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Summary: Highly stereoselective syntheses of enantiomerically pure y-amino acids statine and 4-epi- 
statine from (S)-malic acid are described by using, respectively, an intramolecular cr-acylamino radical 
reaction and an intermolecular N-acyliminium allylsilane coupling. 

y-Amino acids 4 can be synthesized from succinimides 1 (Scheme 1) in a general fashion through a 

sequence of reactions including reduction to hydroxylactam 2, alkylation (via an N-acyliminium 

intermediate) to 3, and hydrolytic ring opening.’ The recent upsurge of interest in the synthesis of a- 

hydroxy-y-amino acids, i.e. statine 5 and analogues,*T3 prompted us to investigate the sequence of 

Scheme 1 for the case of R = OH. At the outset of this work we deemed two aspects of our approach 

particularly attractive, namely (1) the ready availability of enantiomerically pure 1 (R = OH)4 from 

inexpensive (S)-malic acid and (2) the stereocontrolling effect of the 4-0~~ substituent in 2 on the 

alkylation process at C-X5 
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This communication reports our preliminary results, including highly stereoselective syntheses of 

statine 5 and 4-epi-statine 6 via, respectively, an intramolecular radical and an intermolecular cationic 

alkylation process 2 to 3 (Scheme 1). After completion of our present work a strategically related 

approach to statine analogues was published, albeit with racemic materials. 6 
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Successive treatment of (S)-malic acid with acetyl chloride, benzylamine and acetyl chloride4p7 (see 

Scheme 2) gave MeOH)] with a benzyl 

protecting group on nitrogen. Early experiments with the N-unsubstituted imide (1, R = OAc) were 

thwarted by the water solubility of the subsequent intermediates. The optical purity of 7 was related to 

that of separately synthesized and well-known8 I-benzyl-3-hydroxysuccinimide and was found to be 

>95%. Regioselective reduction of 74~7 gave a mixture of two stereoisomeric hydroxylactams from which 

the pure cis-product crystallized [mp 138.5-140.5 ‘C, [a120 J-, -79’ (c 1.0, EtOH)] in 85% yield. Standard 

acetylation yielded key intermediate 8 [mp 92-93.5 *C, [cl] 20~ -51’ (c 1.0, CHCl3)]. 

Scheme 2a 
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a ReagentS, conditions: i, AcCl (excess), reflux, 2 h; PhCH2NH2, THF, 4 h: AcCl (excess], reflux, 18 h; ii, NaBH4 

(6 equiv), EtOH, -20 “C, 15 min; iii, Ac20, DMAP, py, 4 h; iv. BF3.Ei20 (2 equiv), CH2=C(Me)CH2SiMe3 (3 

equiv), CH2C12, 18 h; v, MeOH, MeONa (cat), 2 h; vi, H2, 5% Pd/C (cat), EtOH, 2 h; vii, Na, NH3, -78 “C, 1.5 h; 

Viii, TBDMSCI, imiclazole, DMF, 18 h: ix, (BOQO, Et3N, DMAP, CH2C12, 18 h; x, KF, Bu4NF, THF, 2 h; xi, ref 

12. 

We first investigated acid-induced alkylation at C-5 of diacetate 8, proceeding via an N-acyliminium 

intermediate.576lg Thus, treatment of 8 with methallyltrimethylsilanelo in the presence of BF3.Et20 

yielded an 11:l mixture of 9 and its &-isomer. One recrystallization provided pure 9 in 85% yield as a 

crystalline solid [mp 78.579 ‘C, [cz]~~,, +28” (c 0.79, CHCl3)]. With Tic14 as Lewis acid a 9:l truns/cis 

ratio was obtained also in near quantitative yield. Lower selectivity was found for less sterically- 

demanding electrophiles. Allyltrimethylsilane and trimethylsilyl cyanide gave upon reaction with 8 in the 

presence of BF3.Et20 ratio’s of 71:29 and 67:33, respectively, the major products being 10 and 11. The 

stereochemistry of the products followed from the lH NMR vicinal coupling constants between H-4 and 

H-5. These values were 5-6 Hz in the cis-series and <l Hz in the trans-series.5 Starting from 9, 

deacetylation, hydrogenation and removal of the benzyl group gave lactam 12 as a crystalline solid. 

Despite several attempts 12 failed to give clean ring opening through acidic hydrolysis.‘J We therefore 

resorted to the preparation of 13, which has been transformed to 6 by Johnson and coworkers. l2 Silylation, 
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introduction of the tert-butoxycarbonyl function and desilylation provided 13, which showed properties [mp 

117.5-118.5 oc, [01]20 D -62” (c 1.56, MeOH)], very similar to the literature values [mp 118-120 ‘C, 

[cL]~OD -62.0’ (c 1.49, MeOH)].12 

Scheme 3” 
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a Reagents, conditions: i, PhSH (2 equiv), toluene, pTsOH (cat), reflux, Dean Stark, 4 8, mol sieves, 18 h; ii, EtOH, 

EtONa (cat) 1.5 h; iii, Me2C=CHSi(Me)2NMe2 (see text), THF, pentane, 4 h; iv, B+,SnH (1.5 equiv), AIBN (cat), 

benzene, reflux, 6 h; v, Bu~NF (1.1 M in THF, 1 equiv.), CsF (2 equiv), THF, 18h; vi, Na, N%, -78 “C, 1.5 h; vii, 

TBDMSCI. imidazole, DMF, 18 h; viii, (BOCgO, Et3N, DMAP. Cf+C$, 18 h; ix, KF, Bu4NF. THF. 2 h; x, ref. I:!. 

To access the corresponding cis-series we explored the radical cyclization methodology developed by 

Stork.13p14 To this end bisacetate 8 was transformed to thioether 14, in order to eventually generate a 

radical intermediate at C-5 (Scheme 3).15 Deacetylation of 14 was followed by treatment of the resulting 

alcohol with the required aminosilane to give cyclization precursor 15.16 This aminosilane was readily 

prepared from Me2C=CHMgBr and chlorodimethyl(dimethylamino)silane. Radical cyclization readily took 

place under the usual conditions. A 3:2 mixture of isopropyl stereoisomers 16 was obtained as the only 

detectable products, indicating that the radical cyclization proceeded entirely 5-exe with respect to 

regiochemistry and completely cis as far as the ring junction is concerned. These assignments were 

confirmed by desilylation and debenzylation of 16 producing a single isomer 17, clearly different from 12. 

Because acidic hydrolysis was not possible, 17 was converted into 18, which exhibited properties imp 

90.593 “C, [a12’D +60” (c 1.19, MeOH), similar to literature data (mp 92-94 “C, [a12’D +61.4’ (c 1.77, 

MeOH). This completed a formal synthesis of natural statine. 12 

ln conclusion we have shown, that (S)-malic acid is a useful starting material for the synthesis of 

statine and its C-4 epimer. The methodology used should be applicable to the synthesis of various statine 

analogues as well. 
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