10$ Hz);
6.56 (d, 1H, $J = 10$ Hz);
7.37 (s, 2H) | 463 (M ⁺ , 0.1); 384 (0.1); 276 (9); 241 (3) 179 (6); 146 (10); 42 (100) | | 1f + 2a | 3i | 64 | 144-145
(hexane/
acetone) | C ₉ H ₁₂ Cl ₃ N ₃ O ₂
(300.5) | 1690 | (CDCl ₃): 2.06 (s, 3H);
2.09 (s, 3H); 3.54 (s, 3H);
5.50 (s, 1H); 6.25 (d, 1H,
J = 10 Hz); 7.04 (d, 1H, $J = 10$ Hz) | 299 (M +, 0.7); 188 (4)
146 (17); 112 (100); 9'
(5) | Satisfactory microanalyses obtained: C $\pm 0.35,$ H $\pm 0.25,$ N $\pm 0.31,$ Cl $\pm 0.37.$ imine 2 (see table) (0.01 mol) in absolute benzene (20 ml) is added and the mixture refluxed for 2 h. The solvent is then removed in vacuo and the residue recrystallized or purified by column chromatography. > Received: 8 September 1986 (Revised form: 13 November 1986) b Purified by chromatography over silica gel (0.063-0.200) with tolucne/ethyl acetate (1:1) as eluent. ⁽¹⁾ Elguero, J., in: Comprehensive Heterocyclic Chemistry, Katritzky, A.R., Rees, C.W. (eds.), Vol. 5, Pergamon Press, Oxford, 1984. p. 167. ⁽²⁾ Wreciono, U. Liebigs Ann. Chem. 1975, 2293. ⁽³⁾ Jensen, S. Acta Chem. Scand. 1959, 13, 1668. ⁽⁴⁾ Soni, H.K., Shah, J.R. Bull. Soc. Chim. Fr. 1985, 147. ⁽⁵⁾ Youssef, M.S.K. Z. Naturforsch. Teil B 1984, 39, 86. ⁽⁶⁾ Aziz, S.I., Abd-Allah, S.D., Ibrahim, N.S. Heterocycles 1984, 22, 2523. ⁽⁷⁾ Einhorn, A. Liebigs Ann. Chem. 1905, 343, 304. ⁽⁸⁾ Pathak, I.B., Ghosh, T.N. J. Indian Chem. Soc. 1949, 26, 371. ⁽⁹⁾ Wallace, D.J., Straley, J.H. J. Org. Chem. 1961, 26, 3825. ⁽¹⁰⁾ Elnagdi, M.H., Nawar, G.A.M., Girgis, N.S., Elgemeie, G.E. Liebigs Ann. Chem. 1983, 1468. Mann, G., Hauptmann, S., Wilde, H., Hennig, L., Schindler, W. DDR-Patent 212737 (1984); C. A. 1985, 102, 115 146. ⁽¹²⁾ Weygand, F., Steglich, W. Chem. Ber. 1965, 98, 487. ⁽¹³⁾ Weygand, F., Steglich, W., Oettmeier, W. Chem. Ber. 1970, 103 ⁽¹⁴⁾ Kober, R., Hammes, W., Steglich, W. Angew. Chem. 1982, 94, 213 Angew. Chem. Int. Ed. Engl. 1982, 21, 203. ⁽¹⁵⁾ Freyer, W., Köppel, H., Radeglia, R., Malewski, G. J. Prakt Chem. 1983, 325, 238. Downloaded by: East Carolina University. Copyrighted material. - (16) Sicker, D., Böhlmann, W., Bendler, D., Mann, G. DDR-Patent 285878 (1986). - (17) Knorr, L. Ber. Dtsch. Chem. Ges. 1883, 16, 2597. - (18) Zoss, A.O., Hennion, G.F. J. Am. Chem. Soc. 1941, 63, 1151. - (19) Friedmann, H., Hänsel, W. Arch. Pharm. 1983, 316, 726. (20) Knorr, L., Klotz, C. Ber. Disch. Chem. Ges. 1887, 20, 2545. - (21) Hänsel, W. Liebigs Ann. Chem. 1976, 1380. - (22) Drach, B.S., Sinitsa, A.D., Kirsanov, A.W. Zh. Obsheh. Khim. 1969, 39, 2193; C. A. 1970, 72, 42706. (23) Weygand, F., Steglich, W., Lengyel, I., Fraunberger, F., Maierhofer, A., Oettmeier, W. Chem. Ber. 1966, 99, 1944. - (24) Ulrich, H., Tucker, B., Sayigh, A.A.R. J. Org. Chem. 1968, 33, 2887.