
0018-9162/00/$10.00 © 2000 IEEE30 Computer

The Evitability
of Software
Patents

A
n Australian patent examiner more than 40 years ago, I’ve main-
tained a sporadic interest in the law of intellectual property and been
disturbed by the developing saga of software patents. Although the
intellectual property laws of any two countries—such as Australia
and the US, for example—exhibit significant differences, my disquiet

goes far beyond such differences.
Kenneth Nichols’s recent Computer article1 brought several of my concerns

into sharp focus. It was a splendid tutorial, and letters published in the subse-
quent two issues nicely augmented it. Given that Nichols expressly aimed to
“outline the current state of software patenting in the US,” it would have been
quite unfair to take issue with him had he not led with his chin. Twice. First, he
flatly asserted that “software patents are neither inherently good nor bad.”
Second, he declared that “software patents are here to stay.”

QUESTIONING PATENTS’ MORAL NEUTRALITY
In the moral sense at least, digital technology and thus software itself clearly

are neither inherently good nor bad—although plenty of technically good and
bad software can be found. But software patents are not impersonal technol-
ogy. The entire intellectual property system is a social artifact. As such, any part
of it may be considered good or bad to some degree. Not only is it reasonable
that an interested party examine the ethics and morality of any branch of the legal
system, but professionals in relevant areas have a social duty to do so.

Inconsistencies and ambiguities
Yet ethical issues are not simple. Nor is the law simple, or even internally con-

sistent. For example, the granting of letters patent confers a monopoly, but most
trade practices legislation postulates that monopolies are inherently unethical.
Nichols himself writes disparagingly of the “near-monopoly positions of IBM
in the 1970s and Microsoft in the 1990s.”1

Patent law and practice is a linguistic nightmare, an important ethical point
almost always overlooked in popular articles. The pseudonymous Leonard
Lockhard wrote stories on the US patent system that appeared occasionally in
Astounding Science Fiction magazine during the 1950s. Clearly an insider, in
“That Professional Look,”2 Lockhard described patent law as “not founded on
any known system of logic,” but founded instead on “an iron-clad, invariant
system of exceptions to a set of ever-changing, quasi-existent rules.” These sto-
ries delighted patent examiners and attorneys around the world, who knew that
ordinary readers would find the everyday occurrences of their professional life
ridiculous and incredible.

Hobbling software
with a medieval artifact
like the patent may
stifle innovation,
benefiting the moneyed
few at the expense of
everyone else.

W. Neville Holmes
University of Tasmania

P E R S P E C T I V E S

Claims the pivot
The linguistic problem springs from the role of the

claims, a role Lockhard emphasized. The monopolies
granted are defined only by the several claims of a
patent application. The description must support each
claim, but that is all. Patent procedures focus on the
claims, and patent actions typically focus on the
claims’ precise wording. Experts in law, not technol-
ogy, make the legal judgments. These experts must
often interpret the meanings of words in claims in
bizarre ways because they are required to respect the
precedents set by relevant prior judgments, which are
themselves often bizarre.

Such was the situation half a century ago, and it’s
worse now. Having laws and legal practices that citi-
zens at large cannot understand is unethical and dan-
gerous. Indeed, even ordinary lawyers can’t
understand patent law and so, in Australia at least,
the law forbids them to write patent specifications.

QUESTIONING PATENTS’ INEVITABILITY
Nichols’s assertion that software patents are here

to stay, a position intellectual property attorney
Gideon Gimlan3 also endorses, could simply be taken
to mean that commercial interests have the political
and economic clout to make sure these profitable
monopolies persist. Although this implication may
well be true, it is improper for computing profession-
als or patent attorneys to make such political predic-
tions. Such prognostications are best left to the
historian or political scientist.

On the other hand, Nichols’s assertion could,
despite his disclaimer, be interpreted by a naïve or
careless reader as an affirmation of the rightness and
goodness of software patents, particularly since the
popular press so often publishes similar assertions
with jubilation rather than qualification. Several ques-
tions must be answered before we can accept this sec-
ond interpretation. First, what is a software patent?
Second, are distinctive software patents justified?
Third, should the patent system be extended to pro-
vide monopolies for distinctive aspects of digital tech-
nology? It is both responsible and professional for
computing and intellectual-property-law profession-
als to pursue these questions.

THE SHAKY CASE FOR SOFTWARE PATENTS
The common use of the phrase “software patents”

implies that they are a distinctive patent class. Indeed,
Nichols claims that software requires separate treat-
ment. But does the US grant distinctive software
patents? The relevant literature seems to indicate that
the basis for software patents in the US derives not
from legislation, but from a new set of guidelines
issued in 1996 by the US Patent and Trademark
Office.4 These guidelines “do not have the force and

effect of law,” and do not themselves mention soft-
ware patents as such.

Traditional thinking would deny patentability to
software per se, as it has been denied to mere algo-
rithms. In response to Nichols’s article, US patent
attorney Bruce E. Hayden5 asserts that software is best
claimed under three of the four existing types of util-
ity patent claim. “Processes are methods of doing
something, and translate very easily from software.
The typical machine claimed is a general-purpose
computer executing the subject software algorithm.
Finally, article of manufacture claims cover a medium
... containing the software.”5

As Gimlan observes,3 in practice software cannot be
distinguished strictly from hardware: What software
can do, hardware can do equivalently. Since a software
process can be routinely converted to hardware, at least
in principle, there is no reason to restrict a process claim
to its software implementation. Note that the monop-
oly of a process claim covers the use of the process.

A machine claim grants a monopoly that applies to
the use of the machine carrying out a process, not to
the process itself, and certainly not to the algorithm.
Indeed, under traditional English patent law at least,
mere algorithms cannot be patented. There must be
a vendible product. If the machine claim merely cov-
ers a general-purpose computer performing a partic-
ular process embodied in some particular software,
the restriction to a general-purpose computer is point-
less and not in the inventor’s interests.

The 1996 US PTO guidelines seem to be silent on
article-of-manufacture claims. I infer that they claim
a monopoly on the article’s use—the medium con-
taining the software—as part of the process or

March 2000 31

Nichols led with his chin twice. First, he
asserted that “software patents are neither

inherently good nor bad.” Second,
he declared that “software patents are

here to stay.”

32 Computer

machine of the invention. Otherwise, copyright law
would be the appropriate monopoly source.

No patentable invention could reside in the software
itself, just as no patentable invention could reside in any
particular pattern of holes punched in the cards used to
operate a Jacquard loom. Traditional English patent law
explicitly denies patentability to a “mere scheme or
plan,” and the US guidelines suggest that a similar prin-
ciple applies there. In this case the appropriate source
of monopoly would be industrial design registration.

The self-modification argument
So far, then, there seems to be no need to make spe-

cific provisions for software in patent law. Both
Hayden5 and Jim Geringer,6 another US patent attor-
ney responding to Nichols, appear to agree on this
point. But Geringer finds bemusing Nichols’s asser-
tion that “‘self-modifying’ software cannot be ade-
quately described by the ‘device-process’ model
prevalent in patents.” Nichols’s response that “This
ability of software to modify itself has no parallel in
the patent’s world of physical devices and processes”
ignores the venerable art and science of servomech-
anisms. For example, one servomechanism, the gov-
ernor, brought the steam engine under control and led,
in some historians’ opinions, to the Industrial Revo-
lution. The governor functioned as that part of the
engine that, in response to an alteration in the engine’s

speed, changed its physical configuration to bring the
speed back into the desired operating range.

Ultimately, the patentable invention lies in the self-
modifying process or machine—the modification is
the product of the invention, not the invention itself.
An automatic product is not, by definition, inventive
and so cannot be validly claimed per se in a patent
application. Or so common sense would have it.

The new-entity argument
Nichols claims that “Software is a new kind of

entity, with the ability to transform all other tech-
nologies, including the creative arts, politics, and eco-
nomics. It therefore requires separate treatment.”

The implied major premise of this syllogism is that
new kinds of entities need separate treatment. When I
was examining applications for patents, one of the
classes of invention I was responsible for was electrical
connections. At the time, a completely new kind of con-
nection—the crimped connection—came into vogue,
accompanied by a torrent of patent applications. No
one suggested for a moment that this new and different
kind of connection needed separate treatment. Software
is a mechanism and differs from other mechanisms in
the same limited way that crimped connections differ
from other connections. Anyway, software isn’t par-
ticularly new: Shortly after leaving my job as a patent
examiner, I found myself busily plugging and later cod-
ing programs for a living—40 years ago.

Software is just one facet of digital technology, and,
in the long run, possibly not the most significant one.
Digital technology has clearly become important.
Should the patent system therefore be extended to pro-
vide monopolies for distinctive aspects of digital tech-
nology? We cannot answer this question until these
distinctive aspects appear.

The distinctive-features argument
To date, digital technology’s main distinctive fea-

tures may well be those that Nichols lists as practical
shortcomings:

• Take-up of digital products or protocols occurs so
quickly that if the first to market enjoys patent
protection, competing products can easily be
excluded.

• The wide distribution and varied uses of digital
products make patent infringements extremely
difficult to detect, prove, and prosecute for.

• Digital technology’s ubiquity makes it nearly
impossible for people using the technology,
directly or through the Internet, to determine
whether they are infringing a patent or not, even
with the best will in the world.

• With ideas and software proliferating so swiftly
and invisibly to so many recipients across the

Patent protection for digital
technology lasts 20 years—an eternity in
software development. This span virtually

ensures that no public benefit of the
invention’s free use after the patent expires

will ever be realized.

Internet, any patent infringement will likely
spread quickly and widely among “small viola-
tors,” whom it will be difficult, expensive, and
unprofitable to pursue.

If these distinctive features justify separate treat-
ment for software patents, it is far from clear what
separate treatment would eliminate the shortcomings.
Neither Nichols nor his respondents have anything to
propose, although Hayden dismisses the problems as
“speculative in nature and ... not borne out by expe-
rience,”5 a shade prematurely, I think. The absence of
evidence of guilt is not proof of innocence, in logic if
not in law.

Whether they are shortcomings or distinctive fea-
tures, these four points make a case for the removal of
patent protection from at least some kinds of digital
inventions, or at least for a drastic reduction in their
term. Nichols verges on making this suggestion him-
self when he points out that patent protection for dig-
ital technology lasts 20 years—an eternity in software
development. This span virtually ensures that no pub-
lic benefit of the invention’s free use after the patent
expires will ever be realized. Yet this public benefit is
supposed to be the sole compensation for the other-
wise unethical monopoly the patent grants.

Along similar lines, some have advocated abolish-
ing the application of copyright to digitized materials
altogether. John Perry Barlow7 describes copyright as
protecting the bottle, not the wine, and observes that
in the digital world we no longer need the bottle. And
truly, the common availability of photocopiers, scan-
ners, and color printers makes policing even general
copyright farcical.

THE CASE AGAINST SOFTWARE PATENTS
The arguments against software patents are many

and, to a degree, also apply to software copyright.
Both Nichols and Barlow advance the most obvious
one: Such intellectual property protections are
impractical. Digital representations of programs or
other text can be copied or otherwise manipulated
with trivial ease; their transmission presents an insub-
stantial pageant which mocks any pretension that we
can control it.

A more serious argument goes to the heart of the
matter. Intellectual property law is founded on secur-
ing the public good, and software patents or copyright
plainly do not secure the public good. The justification
for granting a monopoly to an inventor or importer of
a technology has long been that the grantee trains oth-
ers to exploit the invention after the grant expires. Thus,
the inventor or importer gets a short-term benefit from
the monopoly, while the public gets a greater long-term
benefit from the invention’s later, unfettered use.

Yet the public gains no more benefit—and arguably

March 2000 33

Software Patent Resources
There are two kinds of Web resources for information on intellectual

property law related to computers: questioning, usually compiled by out-
siders, and unquestioning, usually compiled by insiders. Sites that question
the law are fewer, and so appear first here.

Questioning Sites
The Electronic Frontier Foundation’s Intellectual Property Online Archive

http://www.eff.org/pub/Intellectual_property/
Many articles covering the legal aspects of intellectual property in soft-

ware or digital media formats; also contains links to relevant Web sites.

The Linux Journal Article Archive
http://www2.linuxjournal.com/articles/
The Currents section includes articles on software patents, for instance

currents/014.html. The recent article currents/016.html is also relevant and
interesting.

United Nations Human Development Report 1999
http://www.undp.org/hdro/report.html
Chapter 2, “New Technologies and the Global Race for Knowledge,”

examines the implications of current technology trends across the globe
and warns that some developed nations may be using patents and other
intellectual property protections to stifle development in less technologi-
cally advanced countries.

Unquestioning Sites
As Software Patents Take Over, Expertise Is Key

http://www.ljextra.com/practice/computer/0420softpat.html
Suggested guidelines for obtaining software patents.

Avoiding Intellectual Property Problems
http://www.fplc.edu/tfield/avoid.htm
General advice on measures you can take to guard your intellectual prop-

erty and forestall patent infringement problems.

Patents for Software-Related Inventions
http://www.tkhr.com/articles/pat4sof.html
Background on the history and intent of US patent law; analysis of soft-

ware patent case law and precedents; detailed, specific advice on maxi-
mizing intellectual property protection for software-related inventions.

Protection of Software-Related Inventions in Europe and Japan
http://www.ladas.com/GUIDES/COMPUTER/Computer.EPOJP.html

Statutory Protection for Computer Software in the United States
http://www.ladas.com/GUIDES/COMPUTER/Patents.USA.html
These two articles examine from different regional perspectives the issues

that impinge on software intellectual property.

Software Patent Institute Software Technologies Database
http://www.spi.org/
Home page for a nonprofit corporation that provides courses and prior

art about software technology to help improve the patent process.

34 Computer

far less—from the patent system in its current form
than it would enjoy if no patent system existed. The
current situation benefits business concerns exclu-
sively, either giant corporations that seek advantage
over their competitors, or opportunistic corporations
that acquire software patents solely to extract licens-
ing fees from their competitors. As Brian Kahin8

observes, the whole situation is a dreadful mess.
Given the volatility of software development and

the industry’s speed of innovation, software’s long-term
benefit (if any) to the public is of much shorter dura-
tion than the benefit of the monopoly a software patent
grants. Worse, corporate pressure and, internationally,
US government pressure have forced the extension of
patent monopoly terms to 20 years, further reducing
if not eliminating the possibility of public benefit.

With regard to the public benefit of copyright—at
least in the Jeffersonian US—the intent was that “ideas
should freely spread from one another over the globe.”
Thus, the intended public benefit is now absent from
copyright as well. It is sad that the US government
overlooks that the basic arguments in favor of free
trade, which it supports so fervently in the World
Trade Organization, apply equally to the free move-
ment of ideas, which it opposes so avidly through the
WTO and the World Intellectual Property
Organization.9

The justification typically given nowadays for spe-
cial software protection is that, without it, no one will
produce any software because programmers will have
no incentive to do so. Clearly, this is self-serving non-
sense. Corporations have long paid programmers to
produce software in the absence of software protec-
tion. Open source software continues to thrive in the
open and even to outpace closed, commercial com-
petitors.

P erhaps the strangest thing about discussions of
intellectual property law and digital technology
is that the two least practical forms—patents

and copyrights—get the most attention, whereas the
two most appropriate forms get the least. Industrial-
design registration gives a monopoly over a vendible
product’s visual appearance, while trademark regis-
tration gives a monopoly over a mark used to identify
a product’s source. Both these protections aim to pre-
vent unfair competition; neither blocks the free spread
of ideas and techniques.

The evitability of software patents does not ensure
they will be avoided. However, we can make good
arguments for avoiding software patents, and for
other more practical and just forms of monopoly for
software. If members of the computing profession
widely disseminate those arguments, there is at least
some chance we can avoid such patents. ✸

References
1. K. Nichols, “The Age of Software Patents,” Computer,

Apr. 1999, pp. 25-31.
2. L. Lockhard, “That Professional Look,” Astounding Sci-

ence Fiction, Jan. 1954, pp. 96-110.
3. G. Gimlan, “Relax, Not Everyone Is Out to Sue You,”

Letters, Computer, May 1999, p. 4.
4. US Patent and Trademark Office, “Examination Guide-

lines for Computer-Related Inventions,” http://www.
uspto.gov/web/offices/com/hearings/software/analysis/
computer.html.

5. B.E. Hayden, “The Claims Hold the Key,” Letters, Com-
puter, May 1999, pp. 4, 6.

6. J. Geringer, “Are Software Patents Really Different?”
Letters, Computer, June 1999, pp. 7-8.

7. J.P. Barlow, “Selling Wine Without Bottles,” http://www.
eff.org/pub/Intellectual_property/idea_economy.article.

8. B. Kahin, “The Software Patent Crisis,” Technology
Rev., Apr. 1990, pp. 52-58.

9. “The Standard Question,” The Economist, 15 Jan.
2000, p. 91.

W. Neville Holmes is a lecturer under contract at the
University of Tasmania’s School of Computing. Con-
tact him at neville.holmes@utas.edu.au.

It is sad that the US government overlooks
that the basic arguments in favor of free

trade, which it supports so fervently in the
World Trade Organization, apply equally to

the free movement of ideas, which it opposes
so avidly through the WTO and the World

Intellectual Property Organization.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

