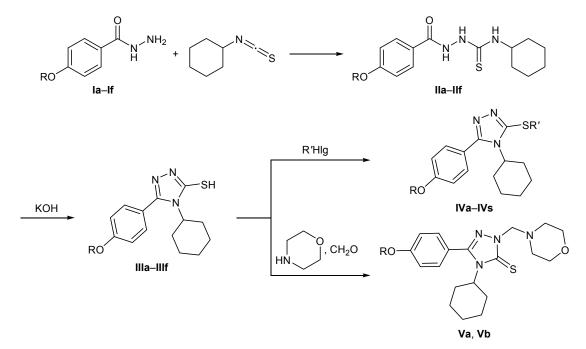
ISSN 1070-4280, Russian Journal of Organic Chemistry, 2013, Vol. 49, No. 10, pp. 1550–1554. © Pleiades Publishing, Ltd., 2013. Original Russian Text © M.A. Kaldrikyan, N.S. Minasyan, R.G. Melik-Ogandzhanyan, 2013, published in Zhurnal Organicheskoi Khimii, 2013, Vol. 49, No. 10, pp. 1571–1574.

SHORT COMMUNICATIONS

Alkylation and Aminomethylation of New 4,5-Substituted 4*H*-1,2,4-Triazole-3-thiols

M. A. Kaldrikyan, N. S. Minasyan, and R. G. Melik-Ogandzhanyan


Mndzhoyan Institute of Fine Organic Chemistry, Scientific–Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Armenia, pr. Azatutyan 26, Yerevan, 0014 Armenia e-mail: melik@raen.am

Received August 3, 2012

DOI: 10.1134/S1070428013100254

We previously synthesized 5-[alkoxyphenyl(alkoxyphenethyl, benzofuryl)]-4-phenyl(allyl)-4*H*-1,2,4triazole-3-thiols some of which (specifically *N*- and *S*-substituted derivatives) were found to exhibit antitumor activity [1]. While continuing studies in this line, we tried to find new efficient compounds among substituted 1,2,4-triazole-3-thiols and reveal a possible relation between their chemical structure and antitumor activity. For this purpose, we have synthesized new 1,2,4-triazole-3-thiol derivatives containing a cyclohexyl substituent on C^4 .

1,4-Substituted thiosemicarbazides **IIa–IIf** were synthesized by heating the corresponding 4-alkoxybenzohydrazides with cyclohexyl isothiocyanate. The cyclization of thiosemicarbazides **IIa–IIf** in 4.5% aqueous potassium hydroxide gave 5-alkoxyphenyl-4cyclohexyl-4*H*-1,2,4-triazole-3-thiols **IIIa–IIIf** which were subjected to S-alkylation with α -halo carboxylic

I-III, R = Me (a), Et (b), Pr (c), *i*-Pr (d), Bu (e), *i*-Bu (f); **IV**, R = Me, R' = CH₂COOH (a), CH(Me)COOH (b), CH(Bu)COOH (c); R = Et, R' = CH₂COOH (d), CH(Me)COOH (e); R = Pr, R' = CH₂COOH (f), CH(Me)COOH (g); R = *i*-Pr, R' = CH₂COOH (h), CH(Me)COOH (i); R = Bu, R' = CH₂COOH (j), CH(Me)COOH (k); R = *i*-Bu, R' = CH₂COOH (l), CH(Me)COOH (m); R' = CH₂CH₂OH, R = Me (n), Et (o), Pr (p), *i*-Pr (q), Bu (r), *i*-Bu (s); V, R = Me (a), Et (b).

acids in water in the presence of 3 equiv of KOH, as well as with 2-chloroethanol in alcohol in the presence of 1 eqiv of KOH.

Like other cyclic thioamides, triazole-3-thiols **IIIa** and **IIIb** reacted as thione tautomers [2] with morpholine and formaldehyde in ethanol according to Mannich to afford 2-(morpholin-4-ylmethyl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones **Va** and **Vb**. The structure of the newly synthesized compounds was confirmed by their elemental compositions and ¹H NMR spectra.

5-(4-Alkoxyphenyl)-4-cyclohexyl-4H-1,2,4-triazole-3-thiols IIIa–IIIf (genearl procedure). A solution of 10 mmol of thiosemicarbazide IIa–IIf and 1 g of potassium hydroxide in 50 ml of water was heated for 2 h under reflux. The mixture was cooled and treated with acetic acid to pH 5, and the precipitate was filtered off, washed with water, dried, and recrystallized from 70% ethanol.

4-Cyclohexyl-5-(4-methoxyphenyl)-4H-1,2,4-triazole-3-thiol (IIIa). Yield 93%, mp 185–186°C, $R_f 0.60$. ¹H NMR spectrum, δ , ppm: 1.11–1.30 m (1H), 1.61 m (2H), 1.76 m (4H), and 2.19 m (2H) (C₆H₁₁); 3.87 s (3H, OCH₃), 4.31 m (1H, NCH), 7.01 m and 7.37 m (2H each, C₆H₄), 13.57 br (1H, SH). Found, %: N 14.31; S 11.25. C₁₅H₁₉N₃OS. Calculated, %: N 14.52; S 11.07.

4-Cyclohexyl-5-(4-ethoxyphenyl)-4H-1,2,4-triazole-3-thiol (IIIb). Yield 98%, mp 223–224°C, $R_{\rm f}$ 0.62. ¹H NMR spectrum, δ , ppm: 1.10 m (1H), 1.20–1.38 m (2H), 1.61 m (1H), 1.67–1.85 m (4H), and 2.19 m (2H) (C₆H₁₁); 1.45 t (3H, CH₃, J = 7.0 Hz), 4.11 q (2H, OCH₂, J = 7.0 Hz), 4.31 m (1H, NCH), 6.95 m and 7.35 m (2H each, C₆H₄), 13.55 br (1H, SH). Found, %: N 13.65; S 10.37. C₁₆H₂₁N₃OS. Calculated, %: N 13.84; S 10.56.

4-Cyclohexyl-5-(4-propoxyphenyl)-4H-1,2,4-triazole-3-thiol (IIIc). Yield 92%, mp 205–206°C, R_f 0.61. ¹H NMR spectrum, δ , ppm: 1.06 t (3H, CH₃, J = 7.4 Hz); 1.16–1.36 m (3H), 1.65 m (1H), 1.77– 1.90 m (4H), and 2.03–2.18 m (2H) (C₆H₁₁); 1.85 m (2H, CH₂CH₃), 4.05 m (1H, NCH), 4.08 t (2H, OCH₂, J = 6.4 Hz), 7.00 m and 7.40 m (2H each, C₆H₄), 13.36 br.s (1H, SH). Found, %: N 13.45; S 10.26. C₁₇H₂₃N₃OS. Calculated, %: N 13.23; S 10.10.

4-Cyclohexyl-5-(4-isopropoxyphenyl)-4*H***-1,2,4triazole-3-thiol (IIId).** Yield 98%, mp 196–197°C, $R_{\rm f}$ 0.63. ¹H NMR spectrum, δ , ppm: 1.10–1.34 m (3H), 1.67 m (1H), 1.76–1.90 m (4H), and 2.00–2.17 m (2H) (C₆H₁₁); 1.37 d [6H, CH(CH₃)₂, J = 6.0 Hz], 4.02 m (1H, NCH), 4.64 sept [1H, CH(CH₃)₂, J = 6.0 Hz], 6.97 m and 7.35 m (2H each, C₆H₄), 13.42 br.s (1H, SH). Found, %: N 13.32; S 10.28. C₁₇H₂₃N₃OS. Calculated, %: N 13.23; S 10.10.

5-(4-Butoxyphenyl)-4-cyclohexyl-4H-1,2,4-triazole-3-thiol (IIIe). Yield 91%, mp 165–166°C, R_f 0.67. ¹H NMR spectrum, δ , ppm: 1.01 t (3H, CH₃, J = 7.4 Hz); 1.11 m (1H), 1.21–1.38 m (2H), 1.61 m (1H), 1.68–1.84 m (4H), and 2.20 m (2H) (C₆H₁₁); 1.53 m (2H, CH₂CH₃), 1.79 m (2H, OCH₂CH₂), 4.03 t (2H, OCH₂, J = 6.4 Hz), 4.31 m (1H, NCH), 6.98 m and 7.34 m (2H each, C₆H₄), 13.50 br (1H, SH). Found, %: N 12.45; S 9.38. C₁₈H₂₅N₃OS. Calculated, %: N 12.67; S 9.67.

4-Cyclohexyl-5-(4-isobutoxyphenyl)-4*H***-1,2,4triazole-3-thiol (IIIf).** Yield 93%, mp 185–186°C, $R_f 0.60$. ¹H NMR spectrum, δ , ppm: 1.07 d [6H, CH(CH₃)₂, J = 6.7 Hz]; 1.16–1.36 m (3H), 1.66 m (1H), 1.77–1.92 m (4H), and 2.09 m (2H) (C₆H₁₁); 2.12 sept [1H, CH(CH₃)₂, J 6.7 Hz], 3.81 d (2H, OCH₂, J = 6.4 Hz), 4.31 m (1H, NCH), 7.00 m and 7.36 m (2H each, C₆H₄), 13.21 br (1H, SH). Found, %: N 12.78; S 9.82. C₁₈H₂₅N₃OS. Calculated, %: N 12.67; S 9.67.

Substituted α -(4H-1,2,4-triazol-3-ylsulfanyl)acetic, -propionic, and -hexanoic acids IVa–IVm (general procedure). A mixture of 6 mmol of potassium hydroxide, 30 ml of water, 2 mmol of triazole-3thiol IIIa–IIIf, and 2 mmol of chloroacetic, 2-bromopropionic, or 2-bromohexanoic acid was heated for 2 h under reflux. The solution was filtered, the filtrate was adjusted to pH 5 by adding acetic acid, and the precipitate was filtered off, washed with water, dried, and recrystallized from ethanol.

[4-Cyclohexyl-5-(4-methoxyphenyl)-4*H*-1,2,4-triazol-3-ylsulfanyl]acetic acid (IVa). Yield 83%, mp 212–213°C, R_f 0.58. ¹H NMR spectrum, δ , ppm: 1.17–1.37 m (3H), 1.67 m (1H), 1.80–1.93 m (4H), and 2.11 m (2H) (C₆H₁₁); 3.87 s (3H, OCH₃), 3.99 m (1H, NCH), 4.05 s (2H, SCH₂), 7.02 m and 7.35 m (2H each, C₆H₄), 12.3 br.s (1H, COOH). Found, %: N 12.25; S 9.44. C₁₇H₂₃N₂O₃S. Calculated, %: N 12.09; S 9.61.

2-[4-Cyclohexyl-5-(4-methoxyphenyl)-4*H***-1,2,4triazol-3-ylsulfanyl]propanoic acid (IVb). Yield 83%, mp 174–175°C, R_f 0.53. ¹H NMR spectrum, \delta, ppm: 1.15–1.36 m (3H), 1.66 m (1H), 1.78–1.91 m (4H), and 2.00–2.16 m (2H) (C₆H₁₁); 1.65 d (3H, CH₃, J = 7.2 Hz), 3.87 s (3H, OCH₃), 4.00 m (1H, NCH), 4.44 q (1H, CHCH₃, J = 7.2 Hz), 7.02 m and 7.38 m** (2H each, C_6H_4), 12.6 br.s (1H, COOH). Found, %: N 11.45; S 8.96. $C_{18}H_{23}N_3O_3S$. Calculated, %: N 11.62; S 8.87.

2-[4-Cyclohexyl-5-(4-methoxyphenyl)-4*H***-1,2,4triazol-3-ylsulfanyl]hexanoic acid (IVc).** Yield 92%, mp 144–145°C, R_f 0.60. ¹H NMR spectrum, δ , ppm: 0.96 t (3H, CH₂CH₃, J = 7.1 Hz); 1.16–1.37 m (3H), 1.66 m (1H), 1.78–1.93 m (4H), and 1.99–2.17 m (2H) (C₆H₁₁); 1.37–1.55 m (4H, CH₂CH₂CH₃), 1.97 m (2H, CHCH₂), 3.88 s (3H, OCH₃), 4.00 m (1H, NCH), 4.37 t (1H, SCHCH₂, J = 6.9 Hz), 7.02 m and 7.37 m (2H each, C₆H₄), 11.4 br.s (1H, COOH). Found, %: N 10.18; S 8.14. C₂₁H₂₉N₃O₃S. Calculated, %: N 10.41; S 7.94.

[4-Cyclohexyl-5-(4-ethoxyphenyl)-4*H*-1,2,4-triazol-3-ylsulfanyl]acetic acid (IVd). Yield 98%, mp 187–188°C, R_f 0.57. ¹H NMR spectrum, δ , ppm: 1.17–1.37 m (3H), 1.68 m (1H), 1.81–1.93 m (4H), and 2.04–2.70 m (2H) (C₆H₁₁); 1.45 t (3H, CH₂CH₃, J = 7.0 Hz), 3.99 m (1H, NCH), 4.05 s (2H, SCH₂), 4.11 q (2H, OCH₂, J = 7.0 Hz), 6.99 m and 7.36 m (2H each, C₆H₄), 12.66 br.s (1H, COOH). Found, %: N 11.75; S 8.99. C₁₈H₂₃N₃O₃S. Calculated, %: N 11.65; S 8.87.

2-[4-Cyclohexyl-5-(4-ethoxyphenyl)-4H-1,2,4-triazol-3-ylsulfanyl]propionic acid (IVe). Yield 90%, mp 168–169°C, R_f 0.58. ¹H NMR spectrum, δ , ppm: 1.15–1.36 m (3H), 1.66 m (1H), 1.76–1.91 m (4H), and 2.00–2.16 m (2H) (C₆H₁₁); 1.45 t (3H, CH₂CH₃, J = 7.0 Hz), 1.65 d (3H, CHCH₃, J = 7.2 Hz), 4.00 m (1H, NCH), 4.11 q (2H, OCH₂, J = 7.0 Hz), 4.43 q (1H, SCHCH₃, J = 7.2 Hz), 6.99 m and 7.36 m (2H each, C₆H₄), 12.6 br.s (1H, COOH). Found, %: N 11.35; S 8.34. C₁₉H₂₅N₃O₃S. Calculated, %: N 11.19; S 8.53.

[4-Cyclohexyl-5-(4-propoxyphenyl)-4*H*-1,2,4-triazol-3-ylsulfanyl]acetic acid (IVf). Yield 80%, mp 175–176°C, R_f 0.54. ¹H NMR spectrum, δ , ppm: 1.08 t (3H, CH₂CH₃, J = 7.4 Hz); 1.17–1.37 m (3H), 1.67 m (1H), 1.80–1.92 m (4H), and 2.04–2.20 m (2H) (C₆H₁₁); 1.84 m (2H, CH₂CH₃), 3.99 m (1H, NCH), 4.00 t (2H, OCH₂, J = 6.4 Hz), 12.1 br.s (1H, COOH). Found, %: N 11.42; S 8.65. C₁₉H₂₅N₃O₃S. Calculated, %: N 11.19; S 8.53.

2-[4-Cyclohexyl-5-(4-propoxyphenyl)-4H-1,2,4triazol-3-ylsulfanyl]propanoic acid (IVg). Yield 90%, mp 135–136°C, $R_{\rm f}$ 0.69. ¹H NMR spectrum, δ , ppm: 1.08 t (3H, CH₂CH₃, J = 7.4 Hz); 1.16–1.36 m (3H), 1.66 m (1H), 1.78–1.91 m (4H), and 2.00– 2.17 m (2H) (C₆H₁₁); 1.65 d (3H, SCHCH₃, J = 7.2 Hz), 1.84 m (2H, CH₂CH₃), 4.00 m (1H, NCH), 4.00 t (2H, OCH₂, J = 6.4 Hz), 4.44 q (1H, SCHCH₃, J = 7.2 Hz), 7.00 m and 7.36 m (2H each, C₆H₄), 12.57 br.s (1H, COOH). Found, %: N 10.92; S 8.45. C₂₀H₂₇N₃O₃S. Calculated, %: N 10.78; S 8.23.

[4-Cyclohexyl-5-(4-isopropoxyphenyl)-4*H*-1,2,4triazol-3-ylsulfanyl]acetic acid (IVh). Yield 98%, mp 193–194°C, R_f 0.55. ¹H NMR spectrum, δ , ppm: 1.17–1.35 m (3H), 1.67 m (1H), 1.87 m (4H), and 2.13 m (2H) (C₆H₁₁); 1.38 d [6H, CH(CH₃)₂, J = 6.0 Hz], 4.00 m (1H, NCH), 4.05 s (2H, SCH₂), 4.67 sept [1H, CH(CH₃)₂, J = 6.0 Hz], 6.97 m and 7.35 m (2H each, C₆H₄), 12.53 br.s (1H, COOH). Found, %: N 11.28; S 8.65. C₁₉H₂₅N₃O₃S. Calculated, %: N 11.19; S 8.53.

[4-Cyclohexyl-5-(4-isopropoxyphenyl)-4*H*-1,2,4triazol-3-ylsulfanyl]propanoic acid (IVi). Yield 87%, mp 118–119°C, R_f 0.50. ¹H NMR spectrum, δ, ppm: 1.17–1.33 m (3H), 1.67 m (1H), 1.78–1.92 m (4H), and 2.02–2.18 m (2H) (C₆H₁₁); 1.38 d [6H, CH(CH₃)₂, J = 6.0 Hz], 1.65 d (3H, SCHCH₃, J = 7.2 Hz), 4.01 m (1H, NCH), 4.44 q (1H, SCHCH₃, J = 7.2 Hz), 4.66 m [1H, CH(CH₃)₂, J = 6.0 Hz], 6.97 m and 7.34 m (2H each, C₆H₄), 12.5 br.s (1H, COOH). Found, %: N 10.99; S 8.52. C₂₀H₂₇N₃O₃S. Calculated, %: N 10.78; S 8.23.

[5-(4-Butoxyphenyl)-4-cyclohexyl-4*H*-1,2,4-triazol-3-ylsulfanyl]acetic acid (IVj). Yield 87%, mp 136–137°C, R_f 0.57. ¹H NMR spectrum, δ , ppm: 1.02 t (3H, CH₂CH₃, J = 7.4 Hz); 1.16–1.37 m (3H), 1.67 m (1H), 1.75–1.92 m (4H), and 2.04–2.21 m (2H) (C₆H₁₁); 1.53 m (2H, CH₂CH₃), 1.80 m (2H, OCH₂CH₂), 3.95 m (1H, NCH), 4.04 t (2H, OCH₂, J =6.4 Hz), 4.04 s (2H, SCH₂), 5.90 br (1H, COOH), 6.98 m and 7.36 m (2H each, C₆H₄). Found, %: N 10.52; S 8.46. C₂₀H₂₇N₃O₃S. Calculated, %: N 10.78; S 8.23.

2-[5-(4-Butoxyphenyl)-4-cyclohexyl-4H-1,2,4-triazol-3-ylsulfanyl]propanoic acid (IVk). Yield 77%, mp 147–148°C, $R_f 0.57$. ¹H NMR spectrum, δ , ppm: 1.04 t (3H, CH₂CH₃, J = 7.4 Hz); 1.14–1.36 m (3H), 1.67 m (1H), 1.74–1.91 m (4H), and 2.02–2.21 m (2H) (C₆H₁₁); 1.65 d (3H, SCHCH₃, J = 7.2 Hz), 1.51 m (2H, CH₂CH₃), 1.80 m (2H, OCH₂CH₂), 3.98 m (1H, NCH), 4.05 t (2H, OCH₂, J = 6.4 Hz), 4.43 q (1H, SCHCH₃), 6.98 m and 7.39 m (2H each, C₆H₄); the COOH signal was strongly broadened. Found, %: N 10.64; S 8.15. C₂₁H₂₉N₃O₃S. Calculated, %: N 10.41; S 7.94. [4-Cyclohexyl-5-(4-isobutoxyphenyl)-4*H*-1,2,4triazol-3-ylsulfanyl]acetic acid (IVI). Yield 80%, mp 145–146°C, $R_f 0.55$. ¹H NMR spectrum, δ , ppm: 1.06 t [6H, CH(CH₃)₂, J = 6.7 Hz]; 1.17–1.36 m (3H), 1.67 m (1H), 1.79–1.93 m (4H), and 2.10 m (2H) (C₆H₁₁); 2.14 sept [1H, CH(CH₃)₂, J = 6.7 Hz], 3.80 d (2H, OCH₂, J = 6.4 Hz); 3.99 m (1H, NCH), 4.04 s (2H, SCH₂), 7.00 m and 7.36 m (2H each, C₆H₄); the COOH signal was strongly broadened. Found, %: N 10.55; S 8.30. C₂₀H₂₇N₃O₃S. Calculated, %: N 10.78; S 8.23.

2-[4-Cyclohexyl-5-(4-isobutoxyphenyl)-4*H***-1,2,4triazol-3-ylsulfanyl]propanoic acid (IVm). Yield 87%, mp 97–98°C, R_f 0.58. ¹H NMR spectrum, \delta, ppm: 1.07 t [6H, CH(CH₃)₂, J = 6.7 Hz]; 1.16–1.36 m (3H), 1.66 m (1H), 1.77–1.92 m (4H), and 2.09 m (2H) (C₆H₁₁); 1.65 d (3H, SCHCH₃, J = 7.2 Hz), 12.12 sept [1H, CH(CH₃)₂, J = 6.7 Hz], 3.81 d (2H, OCH₂, J = 6.4 Hz), 4.00 m (1H, NCH), 4.44 q (1H, SCHCH₃, J = 7.2 Hz), 7.00 m and 7.36 m (2H each, C₆H₄); the COOH signal was strongly broadened. Found, %: N 10.45; S 7.85. C₂₁H₂₉N₃O₃S. Calculated, %: N 10.41; S 7.94.**

Substituted 2-(4H-1,2,4-triazol-3-ylsulfanyl)ethanols IVn–IVs (general procedure). 2-Chloroethanol, 10 mmol, was added to a solution of 1.0 mmol of potassium hydroxide and 10 mmol of triazole-3thiol IIIa–IIIf in 20 ml of ethanol, and the mixture was heated for 45–60 min under reflux. The mixture was cooled, diluted with water, and left overnight, and the precipitate was filtered off, dried, and recrystallized from 70% ethanol.

2-[4-Cyclohexyl-5-(4-methoxyphenyl)-4*H***-1,2,4triazol-3-ylsulfanyl]ethanol (IVn). Yield 60%, mp 148–149°C, R_f 0.50. ¹H NMR spectrum, \delta, ppm: 1.14–1.36 m (3H), 1.67 m (1H), 1.78–1.91 m (4H), and 2.06–2.21 m (2H) (C₆H₁₁); 3.35 t (2H, SCH₂, J = 6.5 Hz), 3.76 m (2H, CH₂OH), 3.88 s (3H, OCH₃), 3.96 m (1H, NCH), 4.81 t (1H, OH, J = 5.7 Hz), 7.02 m and 7.37 m (2H each, C₆H₄). Found, %: N 12.75; S 9.84. C₁₇H₂₃N₃O₂S. Calculated, %: N 12.60; S 9.61.**

2-[4-Cyclohexyl-5-(4-ethoxyphenyl)-4H-1,2,4-triazol-3-ylsulfanyl]ethanol (IVo). Yield 87%, mp 129– 130°C, R_f 0.55. ¹H NMR spectrum, δ , ppm: 1.16– 1.34 m (3H), 1.67 m (1H), 1.78–1.94 m (4H), and 2.00–2.18 m (2H) (C₆H₁₁), 1.46 t (3H, CH₂CH₃, J =7.0 Hz), 3.35 t (2H, SCH₂), 3.75 m (2H, CH₂OH), 3.99 m (1H, NCH), 4.10 q (2H, OCH₂, J = 7.0 Hz), 4.82 t (1H, OH), 6.98 m and 7.35 m (2H each, C₆H₄). Found, %: N 12.25; S 9.46. C₁₈H₂₅N₃O₂S. Calculated, %: N 12.09; S 9.22.

2-[4-Cyclohexyl-5-(4-propoxyphenyl)-4*H***-1,2,4triazol-3-ylsulfanyl]ethanol (IVp). Yield 83%, mp 104–105°C, R_f 0.61. ¹H NMR spectrum, \delta, ppm: 1.08 t (3H, CH₂CH₃, J = 7.4 Hz); 1.14–1.35 m (3H), 1.66 m (1H), 1.77–1.91 m (4H), and 2.13 m (2H) (C₆H₁₁); 1.84 m (2H, CH₂CH₃), 3.35 t (2H, SCH₂, J = 6.5 Hz), 3.76 m (2H, CH₂OH), 3.96 m (1H, NCH), 4.00 t (2H, OCH₂, J = 6.5 Hz), 4.82 t (1H, OH, J = 5.7 Hz), 7.00 m and 7.35 m (2H each, C₆H₄). Found, %: N 11.38; S 8.55. C₁₉H₂₇N₃O₂S. Calculated, %: N 11.62; S 8.86.**

2-[4-Cyclohexyl-5-(4-isopropoxyphenyl)-4*H***-1,2,4-triazol-3-ylsulfanyl]ethanol (IVq).** Yield 78%, mp 125–126°C, R_f 0.63. ¹H NMR spectrum, δ , ppm: 1.15–1.33 m (3H), 1.67 m (1H), 1.77–1.91 m (4H), and 2.07–2.23 m (2H, C₆H₁₁), 1.38 d [6H, CH(CH₃)₂, J = 6.0 Hz], 3.35 t (2H, SCH₂, J = 6.5 Hz), 3.76 m (2H, CH₂OH), 3.98 m (1H, NCH), 4.66 sept [1H, CH(CH₃)₂, J = 6.0 Hz], 4.81 t (1H, OH, J = 5.7 Hz), 6.97 m and 7.34 m (2H each, C₆H₄). Found, %: N 11.66; S 8.62. C₁₉H₂₇N₃O₂S. Calculated, %: N 11.62; S 8.86.

2-[5-(4-Butoxyphenyl)-4-cyclohexyl-4H-1,2,4-triazol-3-ylsulfanyl]ethanol (IVr). Yield 70%, mp 134– 135°C, R_f 0.60. ¹H NMR spectrum, δ , ppm: 1.02 t (3H, CH₂CH₃); 1.15–1.35 m (3H), 1.66 m (1H), 1.74– 1.96 m (4H), and 2.13 m (2H) (C₆H₁₁); 1.54 m (2H, CH₂CH₃), 1.81 m (2H, OCH₂CH₂), 3.35 t (2H, SCH₂, J = 6.5 Hz), 3.76 m (2H, CH₂OH), 3.96 m (1H, NCH), 4.04 t (2H, OCH₂, J = 6.3 Hz), 4.82 t (1H, OH, J =5.7 Hz), 6.99 m and 7.35 m (2H each, C₆H₄). Found, %: N 11.32; S 8.75. C₂₀H₂₉N₃O₂S. Calculated, %: N 11.19; S 8.53.

2-[4-Cyclohexyl-5-(4-isobutoxyphenyl)-4H-1,2,4triazol-3-ylsulfanyl]ethanol (IVs). Yield 94%, mp 126–127°C, R_f 0.59. ¹H NMR spectrum, δ , ppm: 1.07 t [6H, CH(CH₃)₂, J = 6.7 Hz]; 1.15–1.35 m (3H), 1.66 m (1H), 1.77–1.99 m (4H), and 2.13 m (2H) (C₆H₁₁); 2.12 sept [1H, CH(CH₃)₂, J = 6.7 Hz], 3.35 t (2H, SCH₂, J = 6.5 Hz), 3.75 m (2H, CH₂OH), 3.81 d (2H, OCH₂, J = 6.4 Hz), 3.96 m (1H, NCH), 4.82 t (1H, OH, J = 5.3 Hz), 7.00 m and 7.35 m (2H each, C₆H₄). Found, %: N 11.28; S 8.35. C₂₀H₂₉N₃O₂S. Calculated, %: N 11.19; S 8.53.

4-Cyclohexyl-5-(4-methoxyphenyl)-2-(morpholin-4-ylmethyl)-2H-1,2,4-triazole-3(4H)-thione (Va). Morpholine, 1 ml, was added to a solution of 0.15 g (5 mmol) of thiol **IIIa** in 5 ml of ethanol, 4 ml of a formaldehyde solution was gradually added under shaking, and the mixture was kept for 6–7 h at 20– 25°C. The precipitate was filtered off and recrystallized from 70% ethanol. Yield 0.12 g (70%), mp 104– 105°C, R_f 0.71. ¹H NMR spectrum, δ , ppm: 1.11– 1.31 m (3H), 1.63 m (1H), 1.78–1.99 m (4H), and 2.18 m (2H) (C₆H₁₁); 2.71 m (4H, NCH₂, morpholine), 3.58 m (4H, OCH₂, morpholine), 3.89 s (3H, OCH₃), 4.37 m (1H, NCH), 5.04 s (2H, NCH₂), 7.03 m and 7.40 m (2H each, C₆H₄). Found, %: N 14.56; S 8.35. C₂₀H₂₈N₄O₂S. Calculated, %: N 14.42; S 8.25.

4-Cyclohexyl-5-(4-ethoxyphenyl)-2-(morpholin-4-ylmethyl)-2H-1,2,4-triazole-3(4H)-thione (Vb) was synthesized in a similar way. Yield 75%, mp 138–139°C, $R_f 0.59$. ¹H NMR spectrum, δ, ppm: 1.11– 1.30 m (3H), 1.62 m (1H), 1.78–1.99 m (4H), and 2.18 m (2H) (C₆H₁₁); 1.46 t (3H, CH₂CH₃, J = 6.9 Hz), 2.74 m (4H, NCH₂, morpholine), 3.59 m (4H, OCH₂, morpholine), 4.12 q (2H, OCH₂, J = 6.9 Hz), 4.37 m (1H, NCH), 5.04 s (2H, NCH₂), 7.00 m and 7.38 m (2H each, C₆H₄). Found, %: N 13.75; S 7.68. C₂₁H₃₀N₄O₂S. Calculated, %: N 13.91; S 7.96.

The ¹H NMR spectra were recorded on a Varian Mercury-300 spectrometer at 300 MHz using

DMSO- d_6 as solvent and tetramethylsilane as internal reference. The melting points were determined on a Boetius hot stage. Thin-layer chromatography was performed on Silufol UV-254 plates using benzene-acetone (2:1) (**IIIa–IIIf**, **Va**, **Vb**) or benzene–acetone-ethanol (1:1:0.1) (**IVa–IVs**) as eluent; spots were visualized under UV light.

Initial 2-(4-alkoxybenzoyl)-*N*-cyclohexylhydrazinecarbothioamides **IIa–IIf** were synthesized according to the procedure described in [3].

REFERENCES

- Kaldrikyan, M.A., Grigoryan, L.A., Melik-Ogandzhanyan, R.G., and Arsenyan, F.G., *Khim.-Farm. Zh.*, 2009, vol. 43, no. 5, p. 11; Kaldrikyan, M.A., Grigoryan, L.A., Melik-Ogandzhanyan, R.G., and Arsenyan, F.G., *Khim.-Farm. Zh.*, 2011, vol. 45, no. 4, p. 15; Grigoryan, L.A., Kaldrikyan, M.A., Melik-Ogandzhanyan, R.G., and Arsenyan, F.G., *Khim.-Farm. Zh.*, 2012, vol. 46, no. 6, p. 88.
- Guryanova, E.N. and Eitington, I.I., Zh. Obshch. Khim., 1961, vol. 61, p. 31; Shegal, I.L. and Postovskii, I.Ya., Khim. Geterotsikl. Soedin., 1965, p. 133.
- Kaldrikyan, M.A., Grigoryan, L.A., and Melik-Ogandzhanyan, R.G., *Globus Nauki*, 2007, vol. 7, p. 27.