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Abstract: Charette asymmetric cyclopropanation, chiral thiazoline synthesis by thioamide cyclization 
under modified Mitsunobu conditions, Ti(iPrO)4/bi-naphthol catalyzed allylstannane addition, and an 
exceptionally mild two-carbon homologation via dehydrative alkylation with 
phenylsulfonylacctonitrile/Ph3P/ADDP convened in an efficient, stereocontrolled route to the title 
bioactive heterocycle. Copyright © 1996 Elsevier Science Ltd 

Curacin A l (1) is the most prominent member of a small family 2 of potent antimitofic lipids elaborated by 

the Caribbean cyanobacterium Lyngbya majuscula. It exerts its antiproliferative effects by inhibiting microtubule 

assembly through high affinity association with the colchicine-binding domain, despite any perceivable 

topographic similarity with the latter alkaloid. 3 The structure of 1 was established by degradative studies4, 5 as 

well as total synthesis.6, 7 The novel cyclopropane-thiazoline moiety, characteristic of this group of marine 

natural products, appears necessary but not sufficient for repressing tubulin polymerization. 4 To expedite 

current pharmacologic testing, we report herein an efficient, asymmetric synthesis of 1 based on a convergent 

strategy (Scheme 1) which unites Wittig salt 2, containing three of the target's four chiral centers, with a 

differentiated form of bis-aldehyde 3. The fourth center at C(13) was created by the stereocontrolled addition of 

an allylic unit 4 to the remaining aldehyde. 

Scheme 1 

...... ~ Curacin A (I) 
H CH 3 

~ 7  PPI~+ I" 

3 + O H m 3  CHO + X A " ~ 4  

2 

7167 



7168 

To prepare the lefthand moiety, the known 6a chiral cyclopropylmethanol 5 (95% e.e), made by Charette 

asymmetric cyclopropanation 8 of cis-2-buten-l-ol, was subjected to catalytic RuCI3 oxidation followed by DCC 

mediated condensation with the tert-butyldiphenylsilyl (TBDPS) ether of L-serine ethyl ester (9) to give amide 6 

(Scheme 2). Thionation of 6 using Lawesson's reagent smoothly generated the corresponding thioamide from 

which alcohol 7 was obtained by fluoride induced desilylation. This result stands in stark contrast to the 

reported failure of Lawesson's reagent and derivatives with a closely related amide 6b containing the C(7)-C(10) 

diene and may be another manifestation the diene's unusual lability (v/de infra). Closure of 7 to thiazoline 89 

using Burgess' salt as recommended ]o proved disappointing; thiazoline 8 was isolated in modest yield (56%) 

accompanied by an unidentified by-product (30-38%). In contrast, cyclization under modified Mitsunobu 
conditions 11,t2 at -20°C furnished 8 (90%) and its chromatographically separable C(2)-epimer (4%). Zn(BI-la)2 

reduction of 8 in Et20 proceeded smoothly and completely avoided the epimerization at C(2) observed with other 

reagents. 13 Conventional tosylation of the resultant alcohol and displacement using excess Ph3P led to Wittig 

salt 2 in good overall yield. 
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(i) RuClffNaIO 4, CCI4/CH3CN/H20, (1:1:1.5), 23°C, 2 h; (ii)9, DCC, DMAP, CH3CN 
23°C, 12 h; (iii) Lawessun's reagent (0.6 equiv), PhCH 3, 90°C, 5 h; (iv) n-Bu4NF, THF 
23°C, 2 h; (v) Me3P (2 equiv)/ADDP (1.3 equiv), PhCH 3, -45 ° to -20°C, 2 h; (vi) 
Zn(BH4) 2, Et20, 23°C, 2 h; (vii) TsCI, Et3N, CH3CN, 23°C, 12 h; (viii) PPh 3, NaI, 
CH3CN, 90°C, 12 h. 

The central section representing C(4)-C(13) was crafted from aldehyde 1014 by homologation to all-trans 

ester 1 1 (94%) utilizing commercial (carbethoxyethylidene)triphenylphosphorane (16) (Scheme 3). A small 

amount (-4%) of contaminating 7E,9Z-diene was removed chromatographically: TLC (SiO2) hexanes/CH2Cl2 
1:1, Rf ~ 0.34 and 0.43, respectively. Efforts to achieve a second two-carbon extension following DIBAL-H 

reduction (95%) of I 1 were thwarted. Electrophilic derivatives of the resultant allylic alcohol (e.g., mesylate, 

tosylate, chloride, bromide) could not be isolated and/or underwent extensive elimination when exposed to 
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nucleophiles such as the lithium salt of ten-butyl acetate. On the other hand, dehydrative alkylation at room 

t e ~  using phenylsulfonylacetonitrile/Ph3P/ADDP as recently described by our laboratoryt5 gave rise to 

cyanosulfone 1 2 in excellent yield. The phenyisulfonyl group was easily stripped away 15 by Mg/HgCI2 in 

MeOH leaving nitrile 1 3. Low temperature DIBAL-H treatment led to the corresponding aldehyde from which 

alcohol 1 4 was secured by stereocontrolled allylation (>95% ee) using Ti(iPrO)4/(S)-bi-naphthol according to 

Keck et al.16 Serial methylation of the free alcohol, desilylation, and catalytic TPAP oxidation furnished 

aldehyde 1 $. Wittig olefmation between 2 and 15 completed the synthesis of 1, which was identical by 1 I-t/13C 

NMR, HPLC, and optical rotation with a sample of natural material generously provided by Prof. Win. Gerwick 

(Oregon State University). 

Scheme 3 
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(i) 16, CH2CI 2, 23°C, 3 h; (ii) i-Bu2AIH, PhCH 3, -78°C, 1 h; (iii) PhSO2CH2CN/PPh3/ADDP (2 equiv each), 
Phil, 23°C, 18 h; (iv) Mg/HgCl 2 , MeOH/THF (1:1), 0°C, 2 h; (v)i-Bu2AIH, PhCH 3, -78"C, 1 h; (vi) 
n-BuaSnCH2CH=CI-I2, (S)-l,l'-bi-2-naphthol, Ti(iPrO~ (15 tool %), 4,1. molecular sieves, CH2CI 2, -20°C, 3 
d; (vii) Nail, MeI, THF, 23°C, 12 h; (viii) n-Bu4NF , THF, 23°C, 2 h; (ix)n-Pr4NRuO,t/NMO, 4A molecular 
sieves, CH2CI 2, -23°C, 0.5 h; (x) , KN(TMS) 2, THF, -20°C, 1 h; 15, -78 ° to 23°C. 

In summary, we have described a facile, stereocontrolled synthesis of curacin A (1) in good overall 

yield. Implicit in this strategy is ready access to structural analogs of interest in elucidating the structure-activity 

relationships in this family of promising anticancer agents. Details of this work will be published elsewhere. 
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