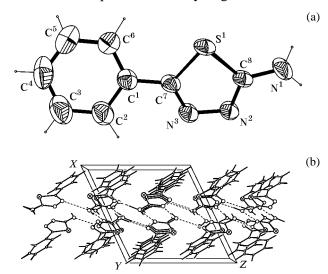

Crystalline and Molecular Structure of 2-Amino-5-phenyl-1,3,4-thiadiazole

M. M. Ishankhodzhaeva¹, Sh. A. Kadyrova¹, M. D. Surazhskaya², N. A. Parpiev¹, and P. A. Koz'min²

¹ Ulugbek Tashkent State University, Vuzgorodok, Tashkent, 700174 Uzbekistan

Received February 28, 2000


Abstract—The crystalline and molecular structure of 2-amino-5-phenyl-1,3,4-thiadiazole was studied by the X-ray diffraction method. $C_8H_7N_3S$. Monoclinic crystals: a=11.085(3), b=7.544(3), c=11.180(3) Å; $\beta=115.22(2)^\circ$; V=845.8(5) Å³; $d_{\text{calc}}=1.404$ g/cm³; $\mu(\text{Mo}K_\alpha)=0.325$ mm⁻¹; Z=4; space group $P2_1/c$. Molecules of 2-amino-5-phenyl-1,3,4-thiadiazole in crystal form dimers through intermolecular hydrogen bonds, which are arranged in infinite layers parallel to the xy plane.

Interest in 1,3,4-thiadiazole derivatives is explained by wide spectrum of their biological, pharmacological, and antileukemic activity [1–3]. Some compounds of this series were synthesized and were examined mainly by ¹H NMR and IR spectroscopy [4]. The present communication reports on the results of X-ray analysis of a single crystal of 2-amino-5-phenyl-1,3,4-thiadiazole (II), which was synthesized by reaction of thiosemicarbazide with benzonitrile [5]. Initially, hydrolysis of benzonitrile in trifluoroactic acid occurs, and the hydrolysis product reacts with thiosemicarbazide to give intermediate I which undergoes intramolecular cyclization to 2-amino-5-phenyl-1,3,4-thiadiazole (II).

$$\begin{array}{c|c} S & & PhCN, H_2O \\ \hline -NH_2 & & -NH_3 & & \\ \hline & & \\ \hline & & & \\ \hline & & \\$$

The IR spectrum of compound II contains bands typical of C=N bond vibrations at 1630 (v_s) and 1508 cm⁻¹ (v_{as}); stretching vibrations of the =N-N=, N=C-N, and C-S fragments give rise to absorption at 1060, 1556, and 912 cm⁻¹, respectively [6]. In the

 1 H NMR spectrum of **II** a triplet and two doublet signals from protons of the phenyl ring were present at δ δ 7.38, 7.66, and 7.73 ppm. The NH₂ signal was partially overlapped by the aromatic triplet. Figure shows the structure of molecule **II** and projection of the crystal lattice on the xz plane. Table 1 contains coordinates of non-hydrogen atoms and their equivalent isotropic temperature factors; the bond lengths and angles are collected in Table 2; Table 3 gives deviations of atoms from the mean-square planes, and Table 4 contains parameters of hydrogen bonds.

(a) Molecular and (b) crystalline structure of 2-amino-5-phenyl-1,3,4-thiadiazole (II).

² Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia

Table 1. Coordinates of non-hydrogen atoms ($\times 10^4$) and their equivalent isotropic temperature factors ($\times 10^3$, Å²) in the molecule of 2-amino-5-phenyl-1,3,4-thiadiazole (**II**)

Atom	x	у	z	U^{a}
S ¹ C ² C ³ C ⁴ C ⁵ C ⁶ C ⁷ C ⁸ N ¹ N ² N ³	6819 (1) 7709 (3) 8424 (4) 9164 (5) 9202 (4) 8495 (5) 7742 (4) 6963 (3) 5919 (3) 5409 (4) 5762 (3) 6381 (3)	-978 (1) 1182 (4) 1130 (5) 2568 (7) 4067 (6) 4161 (5) 2714 (5) -386 (4) -2802 (4) -3989 (4) -2886 (3) -1488 (3)	-532 (1) 1739 (3) 3102 (4) 3768 (5) 3093 (5) 1757 (5) 1068 (4) 1028 (3) -427 (3) -1405 (3) 664 (2) 1502 (2)	49(1) 46(1) 64(1) 82(1) 82(1) 81(1) 64(1) 42(1) 44(1) 70(1) 51(1) 49(1)

^a $U = (\sum \sum U_{ij} a_i^* a_j^* a_i a_j)/3.$

Table 2. Bond lengths and bond angles in the molecule of 2-amino-5-phenyl-1,3,4-thiadiazole (II)

Bond	d, Å	Bond	d, Å
$\begin{array}{c} S^{1}-C^{8} \\ S^{1}-C^{7} \\ C^{1}-C^{6} \\ C^{1}-C^{2} \\ C^{1}-C^{7} \\ C^{2}-C^{3} \\ C^{2}-H^{2} \\ C^{3}-C^{4} \\ C^{3}-H^{3} \\ C^{4}-C^{5} \end{array}$	1.732 (3) 1.741 (3) 1.386 (4) 1.389 (5) 1.467 (4) 1.373 (5) 0.94 (4) 1.369 (6) 0.89 (5) 1.363 (6)	$C^{4}-H^{4}$ $C^{5}-C^{6}$ $C^{5}-H^{5}$ $C^{6}-H^{6}$ $C^{7}-N^{3}$ $N^{3}-N^{2}$ $N^{2}-C^{8}$ $C^{8}-N^{1}$ $N^{1}-H^{1}$ $N^{1}-H^{2}$	0.91 (4) 1.391 (5) 0.89 (4) 0.96 (4) 1.296 (3) 1.383 (3) 1.306 (3) 1.338 (4) 0.899 (17) 0.886 (19)
Angle	ω, deg	Angle	ω, deg
C ⁸ S ¹ C ⁷ C ⁶ C ¹ C ² C ⁶ C ¹ C ⁷ C ² C ¹ C ⁷ C ³ C ² C ¹ C ³ C ² H ² C ¹ C ² H ² C ⁴ C ³ C ² C ⁴ C ³ H ³ C ² C ³ H ³ C ⁵ C ⁴ C ³ C ⁵ C ⁴ H ⁴ C ³ C ⁴ H ⁴ C ⁴ C ⁵ C ⁶ C ⁴ C ⁵ H ⁵	86.88 (13) 118.9 (3) 121.0 (3) 120.0 (3) 120.4 (4) 127 (2) 112 (2) 120.2 (4) 122 (3) 118 (3) 120.6 (4) 121 (2) 118 (2) 119.9 (4) 123 (3)	C ⁶ C ⁵ H ⁵ C ¹ C ⁶ C ⁵ C ¹ C ⁶ H ⁶ C ⁵ C ⁶ H ⁶ N ³ C ⁷ C ¹ N ³ C ⁷ S ¹ C ¹ C ⁷ S ¹ C ⁷ N ³ N ² C ⁸ N ² N ³ N ² C ⁸ N ¹ N ² C ⁸ S ¹ N ¹ C ⁸ S ¹ C ⁸ N ¹ H ¹ C ⁸ N ¹ H ² H ¹ N ¹ H ²	117 (3) 120.0 (4) 122 (2) 117 (2) 124.0 (3) 113.3 (2) 122.6 (2) 113.7 (2) 111.8 (2) 123.6 (3) 114.3 (2) 122.1 (2) 119.5 (17) 122 (3) 118 (3)

Unshared electron pairs on the N¹ and S atoms in molecule II are conjugated with the C=N double bonds. This follows from the lengths of the N^2-C^8 , N^3-C^7 , N^2-N^3 bonds: 1.306(3), 1.296(3), and 1.383(3) Å, respectively (Table 2). The endocyclic N=C bond lengths are similar; they occupy an intermediate place between standard values for double and single carbon-nitrogen bonds. The N¹ atom deviates from the mean-square plane of the heteroring by only 0.0024 Å (Table 3), indicating the existence of conjugation between the unshared electron pair on the amino nitrogen atom and the heterocycle; this means that the exocyclic amino group is coplanar to the thiadiazole ring. The dihedral angle between the latter and the benzene ring is 34.6°. The C-C bonds in the benzene ring have approximately equal lengths in the range 1.363-1.391 Å. The C^1-C^7 bond which links the benzene and thiadiazole rings is appreciably extended [to 1.467(4) Å]. This may be due to specific features of the crystal packing where cyclic fragments of molecule II are arranged at a certain angle to each other. As a result, only a weak interaction between their π -electron systems is possible.

The crystalline structure of thiadiazole $\bf II$ is characterized by the presence of two independent molecules $\bf A$ and $\bf B$ in a unit cell; they form a pseudocentrosymmetric dimer through symmetric hydrogen bonds like $N^{1a}-H\cdots N^{2b}$ and $N^{1b}-H\cdots N^{2a}$. The dimers in crystal are linked through intermolecular $N-H\cdots N$ hydrogen bonds involving proton of the amino group and that nitrogen atom of the thiadiazole ring which does not participate in the dimer formation (Table 4). Molecules of type $\bf A$ (or $\bf B$) suffer symmetry transformations with respect to the sliding reflection plane and are linked through intermolecular hydrogen bonds, forming infinite bilayers which are parallel to the xy plane. Each monolayer of a given bilayer consists of molecules of a single type ($\bf A$ or $\bf B$).

EXPERIMENTAL

The IR spectra (400–4000 cm⁻¹) were recorded in KBr on a Specord 75IR spectrometer. The ¹H NMR spectra were obtained on XL-100 and XL-200 instruments using CD₃OD as solvent and HMDS as internal reference.

2-Amino-5-phenyl-1,3,4-thiadiazole (II) [5]. Trifluoroacetic acid, 150 ml, was added to a mixture of 50 g (0.55 mol) of thiosemicarbazide and 51.5 g (0.5 mol) of benzonitrile. The mixture was refluxed for 6 h under stirring and cooled to room temperature, and dilute aqueous amonia was added. A light yellow solid precipitated immediately. The mixture was

Table 3. Deviations of atoms from the mean-square ring planes in the molecule of 2-amino-5-phenyl-1,3,4-thiadiazole (**II**)

Atom	Deviation, Å	Atom	Deviation, Å
S^1 N^2 N^3 C^7 C^8 $C^{1 a}$ $N^{1 a}$ $C^{6 a}$	0.0024 0.0018 0.0036 0.0045 0.0039 0.0311 0.0024 0.7440	C^1 C^2 C^3 C^4 C^5 C^6 $C^{7 a}$ $N^{1 a}$ $S^{1 a}$	-0.0043 -0.0008 0.0060 -0.0060 0.0008 0.0043 -0.0557 -0.7939 -0.9415

These atoms were not included in the calculation of the corresponding plane.

Table 4. Hydrogen bond parameters in the structure of 2-amino-5-phenyl-1,3,4-thiadiazole (II)

Bond D-H···A	Position of atom A	Distance, Å			∠AHD,
		D···A	О⋯Н	H···A	deg
$N^1-H\cdots N^2$		2.974	0.914	2.068	170.7
N^1 -H··· N^3	-z; x; 0.5-y; 0.5+z;	2.983	0.996	1.992	172.6

cooled, and the precipitate was filtered off, washed several times with hot ethanol, and dried in air. Yield 76%, mp 230–232°C. Crystals of **II** suitable for X-ray diffraction study were obtained by recrystallization from hot ethanol. Colorless crystals were thus obtained.

X-Ray analysis of single crystals of thiadiazole II was performed on an Enraf–Nonius CAD-4 automatic diffractometer (λ Mo K_{α} , graphite monochromator, $\Theta/2\Theta$ -scanning to $2\Theta_{\rm max}$ 56°). The structure was solved by the Peterson method and was refined by the least-squares procedure in full-matrix approximation using SHELXL-93 program [7]; the final divergence factor was R 0.031 [from 1536 reflections with $F^2 > 2\sigma(I)$]. $C_8H_7N_3S$. Monoclinic crystals with the following unit cell parameters: a = 11.085 (3), b = 7.544 (3), c = 11.180 (3) Å; $\beta = 115.22$ (2)°; V = 845.8 (5) ų; $d_{\rm calc} = 1.404$ g/cm³; μ (Mo K_{α}) = 0.325 mm⁻¹; Z = 4; space group $P2_1/c$.

REFERENCES

- 1. Sandstrom, J., *Adv. Heterocycl. Chem.*, 1969, vol. 9, pp. 165–177, 199–209.
- 2. Ovsesyan, T.R., Gushoglyan, L.A., and Mirzoyan, V.S., *Arm. Khim. Zh.*, 1988, vol. 41, no. 3, pp. 136–142.
- 3. Adam, F.A., *J. Chin. Chem. Soc.*, 1987, vol. 34, pp. 111–115.
- 4. Eremin, K.I., Golovanov, A.V., Krutikov, V.I., and Lavrent'ev, A.N., *Russ. J. Gen. Chem.*, 1997, vol. 67, no. 1, pp. 138–140.
- 5. Suzuki, N., Miwa, T., Aibara, S., Kanno, H., Takamori, H., Tsubokawa, M., Ryokawa, Y., Tsukada, W., and Isoda, S., *Chem. Pharm. Bull.*, 1992, vol. 40, no. 2, pp. 357–363.
- Nakamoto, K., Infra-Red Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1963. Translated under the title IK spektry neorganicheskikh i koordinatsionnykh soedinenii, Moscow: Mir, 1966, pp. 204–206.
- 7. Sheldrick, G.M., *SHELXL93. Program for the Refinement of Crystal Structures*, University of Göttingen, Germany, 1993.