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Abstract:  The alkaloid (+)-R-decarbomethoxytetrahydrosecodine (+)-1 has been 
synthesized by alkylation of (R)-3-ethylpiperidine with 3-(2-bromoethyl)-2- 
ethylindole (7). The required enantiopurc piperidine was prepared by alkylation of the 
chiral non-racemic oxazolopiperidone (+)-trttns-.8 followed by reduction of the lactam 
carbonyl group and removal of the chiral auxiliary, whereas tryptophyl bromide 7 was 
obtained by reaction of N-silyl-3-1ithioixadole 5 with ethylene oxide fnllowed by 
treatment with PBr 3. The enantiomer of the natural product was prepared in a similar 
way, starting from (-)-trans-8. Copyright © 1996 Elsevier Science Ltd 

(+)-R-Decarbomethoxy- 15,16,17,20-tetrahydrt~sect~dine (+)- 1 is the simplest secodine-type alkaloid 

occurring in nature. 1 It was isolated for the first time in 1968 from Tabernaemontana cuminsii, 2,3 although its 

absolute configuration was not established until 1995, 4 when the alkaloid was synthesized in enantiopure 

form for the first time. 5 A second enantiocontrollcd synthesis of (+)-1 has been recently reported. 6 In both 

cams, the stereogenic center was created by lipasc mediated kinetic transesterification of a racemic precursor, 

either a 2-cyclopent~nol 4 or a 3-hydroxy- 1,2,3,6-tetrahydropyridine 6 derivative. 

We present here enantioselective syntheses of (+)-R-decarbomethoxytetrahydro~codine (+)-1 and its 

enantiomer (-)-1. Our approach involves the alkylation of each enantiomer of 3-cthylpiperidine with 3-(2- 

bromoethyl)-2-ethylindole 7 and takes advantage of two methodologies recently developed in our 

laboratory: a) the use of stable N-silyl-3-1ithioindole derivatives for the regioselective preparation of 3- 

substituted indoles 7, and b) the u ~  of chiral non-raccmic oxazolopipcrid~mes for the stereoselective synthesis 

of diversely substituted enantiopure piperidines, x 

The required tryptophyl bromide 7 was prepared as outlined in Scheme 1.2-Ethylindole was protected 

as a tert-butyldimethylsilyl derivative and then allowed to react with N-bromosuccinimide at -78~C to give 

the 3-bromoindole derivative 4 in 90% overall yield. '; Treatment of a THF solution of 4 with t-BuLi (2.0 

equiv) at -78°C, followed by reaction of the resulting 3-1ithio species 5111 with ethylene oxide, provided 

tryptophol 6 in 75% yield. This reaction not only further demonstrates the usefulness of bulky silyl groups as 

indole protecting groups in the generation and reactions of 3-1ithioindoles hut also constitutes an efficient 

method for the synthesis of 2,3-disubstituted indoles. Finally, treatment of tryptophol 6 with PBr3 afforded 

tryptophyl bromide 7 in 85% yield. 
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Scheme 1. Reagents and conditions: (i) Nail, t-BuMe2SiCl, THF, 25oc; (ii) NBS, THF, -78oc; (iii) t-BuLi, 
THF, -78°C; (iv) ethylene oxide, THF, -78°C; (v) PBr3, CH2C12, 25°C. 

On the other hand, (R)-3-ethylpiperidine was prepared from the enantiopure oxazolopiperidone (+)- 

trans-8, which, in turn, was obtained by reaction of ethyl 5-oxopentanoate with (S)-phenylglycinol followed 

by equilibration with TFA of the initially formed mixture (8:2 ratio) of (+)-cis-8 and (+)-trans-$ (Scheme 2). 

In this manner, a 15:85 mixture of cis and trans isomers, which were easily separated by column 

chromatography, was obtained. Generation of the enolatc derived from (+)-trans-8 by treatment with lithium 

hexamethyldisilazide, followed by alkylation with ethyl iodide, afforded (+)-911 with high stereoselectivity 

(the 3S,6R diastereomer was the only isomer observed by NMR) and excellent chemical yield (83%). 12 

LiA1H4 reduction of the lactam carbonyl group of (+)-9 took place with simultaneous reductive cleavage of 

the oxazolidine ring to give (+)-I013 in 95% yield. Finally, removal of the chiral auxiliary by hydrogenolysis 

gave (R)-3-ethylpiperidine hydrochloride (+)-1114 (76% yield), which was then alkylated with tryptophyl 

bromide 7 to give the target alkaloid (+)-1,15 [~]D -~- +1().5 (c 0.45, CHCI3), 16 in 64% yield. 
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Scheme 2. Reagents and conditions: (i) toluene, reflux, Dean-Stark; (ii) TFA, CH2C12, 25°C; (iii) LiHMDS, 
EtI, THF, -78°C; (iv) LiAIH4, THF, 25°C; (v) HCI/C6H6, then H2, Pd-C, MeOH; (vi) 7, NaHCO3, CH3CN, 
80oc. 

Following a reaction ,~xluence identical to that depicted in Scheme 2, (-)-trans-88a was converted to (S)- 

3-ethylpiperidine hydrochloride (-)-11 by way of (-)-9 (Scheme 3) and then alkylated with tryptophyl bromide 

7 to give (-)-1, [ct]D 22 -10.8 (c 0.45, CHCI3), the enantiomer of natural decarbomethoxy-tetrahydrosecodine. In 

this enantiomeric series, the configuration of the stereogenic center at the piperidine 3-position was 

determined as S by X-ray diffraction analysis of (-)-9,17 thus confirming the R configuration of the alkaloid 

(+)-1. 
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Scheme 3 

The above results illustrate the potential of the easily accessible bicyclic lactams (+)-trans-8 and (-)- 

trans-8 for the enantioselective synthesis of 3-substituted piperidines. Using either (R)- or (S)-phenylglycinol, 

both of them commercially available, as source of chirality, (S)- or (R)-3-alkylpiperidines can be easily 

obtained. It is worth mentioning that (R)- and (S)-3-ethylpiperidine had previously been obtained only by 

resolution of the racerqate.18 
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