

ISSN: 0002-1369 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/tbbb19

## Synthesis of $\omega$ -Chain-modified Analogues of 7-Oxaprostaglandins

Yoshinobu Naoshima, Toru Nakayama, Hirokiyo Kondo, Shûichi Hayashiand & Hiroo Ueda

To cite this article: Yoshinobu Naoshima, Toru Nakayama, Hirokiyo Kondo, Shûichi Hayashiand & Hiroo Ueda (1984) Synthesis of ω-Chain-modified Analogues of 7-Oxaprostaglandins, Agricultural and Biological Chemistry, 48:5, 1123-1129, DOI: <u>10.1080/00021369.1984.10866284</u>

To link to this article: http://dx.doi.org/10.1080/00021369.1984.10866284



Published online: 09 Sep 2014.



Submit your article to this journal 🕝





View related articles



Citing articles: 1 View citing articles 🕑

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tbbb19

## Synthesis of $\omega$ -Chain-modified Analogues of 7-Oxaprostaglandins<sup>†</sup>

Yoshinobu Naoshima, Toru Nakayama, Hirokiyo Kondo, Shûichi Hayashi and Hiroo Ueda\*

Department of Chemistry, Faculty of Science, Okayama University of Science, Ridai-cho, Okayama 700, Japan \*Department of Agricultural Chemistry, College of Agriculture, University of Osaka Prefecture, Mozu-Umemachi, Sakai-shi, Osaka 591, Japan

Received June 16, 1983

 $\omega$ -Methyl-11-deoxy-7-oxaprostaglandin (**5a-t**),  $\omega$ -methyl-9,11-bisdeoxy-7-oxaprostaglandin (**6a-t**) and their related compounds having a *gem*-dimethyl, *gem*-methylethyl, *gem*-methylpropyl, *gem*-methylbenzyl or *gem*-methylallyl group as the  $\omega$ -chain (**5b ~ 5f**, **6b ~ 6e**) were synthesized starting from cyclotene (1), 2-hydroxy-3-methyl-2-cyclopenten-1-one, which is a principal constituent of coffee aroma and maple flavor.

It has been reported that synthetic 7-oxa analogues of prostaglandin  $E_1$  and  $F_{1\alpha}$  were similar to their natural counterparts in biological activities,<sup>1</sup>) while their 9,11-bisdeoxy-7-oxa analogues were predominantly antagonistic and  $\omega$ -chain-shortened analogues of prostaglandin  $E_1$  inhibited the secretion of gastric acid.<sup>2</sup>)

Cyclotene (1), CT, a principal component of coffee aroma<sup>3)</sup> and maple flavor,<sup>4)</sup> is widely applied as a caramel-like flavoring in food. Since CT exists in the stable, chemically active enol form within the five-membered ring rather than as the unstable  $\alpha$ -diketone, it was expected that CT could be utilized as a convenient starting material for the synthesis of biologically active compounds containing a five-membered ring in their skeleton. Nevertheless, there are few reports on the reaction of CT to date<sup>5)</sup> except for the alkylation via the ketimine<sup>6)</sup> and ketal<sup>7)</sup> derivatives.

These facts prompted us to synthesize  $\omega$ chain-shortened 7-oxa analogues of prostaglandin E<sub>1</sub> and their related compounds from CT via the 1,3-dithiane derivative. These prostaglandins may exhibit biological activities as the antagonist of natural prostaglandins.

trans-w-Methyl-11-deoxy-7-oxaprostaglandin (5a-t) and trans-w-methyl- 9,11-bisdeoxy-7-oxaprostaglandin (6a-t) were synthesized first according to Scheme I. The keto group of CT was protected with 1,3-propanedithiol,<sup>8)</sup> and the product 2a was reduced with various reagents. Natural prostaglandin is a trans product. Reduction of 2a with popular complex hydrides such as sodium borohydride, lithium aluminum hydride, lithium tri-t-butoxyaluminohydride, lithium trimethoxyaluminohydride or zinc borohydride gave the alcohol as a mixture of cis- and transisomers, while reduction with 9-borabicyclo-[3.3.1]nonane (9-BBN) produced the desired trans-alcohol 3a-t in a homogeneous state on GLC. Desulfurization of 3a-t with metallic sodium gave trans-2-methylcyclopentanol in a homogeneous state, which was identical with the trans-alcohol derived from cyclopentanone<sup>9)</sup> in GLC, and in IR, <sup>1</sup>H NMR and Mass spectra.

Etherification of 3a-t was carried out with

<sup>&</sup>lt;sup>†</sup> Studies on Cyclotene and Its Related Compounds. Part VII. This work was presented at the 26th Symposium on the Chemistry of Terpenes, Essential Oils and Aromatics, Yamagata, Japan, October 6, 1982. For Part VI in this series, see ref. 7.





an excess of ethyl 6-iodohexanoate and sodium hydride in dimethylformamide in the presence of a trace of 18-crown-6. However, the yield of the ether 4a-t was not satisfactory, approximately 24%, and a large amount of unreacted 3a-t remained. The conditions under which the etherification of 3a-t was carried out were studied. Satisfactory yields were obtained by using additional ethyl 6-iodohexanoate and sodium hydride, the yield of 4a-t being raised to 64%. 4a-t was subjected to oxidative hydrolysis with N-chlorosuccinimide and silver nitrate in an aqueous acetonitrile to give 5a-t in an 85% yield. On the other hand, the desulfurization of 4a-t with a large excess of Raney-nickel in ethanol gave 6a-t in an 80%yield.

Synthesis of the 12-alkyl-12-methyl ana-

logues was performed next (Scheme II). The dithiaspirodecane 2a was treated with several alkyl halides to give the alkylated products  $2b \sim 2f$ , which have methyl, ethyl, *n*-propyl, benzyl or allyl groups geminately on C-2 together with the methyl group.<sup>8)</sup> These products were reduced with lithium aluminum hydride, sodium borohydride, lithium tri-tbutoxyaluminohydride and 9-BBN. Reductions with all of the tested reagents except 9-BBN gave the corresponding alcohols  $3b \sim$ 3f in almost quantitative yields as an inseparable mixture of stereoisomers. The alcohols  $3b \sim 3f$  were subjected to etherification followed by oxidative hydrolysis or desulfurization with Raney-nickel. The desired 7-oxaprostaglandin analogues  $5b \sim 5f$  or  $6b \sim 6e$  were obtained in reasonable yields as a mixture of stereoisomers, except that the desulfurization of **4f** produced a 12-methyl-12-*n*-propyl analogue (**6d**) owing to the additional reduction of the allyl group.

## EXPERIMENTAL

All melting points and boiling points were uncorrected. The IR spectra were recorded on a Hitachi 260-10 spectrometer. The <sup>1</sup>H NMR spectra were taken in CDCl<sub>3</sub> solutions on a Hitachi R-24B instrument with an internal standard of TMS and the <sup>13</sup>C NMR spectra in CDCl<sub>3</sub> solutions. Mass spectra were measured with a JEOL JMS-D300 spectrometer under electron impact (EI, 70 eV) and chemical ionization (CI, 200 eV, ammonia). The homogeneity of the reaction products was always checked with a glass column ( $3 \text{ mm}\phi \times 2 \text{ m}$ ) packed with 10% Silicone GE SE-30 on Chromosorb W (AW-DMCS,  $60 \sim 80$  mesh). Column chromatographies were carried out with silica gel (Merck Kieselgel 60 Art 7734,  $70 \sim 230$  mesh).

Reduction of 2-methyl-6,10-dithiaspiro[4.5]decan-1-one (2a) with 9-BBN. The dithiane derivative 2a (6g, 0.03 mol) of cvclotene<sup>8)</sup> was dissolved in dry tetrahydrofuran (30 ml). The solution was added dropwise to 9-BBN (5.5 g, 0.045 mol) in dry tetrahydrofuran (60 ml) with stirring under a flow of nitrogen gas at room temperature, and the mixture was refluxed for 3 hr. After the reaction mixture had cooled to room temperature, an excess of 9-BBN was decomposed with methanol (3 ml) and the solvent was distilled off in vacuo. The viscous residue was dissolved in hexane (20 ml), and 2-aminoethanol (2 ml, 0.033 mol) was added dropwise to the solution. An ethanolamine derivative of 9-BBN which was deposited immediately was filtered and washed with hexane. The filtrate and washings were combined and concentrated under reduced pressure. The residue was chromatographed over silica gel with a mixed solvent of hexane-ether (15:1 in v/v) to give a trans isomer of dithiaspirodecan-1-ol 3a-t (5.2g, 85%) as a colorless liquid in a homogeneous state for the GLC. The compound was solidified during storage in a refrigerator; mp 26~26.5°C. EIMS m/z: 204 (M<sup>+</sup>, 63), 186 (11), 171 (8), 145 (100), 132 (16), 119 (47), 106 (41), 71 (36), 55 (11), 41 (59). CIMS m/z: 222 [(M + NH<sub>4</sub>)<sup>+</sup>, 37], 205 [(M + H)<sup>+</sup>, 2], 187  $[(M+H-H_2O)^+, 100]$ . IR  $v_{max}^{neat}$  cm<sup>-1</sup>: 3440. <sup>1</sup>H NMR (CDCl<sub>3</sub> + D<sub>2</sub>O)  $\delta$ : 1.09 (3H, d, J = 7 Hz), 1.43 ~ 2.20 (5H, m), 2.40 ~ 3.05 (6H, m), 4.00 (1H, d, J=3.5 Hz, CHOD).

Reduction of **2a** with sodium borohydride. Sodium borohydride (0.3 g, 7.5 mmol) was added to a solution of **2a** (1 g, 5 mmol) in methanol (30 ml) with stirring at 0°C, and stirring was continued for 3 hr at room temperature. To the reaction mixture were added 5% hydrochloric acid (5 ml) and water (25 ml), and the mixture was concentrated under reduced pressure. The residue was again dissolved in water (10 ml) and the solution was saturated with NaCl for extraction with ether. The ethereal solutions were washed with brine, dried over Na2SO4 and concentrated in vacuo. The residue showed two peaks corresponding to the trans (t<sub>R</sub>: 15.5 min, 3a-t) and cis ( $t_R$ : 16 min, **3a-c**) isomers of dithiaspirodecan-1-ol in a ratio of 7:3 on GLC, using a 10% DEGS-ST column  $(3 \text{ mm}\phi \times 2 \text{ m})$  with  $10^{\circ}$ C/min programmed from  $100^{\circ}$ C to 210°C. These two isomers were separated by chromatography over a silica gel column with a mixed hexane-ether solvent (15:1). trans-Alcohol 3a-t (0.69 g, 70%). cis-Alcohol **3a-c** (0.29 g, 29%); EIMS m/z: 204  $(M^+, 72), 186 (17), 171 (14), 145 (100), 132 (17), 119 (52),$ 106 (49), 71 (36), 55 (24), 49 (60). CIMS m/z: 222 [(M+  $NH_4$ )<sup>+</sup>, 33], 205 [(M+H)<sup>+</sup>, 3], 187 [(M+H-H<sub>2</sub>O)<sup>+</sup> 100]. IR  $v_{max}^{neat}$  cm<sup>-1</sup>: 3440. <sup>1</sup>H NMR (CDCl<sub>3</sub>+D<sub>2</sub>O)  $\delta$ : 1.15 (3H, d, J = 7 Hz), 1.88 ~ 2.35 (5H, m), 2.45 ~ 3.11 (6H, m), 3.70 (1H, d, J=6.5 Hz, CHOD).

Reduction of 2a with lithium aluminum hydride. A solution of 2a (1 g, 5 mmol) in dry ether (5 ml) was added dropwise to a slurry of lithium aluminum hydride (190 mg, 5 mmol) in dry ether (10 ml) at 0°C, and the mixture was refluxed gently for 2 hr. The reaction mixture was cooled in an ice bath, and mixed with a 10% aqueous solution of sulfuric acid (5 ml) to decompose an excess of the hydride. After the solution had been saturated with NaCl, the organic layer was separated and the aqueous layer extracted with ether. The ethereal solutions were combined, washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo* to give a mixture of the *trans*- and *cis*-dithiane alcohols, **3a**, (0.98 g, 98%) as a viscous liquid showing two peaks in a ratio of 2:3 on the GLC.

Reduction of **2a** with lithium tri-t-butoxyaluminohydride. To a solution of lithium tri-t-butoxyaluminohydride  $(0.64 \text{ g}, 2.5 \text{ mmol})^{10}$  in diglyme (10 ml) was added a solution of **2a** (0.1 g, 0.5 mmol) in diglyme (5 ml) under a flow of nitrogen gas and with ice cooling, and the mixture was refluxed for 5 hr. A normal work-up of the reaction mixture gave a mixture of the *trans*- and *cis*-alcohols, **3a**, (0.097 g, 97%) in a ratio of 7:3 on the GLC.

Reduction of **2a** with lithium trimethoxyaluminohydride. A mixture of methanol (97 mg, 3 mmol) and tetrahydrofuran (5 ml) was added dropwise to a slurry of lithium aluminum hydride (38 mg, 1 mmol) in tetrahydrofuran (19 ml) with stirring in an atmosphere of hitrogen and with ice cooling, and stirring was continued for 15 min. To the solution of lithium trimethoxyaluminohydride thus prepared was slowly added a solution of **2a** (0.1 g, 0.5 mmol) in tetrahydrofuran (5 ml) at 0°C, and stirring was continued for 1.5 hr at 0°C. A normal work-up of the reaction mixture gave a mixture of the *trans*- and *cis*-alcohols, **3a**, (0.098 g, 98%) in a ratio of 7:3 on the GLC.

Reduction of 2a with zinc borohydride. A solution of zinc

borohydride  $(13 \text{ mmol})^{(11)}$  in dry ether (70 ml) was added to a solution of **2a** (1 g, 5 mmol) in dry ether (20 ml), and the mixture was refluxed gently for 3 hr. After cooling, water (20 ml) and glacial acetic acid (4 ml) were added to the mixture to decompose the excess of zinc borohydride. The resulting mixture was worked up to give a mixture of the *trans*- and *cis*-alcohols, **3a**, (0.96 g, 96%) in a ratio of 1:1 on the GLC.

of trans 2-methyl-6,10-dithiaspiro-Desulfurization [4.5]decan-1-ol (3a-t) with metallic sodium. The dithiane alcohol 3a-t (1g, 5 mmol) was dissolved in a mixed solvent of liquid ammonia (100 ml) and dry ether (20 ml) under a flow of nitrogen gas at  $-50^{\circ}$ C and metallic sodium (0.29 g, 12.5 mmol) was then added to the solution. After stirring for 30 min, ethanol was added until the blue color of the solution had disappeared and the solvent was evaporated. The residue was extracted with ether, the ethereal solutions were concentrated and the residual materials were fractionated through a Vigreux-Claisentype distillation column to give the trans methylcyclopentanol (7-t), bp 156~157°C (760 mmHg), 0.31g (63%). EIMS m/z: 100 (M<sup>+</sup>, 0), 56 (100), 43 (40), 41 (44). CIMS m/z: 118 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 101 [(M+H)<sup>+</sup>, 18]. IR  $v_{max}^{neat}$ cm<sup>-1</sup>: 3300. <sup>1</sup>H NMR (CDCl<sub>3</sub>+D<sub>2</sub>O)  $\delta$ : 0.96 (3H, d, J= 7 Hz, CH<sub>3</sub>), 1.11~2.10 (6H, m), 2.47 (1H, m, CHCH<sub>3</sub>), 3.71 (1H, m, CHOD).

Desulfurization of cis 2-methyl-6,10-dithiaspiro[4.5]decan-1-ol (**3a-c**) with metallic sodium. Desulfurization of **3a-c** (1 g, 5 mmol) was carried out in the same manner as with the case of **3a-t** to give cis-alcohol **7-c**, bp 156~157°C (760 mmHg), 0.26 g (56%). EIMS m/z: 100 (M<sup>+</sup>, 0), 56 (100), 43 (43), 41 (35). CIMS m/z: 118 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 101 [(M+H)<sup>+</sup>, 17]. IR  $\nu_{max}^{neat}$  cm<sup>-1</sup>: 3300. <sup>1</sup>H NMR (CDCl<sub>3</sub>+D<sub>2</sub>O)  $\delta$ : 0.94 (3H, d, J=7 Hz, CH<sub>3</sub>), 1.11~2.00 (6H, m), 2.49 (1H, m, CHCH<sub>3</sub>), 3.70 (1H, m, CHOD).

Reduction of 2-alkyl-2-methyl-6,10-dithiaspiro[4.5]decan-1-ones  $(2b \sim 2f)$  with lithium aluminum hydride. A solution of each  $\alpha$ -ketodithiane (2b ~ 2f, 0.01 mol) in dry ether (5 ml) was added dropwise to a slurry of lithium aluminum hydride (0.38 g, 0.01 mol) in dry ether (30 ml) under cooling at 0°C, and the reaction mixture was refluxed for 2hr. After the excess of lithium aluminum hydride had been decomposed with a 10% aqueous solution of sulfuric acid (10 ml) under cooling in an ice bath, the reaction mixture was saturated with NaCl and the ethereal layer was separated. The aqueous layer was extracted with ether. The ethereal solutions were combined, washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the residue was chromatographed over a silica gel column with a mixed solvent of hexane and ether (15:1 in v/v) to give the gem-dialkyldithiaspirodecanols  $(3b \sim 3f)$ , respectively.

2,2-Dimethyl-6,10-dithiaspiro[4.5]decan-1-ol (**3b**). Colorless viscous liquid (2.1 g, 96%). EIMS m/z: 218 (M<sup>+</sup>, 40), 200 (16), 185 (33), 145 (100), 119 (24), 106 (31), 71 (17), 55 (10), 41 (39). CIMS m/z: 236 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 219 [(M+H)<sup>+</sup>, 7], 201 [(M+H-H<sub>2</sub>O)<sup>+</sup>, 60]. IR  $\nu_{max}^{neat}$  cm<sup>-1</sup>: 3425. <sup>1</sup>H NMR (CDCl<sub>3</sub> + D<sub>2</sub>O)  $\delta$ : 0.98 and 1.11 (6H, both s, gem-dimethyl), 1.41 ~ 2.25 (6H, m), 2.43 ~ 3.40 (4H, m), 3.80 (1H, s, CHOD).

2-Ethyl-2-methyl-6,10-dithiaspiro[4.5]decan-1-ol (32). Colorless viscous liquid (2.2 g, 96%). EIMS m/z: 232 (M<sup>+</sup>, 32), 203 (7), 185 (6), 145 (100), 119 (28), 106 (32), 71 (15), 55 (18), 41 (46). CIMS m/z: 250 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 233 [(M+H)<sup>+</sup>, 10], 215 [(M+H-H<sub>2</sub>O)<sup>+</sup>, 62]. IR  $\nu_{max}^{neat}$  cm<sup>-1</sup>: 3425. <sup>1</sup>H NMR (CDCl<sub>3</sub>+D<sub>2</sub>O)  $\delta$ : 0.88 (3H, m), 0.93 and 1.09 (3H, both s, CH<sub>3</sub>), 1.23~2.23 (8H, m), 2.43~3.40 (4H, m), 3.87 (1H, s, CHOD).

2-*n*-Propyl-2-methyl-6,10-dithiaspiro[4.5]decan-1-ol (**3d**). Colorless viscous liquid (2.4 g, 97%). EIMS m/z: (M<sup>+</sup>, 23), 203 (7), 228 (14), 185 (11), 145 (100), 119 (21), 106 (21), 71 (11), 55 (39), 41 (53). CIMS m/z: 264 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 247 [(M+H)<sup>+</sup>, 5], 229 [(M+H-H<sub>2</sub>O)<sup>+</sup>, 85]. IR  $v_{max}^{past}$ cm<sup>-1</sup>: 3420. <sup>1</sup>H NMR (CDCl<sub>3</sub>+D<sub>2</sub>O)  $\delta$ : 0.91 (3H, m), 0.93 and 1.09 (3H, both s, CH<sub>3</sub>), 1.21 ~ 2.18 (10H, m), 2.47 ~ 3.18 (4H, m), 3.83 and 3.85 (1H, both s, CHOD).

2-Benzyl-2-methyl-6,10-dithiaspiro[4.5]decan-1-ol (3e). Colorless viscous liquid (2.9 g, 97%). EIMS m/z: 294 (M<sup>+</sup>, 39), 203 (21), 185 (13), 145 (100), 119 (25), 106 (43), 97 (45), 91 (61), 71 (11), 41 (36). CIMS m/z: 312 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 295 [(M+H)<sup>+</sup>, 17], 277 [(M+H-H<sub>2</sub>O)<sup>+</sup>, 46]. IR  $\nu_{max}^{neat}$  cm<sup>-1</sup>: 3425, 760, 700. <sup>1</sup>H NMR (CDCl<sub>3</sub>+D<sub>2</sub>O): 0.91 and 1.03 (3H, both s, CH<sub>3</sub>), 1.17~2.29 (8H, m), 2.67~3.05 (4H, m), 3.89 and 4.00 (1H, both s, CHOD), 7.09 (5H, s, C<sub>6</sub>H<sub>5</sub>).

2-Allyl-2-methyl-6,10-dithiaspiro[4.5]decan-1-ol(**3f**). Colorless viscous liquid (2.4 g, 98%). EIMS m/z: 244 (M<sup>+</sup>, 59), 203 (12), 185 (7), 145 (100), 106 (64), 97 (40), 71 (24), 55 (25), 41 (81). CIMS m/z: 262 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 245 [(M+H)<sup>+</sup>, 16], 227 [(M+H-H<sub>2</sub>O)<sup>+</sup>, 85]. IR  $\nu_{max}^{neat}$  cm<sup>-1</sup>: 3425, 1640, 910. <sup>1</sup>H NMR (CDCl<sub>3</sub> + D<sub>2</sub>O)  $\delta$ : 0.98 and 1.12 (3H, both s, CH<sub>3</sub>), 1.40~2.30 (8H, m), 2.45 ~ 3.20 (4H, m), 3.86 and 3.90 (1H, both s, CHOD), 4.77~5.20 (2H, m), 5.55~6.19 (1H, m).

Etherification of 2-alkyl-2-methyl-6,10-dithiaspiro-[4.5]decan-1-ols ( $3a-t \sim 3f$ ). Each of  $3a-t \sim 3f$  (0.01 mol) was mixed with ethyl 6-iodohexanoate (10.8 g, 0.04 mol) and the mixture was added dropwise to a mixed suspension of sodium hydride (50% mineral oil dispersion, 1.2 g, 0.025 mol) and 18-crown-6 (0.26 g, 0.001 mol) in dimethylformamide (130 ml) with constant stirring at room temperature in a nitrogen atmosphere. After stirring for 24 ~ 30 hr, additional sodium hydride (50% mineral oil dispersion, 0.96 g, 0.02 mol) and ethyl 6-iodohexanoate (5.4 g, 0.02 mol) were supplied and stirring was further continued for about 24 hr at room temperature. When the alcohol had disappeared (checked by GLC), water (10 ml) was added to decompose the excess sodium hydride, and the reaction mixture was extracted with ether. The ethereal solutions were washed with water, dried over Na<sub>2</sub>SO<sub>4</sub> and distilled off *in vacuo*. The residue was chromatographed over silica gel with a mixed solvent of petroleum ether and ethyl acetate (20:1 in v/v) to give the ethers,  $4a-t \sim 4f$ , respectively.

*Ethyl trans-7-oxa-7-(8-methyl-1,5-dithiaspiro*[4.5]*decan-7-yl*)*heptanoate* (**4a–t**). Colorless viscous liquid (2.2 g, 64%). EIMS *m/z*: 346 (M<sup>+</sup>, 35), 301 (5), 203 (9), 186 (100), 145 (92), 97 (56), 69 (80), 55 (58), 41 (74). CIMS *m/z*: 364 [(M+NH<sub>4</sub>)<sup>+</sup>, 17], 347 [(M+H)<sup>+</sup>, 0], 187 (100). IR  $v_{max}^{nax}$  cm<sup>-1</sup>: 1735, 1160, 1095. <sup>1</sup>H NMR  $\delta$ : 1.05 (3H, d, *J*=7 Hz, CH<sub>3</sub>), 1.15~2.98 (19H, m), 1.23 (3H, t, *J*=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 3.57 (1H, d, *J*=7 Hz, CHOCH<sub>2</sub>), 3.61 (2H, m), 4.07 (2H, q, *J*=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR  $\delta$ : 14.33, 14.77, 24.88, 25.73, 28.19, 29.81, 30.04, 36.98, 39.98, 60.09, 72.73, 89.91, 173.66.

*Ethyl* 7-oxa-7-(8,8-dimethyl-1,5-dithiaspiro[4.5]decan-7yl)heptanoate (**4b**). Colorless viscous liquid (2.4 g, 68%). EIMS m/z: 360 (M<sup>+</sup>, 15), 310 (4), 200 (50), 185 (12), 145 (100), 97 (34), 69 (34), 55 (17), 41 (32). CIMS m/z: 378 [(M + NH<sub>4</sub>)<sup>+</sup>, 33], 361 [(M + H)<sup>+</sup>, 0], 201 (100). IR v<sup>max</sup><sub>max</sub> cm<sup>-1</sup>: 1735, 1160, 1130. <sup>1</sup>H NMR δ: 1.01 and 1.05 (6H, both s, gem-dimethyl), 1.23 (3H, t, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.87~3.87 (20H, m), 3.14 (1H, s, CHOCH<sub>2</sub>), 4.08 (2H, q, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>).

*Ethyl* 7-oxa-7-(8-ethyl-8-methyl-1,5-dithiaspiro[4.5]decan-7-yl)heptanoate (**4c**). Colorless viscous liquid (2.4 g, 65%). EIMS *m*/*z*: 374 (M<sup>+</sup>, 8), 329 (2), 214 (33), 185 (10), 145 (100), 97 (19), 69 (28), 55 (19), 41 (26). CIMS *m*/*z*: 392 [(M+NH<sub>4</sub>)<sup>+</sup>, 9], 375 [(M+H)<sup>+</sup>, 4], 215 (100). IR  $\nu_{\text{max}}^{\text{neat}}$  cm<sup>-1</sup>: 1735, 1160, 1130. <sup>1</sup>H NMR  $\delta$ : 0.88 (3H, m, CH<sub>2</sub>CH<sub>3</sub>), 0.98 and 1.01 (3H, both s, CH<sub>3</sub>), 1.23 (3H, t, *J*=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.23 ~3.65 (22H, m), 3.15 and 3.20 (1H, both s, CHOCH<sub>2</sub>), 4.10 (2H, q, *J*=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>).

*Ethyl* 7-oxa-7-(8-n-propyl-8-methyl-1,5-dithiaspiro[4.5]decan-7-yl)heptanoate (4d). Colorless viscous liquid (2.4 g, 61%). EIMS m/z: 388 (M<sup>+</sup>, 7), 343 (2), 228 (36), 185 (2), 145 (100), 97 (27), 69 (38), 55 (30), 41 (32). CIMS m/z: 406 [(M+NH<sub>4</sub>)<sup>+</sup>, 6], 389 [(M+H)<sup>+</sup>, 3], 229 (100). IR v<sup>max</sup> cm<sup>-1</sup>: 1735, 1160, 1130. <sup>1</sup>H NMR δ: 0.91 [3H, m, (CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub>], 0.98 and 1.01 (3H, both s, CH<sub>3</sub>), 1.07 ~ 3.59 (24H, m), 1.22 (3H, t, J = 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 3.13 and 3.15 (1H, both s, CHOCH<sub>2</sub>), 4.05 (2H, q, J = 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>).

*Ethyl 7-oxa-7-(8-benzyl-8-methyl-1,5-dithiaspiro[4.5]decan-7-yl)heptanoate* (4e). Colorless viscous liquid (3.1 g, 72%). EIMS m/z: 436 (M<sup>+</sup>, 7), 276 (5), 185 (29), 145 (50), 97 (90), 69 (100), 55 (29), 41 (50). CIMS m/z: 456 [(M+NH<sub>4</sub>)<sup>+</sup>, 3], 437 [(M+H)<sup>+</sup>, 0], 274 (100). IR  $v_{max}^{reat}$  cm<sup>-1</sup>: 1730, 1160, 1115, 760, 700. <sup>1</sup>H NMR  $\delta$ : 0.99 (3H, s, CH<sub>3</sub>), 1.22 (3H, t, J=7Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.29~ 3.55 (18H, m), 2.63 (2H, s, CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>), 3.21 and 3.28 (1H, both s, CHOCH<sub>2</sub>), 4.05 (2H, q, J=7Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 7.09 (5H, s, C<sub>6</sub>H<sub>5</sub>).

*Ethyl 7-oxa-7-(8-allyl-8-methyl-1,5-dithiaspiro*[4.5]*decan-7-yl*)*heptanoate* (4f). Colorless viscous liquid (2.8 g, 73%). EIMS *m/z*: 386 (M<sup>+</sup>, 16), 341 (3), 226 (26), 185 (26), 145 (100), 132 (35), 97 (41), 69 (58), 55 (32), 41 (57). CIMS *m/z*: 404  $[(M+NH_4)^+, 6]$ , 387  $[(M+H)^+, 0]$ , 227 (100). IR  $\nu_{max}^{max}$  cm<sup>-1</sup>: 1735, 1645, 1165, 1130. <sup>1</sup>H NMR δ: 1.01 and 1.03 (3H, both s, CH<sub>3</sub>), 1.23 (3H, t, *J* = 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.27 ~ 3.56 (22H, m), 3.20 (1H, s, CHOCH<sub>2</sub>), 4.05 (2H, q, *J* = 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 4.75 ~ 5.13 (2H, m), 5.42 ~ 6.02 (1H, m).

Oxidative hydrolysis of ethyl 7-oxa-7-(8-alkyl-8-methyl-1,5-dithiaspiro[4.5]decan-7-yl)heptanoates  $4a-t \sim 4f$ . Each of the ethers  $4a-t \sim 4f$  (1.5 mmol) was added to a solution of N-chlorosuccinimide (0.8 g, 6 mmol) and silver nitrate (1.15 g, 6.8 mmol) in a mixture of acetonitrile and water (4:1 in v/v), and the mixture was stirred for 2 hr. To the reaction mixture were added the saturated aqueous solutions of sodium sulfite (1 ml), sodium carbonate (1 ml) and sodium chloride (1 ml) in this order, and the mixture was filtered. The filtrate was extracted with ether, and the ethereal solution was worked up as usual to give the 7oxacyclopentanones (5a-t ~ 5f).

*Ethyl trans*-7-*oxa*-7-(2-*methyl*-5-*oxocyclopentyl*)*heptanoate* (5a–t). Colorless liquid (0.33 g, 85%), 2,4-DNP mp 278 ~278.5°C (dec.). EIMS *m/z*: 256 (M<sup>+</sup>, 3), 211 (5), 159 (21), 143 (100), 115 (51), 97 (95), 69 (75), 55 (36), 41 (49). CIMS *m/z*: 274 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 257 [(M + H)<sup>+</sup>, 9]. IR  $\nu_{\text{max}}^{\text{neat}}$  cm<sup>-1</sup>: 1750, 1735, 1165, 1095. <sup>1</sup>H NMR  $\delta$ : 0.97 (3H, d, *J*=7 Hz, CH<sub>3</sub>), 1.23 (3H, t, *J*=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.40~2.70 (13H, m), 3.34 (1H, m, CHOCH<sub>2</sub>), 4.10 (2H, q, *J*=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR  $\delta$ : 12.94, 14.33, 24.88, 25.73, 26.50, 29.42, 32.89, 33.66, 34.28, 60.17, 70.26, 84.36, 173.66, 215.50. High resolution EIMS *m/z*: 256.17223 (M<sup>+</sup>, calcd. for C<sub>14</sub>H<sub>24</sub>O<sub>4</sub>: 256.16732).

*Ethyl* 7-oxa-7-(2,2-dimethyl-5-oxocyclopentyl)heptanoate (**5b**). Colorless liquid (0.33 g, 82%), 2,4-DNP mp 245~246°C (dec.). EIMS m/z: 270 (M<sup>+</sup>, 3), 225 (5), 159 (18), 143 (93), 115 (39), 97 (100), 69 (62), 55 (29), 41 (46). CIMS m/z: 288 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 271 [(M+H)<sup>+</sup>, 5]. IR  $\nu_{\text{max}}^{\text{neat}}$  cm<sup>-1</sup>: 1750, 1735, 1165, 1105. <sup>1</sup>H NMR δ: 0.89 and 1.13 (6H, both s, gem-dimethyl), 1.23 (3H, t, J= 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.39~2.47 (12H, m), 3.30 (1H, s, CHOCH<sub>2</sub>), 3.25~3.97 (2H, m, OCH<sub>2</sub>), 4.07 (2H, q, J= 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). High resolution EIMS m/z: 270.18796 (M<sup>+</sup>, calcd. for C<sub>15</sub>H<sub>26</sub>O<sub>4</sub>: 270.18296).

*Ethyl* 7-*oxa*-7-(2-*ethyl*-2-*methyl*-5-*oxocyclopentyl*)*heptanoate* (**5c**). Colorless liquid (0.35 g, 83%). EIMS *m/z*: 284 (M<sup>+</sup>, 1), 238 (2), 159 (11), 143 (71), 123 (13), 97 (100), 69 (30), 55 (20), 41 (17). CIMS *m/z*: 302 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 285 [(M+H)<sup>+</sup>, 28]. IR v<sub>max</sub><sup>neat</sup> cm<sup>-1</sup>: 1745, 1730, 1160, 1100. <sup>1</sup>H NMR δ: 0.85 and 1.01 (3H, both s, CH<sub>3</sub>), 0.86 (3H, m, CH<sub>2</sub>CH<sub>3</sub>), 1.21 (3H, t, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.30~2.45 (14H, m), 3.22 and 3.35 (1H, both s, CHOCH<sub>2</sub>), 3.31~3.97 (2H, m, OCH<sub>2</sub>), 4.04 (2H, q, J= 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). High resolution EIMS *m/z*: 284.19914 (M<sup>+</sup>, calcd. for C<sub>16</sub>H<sub>28</sub>O<sub>4</sub>: 284.19860).

Ethyl 7-oxa-7-(2-n-propyl-2-methyl-5-oxocyclopentyl)heptanoate (5d). Colorless liquid (0.37 g, 83%). EIMS m/z: 298 (M<sup>+</sup>, 1), 253 (1), 159 (9), 143 (86), 115 (34), 97 (100), 69 (40), 55 (28), 41 (22). CIMS m/z: 316 [(M + NH<sub>4</sub>)<sup>+</sup>, 100], 299 [(M + H)<sup>+</sup>, 35]. IR  $\nu_{\text{max}}^{\text{neat}}$  cm<sup>-1</sup>: 1750, 1740, 1170, 1110. <sup>1</sup>H NMR  $\delta$ : 0.85 and 1.03 (3H, both s, CH<sub>3</sub>), 0.89 [3H, m, (CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub>], 1.21 (3H, t, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.15~2.43 (17H, m), 3.19 and 3.35 (1H, both s, CHOCH<sub>2</sub>), 3.35~3.98 (2H, m, OCH<sub>2</sub>), 4.05 (2H, q, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). High resolution EIMS m/z: 298.22303 (M<sup>+</sup>, calcd. for C<sub>17</sub>H<sub>30</sub>O<sub>4</sub>: 298.21424).

Ethyl 7-oxa-7-(2-benzyl-2-methyl-5-oxocyclopentyl)heptanoate (**5e**). Colorless liquid (0.43 g, 82%). EIMS m/z: 346 (M<sup>+</sup>, 0), 255 (5), 187 (4), 159 (9), 143 (72), 115 (31), 97 (100), 91 (60), 69 (63), 55 (45), 41 (46). CIMS m/z: 364 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 347 [(M+H)<sup>+</sup>, 16]. IR  $v_{max}^{eax}$ cm<sup>-1</sup>: 1750, 1735, 1160, 1095, 750, 700. <sup>1</sup>H NMR δ: 0.90 and 0.99 (3H, both s, CH<sub>3</sub>), 1.23 (3H, t, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.43~2.45 (12H, m), 2.71 (2H, s, CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>), 3.23 and 3.35 (1H, both s, CHOCH<sub>2</sub>), 3.27~3.98 (2H, m, OCH<sub>2</sub>), 4.03 (2H, q, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 7.16 (5H, m, C<sub>6</sub>H<sub>5</sub>). High resolution EIMS m/z: 255.16688 (M-CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>, calcd. for C<sub>14</sub>H<sub>23</sub>O<sub>4</sub>: 255.15950).

Ethyl 7-oxa-7-(2-allyl-2-methyl-5-oxocyclopentyl)heptanoate (**5f**). Colorless liquid (0.37 g, 83%). EIMS *m/z*: 296 (M<sup>+</sup>, 0), 255 (3), 209 (14), 159 (5), 145 (35), 115 (21), 97 (100), 69 (25), 55 (11), 41 (17). CIMS *m/z*: 314 [(M + NH<sub>4</sub>)<sup>+</sup>, 100], 297 [(M+H)<sup>+</sup>, 25]. IR  $\nu_{\text{max}}^{\text{neat}}$  cm<sup>-1</sup>: 1750, 1740, 1645, 1165, 1105, 910. <sup>1</sup>H NMR  $\delta$ : 0.89 and 1.07 (3H, both s, CH<sub>3</sub>), 1.23 (3H, t, *J*=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.21~2.47 (14H, m), 3.27 and 3.42 (1H, both s, CHOCH<sub>2</sub>), 3.23~3.97 (2H, m, OCH<sub>2</sub>), 4.01 (2H, q, *J*= 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 4.75~5.20 (2H, m), 5.40~6.15 (1H, m). High resolution EIMS *m/z*: 255.15962 (M – CH<sub>2</sub>CH=CH<sub>2</sub>, calcd. for C<sub>14</sub>H<sub>23</sub>O<sub>4</sub>: 255.15950).

Desulfurization of  $4a-t \sim 4e$  with Raney-nickel. Each of  $4a-t \sim 4e$  (5 mmol) was refluxed in ethanol (20 ml) with a large excess of Raney-nickel (forty times in weight) for about 40 hr. The catalyst was filtered off through Celite

and washed with hot ethanol. The combined filtrates were concentrated *in vacuo* to give the 7-oxa-cyclopentyl-heptanoates (**6a**-t  $\sim$  **6e**), respectively, which were chromatographed over silica gel with a mixture of hexane and ether (50:1 in v/v).

*Ethyl* trans-7-oxa-7-(2-methylcyclopentyl)heptanoate (6a-t). Colorless liquid (0.97 g, 80%). EIMS m/z: 242 (M<sup>+</sup>, 0), 159 (52), 143 (54), 115 (84), 113 (82), 97 (84), 83 (42), 69 (100), 55 (12), 41 (67). CIMS m/z: 260 [(M+NH<sub>4</sub>)<sup>+</sup>, 60], 243 [(M+H)<sup>+</sup>, 100]. IR  $\nu_{max}^{neat}$  cm<sup>-1</sup>: 1745, 1165, 1110. <sup>1</sup>H NMR δ: 0.93 (3H, d, J = 7 Hz, CH<sub>3</sub>), 1.23 (3H, t, J =7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.21 ~ 1.97 (12H, m), 2.28 (2H, m, CH<sub>2</sub>CO<sub>2</sub>), 3.47 (3H, m), 4.09 (2H, q, J = 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). High resolution EIMS m/z: 83.09220 [M-O(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>6</sub>H<sub>11</sub>: 83.08602]; 159.10133 [O(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>8</sub>H<sub>15</sub>O<sub>3</sub>: 159.10203].

Ethyl 7-oxa-7-(2,2-dimethylcyclopentyl)heptanoate (**6b**). Colorless liquid (1 g, 80%). EIMS *m*/z: 256 (M<sup>+</sup>, 0), 160 (6), 159 (24), 143 (53), 115 (61), 97 (67), 96 (100), 81 (45), 69 (70), 55 (62), 44 (46). CIMS *m*/z: 274 [(M + NH<sub>4</sub>)<sup>+</sup>, 89], 257 [(M + H)<sup>+</sup>, 100]. IR  $v_{\text{neat}}^{\text{neat}}$  cm<sup>-1</sup>: 1740, 1160, 1125. <sup>1</sup>H NMR δ: 0.91 and 0.93 (6H, both s, *gem*-dimethyl), 1.23 (3H, t, *J* = 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.23 ~ 2.00 (12H, m), 2.27 (2H, m, CH<sub>2</sub>CO<sub>2</sub>), 3.30 (3H, m), 4.07 (2H, q, *J* = 7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). High resolution EIMS *m*/z: 96.09342 [M - HO(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>7</sub>H<sub>12</sub>: 96.09384]; 160.11437 [HO(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>8</sub>H<sub>16</sub>O<sub>3</sub>: 160.10985].

Ethyl 7-oxa-7-(2-ethyl-2-methylcyclopentyl)heptanoate (6c). Colorless liquid (1.1 g, 82%). EIMS m/z: 270 (M<sup>+</sup>, 0), 159 (26), 143 (45), 115 (56), 111 (20), 110 (89), 97 (62), 81 (31), 69 (100), 55 (66), 41 (52). CIMS m/z: 288 [(M+NH<sub>4</sub>)<sup>+</sup>, 27], 271 [(M+H)<sup>+</sup>, 100]. IR  $\nu_{max}^{neat}$  cm<sup>-1</sup>: 1740, 1165, 1125. <sup>1</sup>H NMR δ: 0.82 (3H, m, CH<sub>2</sub>CH<sub>3</sub>), 0.83 and 0.85 (3H, both s, CH<sub>3</sub>), 1.23 (3H, t, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.21~1.90 (14H, m), 2.25 (2H, m, CH<sub>2</sub>CO<sub>2</sub>), 3.33 (3H, m), 4.07 (2H, q, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). High resolution EIMS m/z: 111.11838 [M-O(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>8</sub>H<sub>15</sub>: 111.11730]; 159.10334 [O(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>8</sub>H<sub>15</sub>O<sub>3</sub>: 159.10203].

Ethyl 7-oxa-7-(2-n-propyl-2-methylcyclopentyl)heptanoate (6d). Colorless liquid (1.1 g, 80%). EIMS m/z: 284 (M<sup>+</sup>, 0), 159 (22), 143 (42), 125 (12), 124 (81), 115 (58), 97 (60), 95 (78), 81 (33), 69 (100), 55 (63), 41 (57). CIMS m/z: 302 [(M+NH<sub>4</sub>)<sup>+</sup>, 45], 285 [(M+H)<sup>+</sup>, 100]. IR  $v_{\text{max}}^{\text{neat}}$  cm<sup>-1</sup>: 1740, 1160, 1115. <sup>1</sup>H NMR  $\delta$ : 0.83 and 0.86 (3H, both s, CH<sub>3</sub>), 0.92 [3H, m, (CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub>], 1.23 (3H, t, J=7Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.10~1.90 (16H, m), 2.28 (2H, m, CH<sub>2</sub>CO<sub>2</sub>), 3.32 (3H, m), 4.06 (2H, q, J= 7Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>). High resolution EIMS m/z: 125.12814 [M-O(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>9</sub>H<sub>17</sub>: 125.13294]; 159.10190 [O(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for  $C_8H_{15}O_3$ : 159.10203].

Ethyl 7-oxa-7-(2-benzyl-2-methylcyclopentyl)heptanoate (6e). Colorless liquid (1.4 g, 83%). EIMS m/z: 332 (M<sup>+</sup>, 0), 240 (24), 172 (22), 160 (1), 159 (9), 143 (66), 115 (42), 97 (42), 91 (100), 81 (36), 69 (71), 55 (33), 41 (44). CIMS m/z: 350 [(M+NH<sub>4</sub>)<sup>+</sup>, 100], 333 [(M+H)<sup>+</sup>, 64]. IR v<sub>max</sub> cm<sup>-1</sup>: 1735, 1160, 1110, 760, 700. <sup>1</sup>H NMR  $\delta$ : 0.77 and 0.87 (3H, both s, CH<sub>3</sub>), 1.22 (3H, t, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.33~1.97 (12H, m), 2.28 (2H, m, CH<sub>2</sub>CO<sub>2</sub>), 2.68 (2H, m, CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>), 3.11 (3H, m), 4.07 (2H, q, J=7 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 7.10 (5H, s, C<sub>6</sub>H<sub>5</sub>). High resolution EIMS m/z: 172.12411 [M-HO(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>13</sub>H<sub>16</sub>: 172.12512]; 160.10669 [HO(CH<sub>2</sub>)<sub>5</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, calcd. for C<sub>8</sub>H<sub>16</sub>O<sub>3</sub>: 160.10985].

Acknowledgments. We are very grateful to Shiono Koryo Co., Ltd. for the generous gift of cyclotene. This work was supported in part by a Grant-in-Aid for Scientific Research (No. 56760082) from the Ministry of Education, Science and Culture of Japan.

## REFERENCES

 J. Fried, S. Heim, S. J. Etheredge, P. S. Plassman, T. S. Santhanakrishnan, J. I. Himizu and C. H. Lin, J. Chem. Soc., Chem. Commun., 1968, 634; J. Fried, T. S. Santhanakrishnan, J. Himizu, C. H. Lin, S. H. Ford, B. Rubin and E. O. Grigas, Nature, 223, 208 (1969); J. Fried, M. M. Mehra, W. L. Kao and C. H. Lin, Tetrahedron Lett., 2965 (1970); J. Fried, C. Lin, M. Mehra, W. Kao and P. Dalven, Ann. N. Y. Acad. *Sci.*, **180**, 38 (1971); J. Fried, M. M. Mehra and W. L. Kao, *J. Am. Chem. Soc.*, **93**, 5594 (1971).

- J. F. Poletto, K. F. Bernady, D. Kupfer, R. Partridge and M. J. Weiss, J. Med. Chem., 18, 359 (1975).
- M. A. Gianturco, A. S. Giammarino and R. G. Pitcher, *Tetrahedron*, 19, 2051 (1963).
- V. J. Filipic, J. C. Underwood and C. O. Willits, J. Food Sci., 30, 1008 (1965).
- J. L. E. Erickson and F. E. Collins, Jr., J. Org. Chem., 30, 1050 (1965); R. T. Dahill, Jr., J. Org. Chem., 31, 2694 (1966); A. Fishli, M. Klaus, H. Mayer, P. Schönholzer and R. Ruëgg, Helv. Chim. Acta, 58, 564 (1975); K. Tonari, K. Machiya, I. Ichimoto and H. Ueda, Agric. Biol. Chem., 45, 295 (1981).
- Y. Naoshima, Y. Hayashi, I. Ichimoto and H. Ueda, Agric. Biol. Chem., 38, 1393 (1974).
- Y. Naoshima, T. Makita, H. Kondo and S. Hayashi, Agric. Biol. Chem., 46, 1703 (1982).
- Y. Naoshima, I. Ichimoto and H. Ueda, Agric. Biol. Chem., 40, 735 (1976).
- For example, the reduction of 2-alkylcyclopentanones with several dialkylboranes gave predominantly the *cis*-alcohols, whereas the 9-BBN reduction of 2-methylcyclohexanone provided mainly the *trans*-alcohol; H. C. Brown and G. Zweifel, J. Am. Chem. Soc., 83, 2544 (1961); H. C. Brown and V. Varma, J. Org. Chem., 39, 1631 (1974); H. C. Brown and S. Krishnamurthy, Aldrichimica Acta, 12, 3 (1979).
- H. C. Brown and R. F. McFarlin, J. Am. Chem. Soc., 80, 5372 (1958).
- W. J. Gensler, F. Johnson and A. D. B. Sloan, J. Am. Chem. Soc., 82, 6074 (1960).