Synthesis of [[(Benzenesulfonamido)alkyl]phenyl]alkanoic Acid Derivatives Containing Pyridyl or Imidazolyl Groups and Their Thromboxane A_2 Receptor Antagonistic and Thromboxane A_2 Synthase Inhibitory Activities

Shunichiro Sakurai,* Nobuo Ogawa, Tomio Suzuki, Ken-ichi Kato, Tetsuo Ohashi, Shingo Yasuda, and Hideo Kato

Research and Development Division, Hokuriku Seiyaku Co., Ltd., Inokuchi, Katsuyama, Fukui 911, Japan. Received February 8, 1996; accepted April 1, 1996

As part of our search for a dual inhibitor possessing both thromboxane A_2 (TXA₂) receptor antagonistic and TXA₂ synthase inhibitory activities, some [[(benzenesulfonamido)alkyl]phenyl]alkanoic acid derivatives possessing a pyridyl or imidazolyl group were synthesized. Their TXA₂ receptor antagonistic and TXA₂ synthase inhibitory activities were evaluated in terms of the inhibitory effects on U-46619-induced guinea-pig platelet aggregation and on thromboxane B_2 (TXB₂) production in human platelets, respectively. It was found that 3-[4-[2-(1-imidazolyl)-1-(4-chlorobenzenesulfonamido)ethyl]phenyl]propionic acid (22a), containing an imidazolyl group, is a well-balanced dual inhibitor having both TXA₂ receptor antagonistic activity (IC₅₀=0.31 μ M) and TXA₂ synthase inhibitory activity (IC₅₀=0.39 μ M).

Key words synthesis; dual inhibitor; thromboxane A_2 ; thromboxane A_2 receptor antagonistic activity; thromboxane A_2 synthase inhibitory activity

Thromboxane A₂ (TXA₂), a representative metabolite of arachidonic acid, may have an etiological role in various circulatory disorders and asthma because of its strong platelet-aggregating effect and its bronchoconstricting action.¹⁾ Thus, efforts have been made to develop TXA₂ receptor antagonists (TXRAs) or TXA₂ synthase inhibitors (TXSIs) as candidate antithrombotic or antiasthmatic agents, and some promising compounds are under clinical trial for the treatment of thrombosis and asthma.²⁾

TXSIs possess the advantage of increasing the beneficial (anti-thrombotic) prostaglandins (PGs), such as PGI₂ or PGD₂, via temporarily accumulated PGH₂, which is an endoperoxide precursor of TXA₂, when they inhibit the biosynthesis of TXA₂.³⁾ But the first clinical results with TXSI have been disappointing.⁴⁾ One of the major reasons may be that PGH₂ itself has a strong platelet-aggregating effect and bronchoconstricting action, like TXA₂, which binds to the same receptor as TXA₂.⁵⁾ On the other hand, TXRAs antagonize the actions of both TXA₂ and PGH₂, and it was reported that a combination of TXSI and TXRA was more effective than either agent alone.⁶⁾ Recently, efforts have been made to develop dual inhibitors having both TXRA and TXSI activities.⁷⁾

In the previous paper, we disclosed that compound 1 possesses strong TXRA and weak TXSI activities.⁸⁾ We have conducted structural modification of 1 in order to

obtain better balanced dual inhibitors. Representative TXSIs, such as ozagrel (2)^{2d)} or isbogrel (3),^{2e)} contain a pyridyl or imidazolyl group together with a carboxyl group as structural features, both of which have been found to be mandatory for TXSI activity. Another characteristic feature is that a six- to nine- carbon chain between the imidazolyl and the carboxyl groups is favorable for activity.^{2d,9)} Therefore, we envisioned that replacement of the benzene ring with a pyridine or imidazole ring in 1 would enhance TXSI activity with retention of the TXRA activity. This paper deals with the synthesis and the pharmacological effects of novel benzenesulfonamide derivatives containing a pyridyl or imidazolyl group (10a—i, 22a, b, 29a, b) and imidazole derivatives (13a—c).

Synthesis

The derivatives containing the pyridyl group (10a—i) were synthesized as shown in Chart 2. Reduction of the ketones (4a—e) with sodium borohydride gave the corresponding alcohols (5a—e). Chlorination of 5a—e with thionyl chloride afforded 6a—e, which were treated with sodium azide to yield the azides (7a—e). Hydrogenation of 7a—e gave the amines (8a—e), which were condensed with various benzenesulfonyl chlorides, followed by alkaline hydrolysis to afford the desired compounds 10a—i.

The derivatives containing the imidazolyl group (13a—

Chart 1

* To whom correspondence should be addressed. © 1996 Pharmaceutical Society of Japan

1511 August 1996

$$R^{1} \xrightarrow{\text{NaBH}_{4}} R^{1} \xrightarrow{\text{OH}} SOCl_{2}$$

$$4a - e$$

$$SOCl_{2} R^{1} \xrightarrow{\text{CI}} CH_{2})_{\overline{n}} - CO_{2}CH_{3}$$

$$6a - e$$

$$CI$$

$$CH_{2})_{\overline{n}} - CO_{2}CH_{3}$$

NHSO₂

R¹

aq. NaOH

R¹

$$(CH_2)_n - CO_2CH_3$$

R²

A, 5, 6, 7, 8

R¹

B 2-pyridyl 3

3-pyridyl 3

4-pyridyl 3

3-pyridyl 3

3-pyridyl 3

3-pyridyl 2

3-pyridyl 2

3-pyridyl 2

3-pyridyl 4

R² = H, CI, Br, CH₃, OCH₃

Chart 2

Chart 3

20a, b

(CH₂)_n—CO₂CH₃

19a, b

(CH₂)_n—CO₂CH₃

Chart 4

21a, b

1512 Vol. 44, No. 8

$$\begin{array}{c} \text{CI} \\ \text{N}_3 \\ \text{25a, b} \\ \end{array} \\ \text{(CH}_2)_{\vec{n}} - \text{CO}_2\text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{N} \\ \text{N} \\ \text{N} \\ \end{array} \\ \text{26a, b} \\ \end{array} \\ \text{(CH}_2)_{\vec{n}} - \text{CO}_2\text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{PtO}_2 \ / \ \text{H}_2 \\ \text{N} \\ \text{27a, b} \\ \end{array} \\ \text{(CH}_2)_{\vec{n}} - \text{CO}_2\text{CH}_3 \\ \end{array}$$

CI—
$$SO_2CI$$
NEt₃
 CI — SO_2NH
 CI — SO_2

c) were synthesized as shown in Chart 3. Reaction of the alcohols (11a-c)8) with imidazole and thionyl chloride gave 12a-c, followed by alkaline hydrolysis to afford the desired compounds 13a—c. Compounds 22a, b were synthesized as shown in Chart 4. The Friedel-Crafts reaction of phenylalkanoates (14a, b) with chloroacetyl chloride in the presence of anhydrous aluminum chloride provided the chloroketones (15a, b). Condensation of 15a, b with imidazole afforded 16a, b, which were reduced with sodium borohydride to yield the alcohols (17a, b). The desired compounds 22a, b were prepared from 17a, b in 5 steps, similarly to 10a—i. Compounds 29a, b were synthesized as shown in Chart 5. Reduction of the chloroketones (15a, b) with sodium borohydride gave the alcohols (23a, b), which were treated with sodium azide to yield the azides (24a, b). After chlorination of 24a, b with thionyl chloride, the chlorides (25a, b) were condensed with imidazole to afford 26a, b. The desired compounds 29a, b were prepared from 26a, b in 3 steps, similarly to 10a—i.

Pharmacological Results and Discussion

TXRA and TXSI activities of the synthetic compounds were estimated in terms of the inhibitory effects on U-46619¹⁰⁾-induced guinea-pig platelet aggregation and on TXB₂ production in human platelets, respectively. The activities are given as IC_{50} values in Tables 1—3.

First of all, we evaluated the pharmacological effects of the benzenesulfonamide derivatives containing a pyridyl group (10a—i). In the case of 10a—c, which differ in substitution position on the pyridine ring, we expected that the TXSI activity of the 3-pyridyl compound (10b) would be stronger, based on the reported structure—activity relationships of TXSIs. ^{9b)} However, 10a—c showed similar TXSI activities to 1. The TXRA activity of 10b, the most potent of the three, was almost equal to that of 1. Compounds 10f and 10g, having a methyl or a methoxy group at the R² position, were slightly more potent than 1 in terms of TXSI activity, while 10b, d, e were as potent

as, or slightly less potent than 1. The TXRA activity of 10b was slightly stronger than that of 1, but the other compounds were less potent. Compounds 10b, h, i, with different lengths of carbon chain attached to the carboxyl group, showed the following features. (i) TXSI activity of the ethyl chain compound (10h) was five times more potent than that of 1. (ii) TXSI activities of the propyl and butyl chain compounds (10b, i) were as potent as that of 1. (iii) TXRA activity of 10h was much weaker than that of 1. In conclusion, we have not yet found a good dual inhibitor among the benzenesulfonamide compounds containing a pyridyl group.

Next, we evaluated the pharmacological effects of the imidazole compounds. As a preliminary examination, we evaluated the pharmacological effects of the imidazole compounds (13a—c) without the benzenesulfonamido group, to investigate the influence of TXSI activities owing to the imidazolyl group. TXSI activities of 13a—c were much stronger than that of 1, and the ethyl chain compound (13b) was the most potent among those examined. The activity of 13b was 500 times greater than that of 1 and comparable to that of ozagrel (2). However, the TXRA activity of each compound disappeared, probably because of the lack of the benzenesulfonamido group, which is important for TXRA activity. ^{2a)}

Since we had confirmed enhancement of TXSI activity by introduction of the imidazolyl group, we next examined the pharmacological effects of the benzenesulfonamide derivatives containing the imidazolyl group (22a, b, 29a, b). The ethyl chain compound (22a) was about 10 times more potent than the propyl chain compound (22b) and 5 times more potent than 1 in terms of TXSI activity. On the other hand, the carbon chain length of the carboxyl group had little influence on TXRA activity, and 22a and 22b were each as potent as 1. These results indicated that 22a might be a well-balanced dual inhibitor having both TXRA and TXSI activities. The ethyl chain compound (29a), showed about 5 times stronger TXSI activity than the propyl chain

Table 1. Physicochemical and Pharmacological Data for Pyridyl-Substituted Sulfonamides 10a-i

$$R^{1}$$
 $(CH_{2})_{\overline{0}}$
 $CO_{2}H$

				~ ~ b)	(0.00)			alysis (%		$IC_{50} (\mu M)$		
Compd. No.	$R^{1a)}$	\mathbb{R}^2	n	Yield ^{b)} $(\%)$	mp (°C) (Recryst. solv.) ^{c)}	Formula	Calcd (Found)			TX^{d}	TX ^{e)}	
				, ,	•		C	H	N	antagonism	synthase	
10a	2-Py	Cl	3	90	126—126.5	C ₂₂ H ₂₁ ClN ₂ O ₄ S	59.39	4.76	6.30	0.76	2.00	
104	213	٠.		, •	(IE)	22 21 2 4	(59.46	4.77	6.31)			
10b	3-Py	C1	3	84	183—185	$C_{22}H_{21}CIN_{2}O_{4}S$	59.39	4.76	6.30	0.40	2.00	
100	0 1)		-		(E)	22 21 2 .	(59.30	4.83	6.27)			
10c	4-Py	C1	3	90	182—183	$C_{22}H_{21}ClN_2O_4S$	59.39	4.76	6.30	2.51	2.00	
100	3				(M)		(59.27	4.70	6.26)			
10d	3-Py	Н	3	80	164—167	$C_{22}H_{22}N_2O_4S$	64.27	5.40	6.82	1.58	2.51	
	,				(E)		(64.32	5.55	6.66)			
10e	3-Py	Br	3	83	192—195	$C_{22}H_{21}BrN_2O_4S$	53.99	4.33	5.72	0.50	2.51	
100	3				(M)		(53.83	4.38	5.67)			
10f	3- P y	CH_3	3	77	165—167	$C_{23}H_{24}N_2O_4S$	65.07	5.70	6.60	0.79	1.58	
	2	- 3			(E)		(64.96	5.93	6.56)			
10g	3-Py	OCH_3	3	77	166—167.5	$C_{23}H_{24}N_2O_5S$	62.71	5.49	6.36	1.58	1.00	
		3			(E)		(62.45	5.70	6.27)			
10h	3-Py	Cl	2	84	210-212.5	$C_{21}H_{19}ClN_2O_4S$	58.53	4.44	6.50	31.6	0.40	
1011	5 2)	٠.			(M)	21 17 2 4	(58.48	4.36	6.52)			
10i	3-Py	C1	4	87	201—203	$C_{23}H_{23}CIN_2O_4S$	60.19	5.05	6.10	0.50	1.60	
	,	~-	•		(M)	23 23 2 4	(60.17	4.93	6.07)			
1	Ph	Cl	3		153—155.5	$C_{23}H_{22}CINO_4S$	62.23	4.99	3.16	0.20	2.00	
•	* **	~.	-		(EA–IE)	23 22 4	(62.10	5.03	2.97)			

a) Abbreviations: Py, pyridyl; Ph, phenyl. b) Yield from 9a—i. c) Abbreviations: IE, isopropyl ether; E, ethanol; M, methanol; EA, ethyl acetate. d) Concentration needed to inhibit U-46619 (2 μg/ml)-induced platelet-aggregation in guinea-pig platelet-rich plasma (PRP) by 50%. e) Concentration needed to inhibit by 50% TXB₂ production in human platelets.

Table 2. Physicochemical and Pharmacological Data for Imidazolyl Derivatives 13a—c

			(0.5)		Analysis (%)			IC_{50} (μ M)		
Compd. No.	n	Yield ^{a)} (%)	mp (°C) (Recryst. solv.) ^{b)}	Formula	Ca	lcd (Four	na) 	TX c)	TX d)	
No.		(70)	(Recryst. solv.)		C	H	N	antagonism	synthase	
13a	1	88	177—179	$C_{18}H_{16}N_2O_2$	73.96	5.52	9.58	>100	0.02	
			(E)		(73.91	5.61	9.37)	100	0.0040	
13b	2	82	138—139	$C_{19}H_{18}N_2O_2$	74.49	5.92	9.14	> 100	0.0040	
			(E-DE)		(74.36	5.94	8.98)			
13c	3	77	150-151.5	$C_{20}H_{20}N_2O_2$	74.98	6.29	8.74	>100	0.35	
			(M-IE)	20 20 2 -	(74.87	6.11	8.67)			
2			ζ=)		`		ŕ	$N.T.^{e)}$	0.0079	

a) Yield from 12a—c. b) See footnote c in Table 1. DE, diethyl ether. c) See footnote d in Table 1. d) See footnote e in Table 1. e) Not tested.

compound (29b) or 1, but its TXRA activity was weaker than that of 1.

We estimated the most stable conformation of 22a, which possesses well-balanced dual inhibitory activity, by molecular mechanics calculation using Nemesis (version 2.0, Oxford Molecular Ltd.) and compared it with the stable conformation 11a) of TXA₂ (in Fig. 1, the conformation of (S)-22a is indicated, as a matter of convenience). The most stable conformation of 22a is a

"hairpin form," 8,11) in which the two benzene rings are arranged nearly in parallel to each other. Thus, the sulfonamido group is predicted to be fixed. An oxygen atom of the sulfonamido group approximately matched the C15-hydroxy of the ω -chain of TXA₂ when the carboxyl group of **22a** was superimposed on that of TXA₂. This result is similar to that for **1** in the preceding paper. Further, the imidazole ring of **22a** was located close to the oxane ring moiety of TXA₂. It was considered that

1514 Vol. 44, No. 8

Table 3. Physicochemical and Pharmacological Data for Imidazolyl-Substituted Sulfonamides 22a, b and 29a, b

NHSO₂—CI

$$(CH_2)_m$$

 $(CH_2)_n$ $(CH_2)_n$ CO_2H

Compd.				Yield ^{a)}	mp (°C)		Analysis (%) Calcd (Found)			$IC_{50} (\mu M)$	
No.	I	m	n	(%)	(Recryst. solv.) ^{b)}	Formula	C H		N	TX ^{c)} antagonism	TX ^{d)} synthase
22a	1	0	2	82		C ₂₀ H ₂₀ ClN ₃ O ₄ S		4.65	9.68	0.31	0.39
			_		(M)		(55.25	4.58	9.68)		
22b	1	0	3	74		$C_{21}H_{22}ClN_3O_4S$		5.19	9.02	0.25	3.02
					(M)		(54.38	5.03	9.01)		
29a	0	1	2	94	Amorphous	C20H20ClN3O4S		_		2.70	0.40
29b	0	1	3	90	182—185	C ₂₁ H ₂₂ ClN ₃ O ₄ S	56.31	4.95	9.38	0.62	1.86
					(M-A)		(56.44	4.91	9.27)		

a) Yield from 21a, b and 28a, b. b) See footnote c in Table 1. A, acetone. c) See footnote d in Table 1. d) See footnote e in Table 1.

Fig. 1. The Stable Conformations of (S)-22a and TXA₂

All calculations for these compounds were performed on a Fujitsu FMV-499D2 personal computer using Nemesis (version 2.0, Oxford Molecular Ltd.). Initial conformations for (S)-22a were selected with a conformational search around single bonds rotated by 360° in 30° increments. The stable conformation was determined by energy minimization of initial conformations. For TXA₂, the stable conformation was determined in a similar manner using torsion angles described in the literature. 1140

these structural features could account for the strong TXRA activity of 22a.

In conclusion, we found **22a**, a novel, well-balanced dual inhibitor having both TXRA and TXSI activities. Further pharmacological evaluations of **22a** are planned to evaluate its suitability as an antithrombotic agent and/or antiasthmatic agent.

Experimental

Melting points were measured on a Yanagimoto melting point apparatus without correction. IR spectra were recorded using a Hitachi 270-30 spectrophotometer. ¹H-NMR spectra were measured with JEOL EX-270 (270 MHz) and JEOL A-500 (500 MHz) spectrometers using

tetramethylsilane as an internal standard. MS and high-resolution MS were measured on a JEOL DX-300 mass spectrometer. Merck Kieselgel 60 (70—230 mesh) was used for column chromatography. All extracts were dried over Na₂SO₄.

Methyl 4-[4-[Hydroxy(2-pyridyl)methyl]phenyl]butyrate (5a) NaBH₄ (0.67 g, 17.6 mmol) was added portionwise to a solution of methyl 4-[4-(2-pyridylcarbonyl)phenyl]butyrate (4a 5.00 g, 17.6 mmol) in MeOH (50 ml) under ice-cooling, and the mixture was stirred at room temperature for 1 h. MeOH was evaporated off under reduced pressure, and the residue was dissolved in dilute HCl and washed with Et₂O. The aqueous layer was made alkaline with K_2CO_3 and extracted with Et₂O. The extract was washed with water, dried and concentrated. The residue was purified by column chromatography [SiO₂, AcOEt–CH₂Cl₂ (2:1)] to yield 5a (3.95 g, 79%) as a colorless oil.

Alcohols (5b-e) were prepared similarly from the corresponding

Table 4. Physicochemical Data for 5a-e, 6a-e, 7a-e, 8a-e

									Analys	sis (%)		
Compd. No.	R^{1a}	X	n	Yield ^{b)} (%)	mp (°C) (Recryst. solv.) ^{c)}	Formula		Calcd			Found	
140.				(70)	(Recryst. solv.)		C	Н	N	C	Н	N
5a	2-Py	ОН	3	79	Oil	C ₁₇ H ₁₉ NO ₃	285.1365 ^d)			-	285.135	5
5b	3- P y	OH	3	62	8586 (EA-IE)	$C_{17}H_{19}NO_3$	71.56	6.71	4.91	71.69	6.79	4.93
5e	4-Py	OH	3	51	82—83.5 (EA-IE)	$C_{17}H_{19}NO_3$	71.56	6.71	4.91	71.57	6.55	4.95
5d	3- P y	OH	2	56	9191.5 (EA-IE)	$C_{16}H_{17}NO_3$	70.83	6.32	5.16	70.82	6.28	5.10
5e	3- P y	OH	4	49	78—80 (EA–IE)	$C_{18}H_{21}NO_3$	72.22	7.07	4.68	72.07	7.12	4.65
6a	2- P y	Cl	3	97	Oil	$C_{17}H_{18}CINO_2$	303.1	026, 30	5.0997^{d}	303.1	027, 30	5.1005
6b	3- P y	Cl	3	95	Oil	$C_{17}H_{18}CINO_2$			5.0997 ^{d)}	303.1	032, 30	5.1008
6c	4-Py	C1	3	99	Oil	$C_{17}H_{18}ClNO_2$			5.0997 ^{d)}	303.1	021, 30:	5.1010
6d	3-Py	Cl	2	90	Oil	$C_{16}H_{16}ClNO_2$			1.0840^{d}	289.0	866, 29	1.0854
6e	3-Py	Cl	4	97	Oil	$C_{18}H_{20}CINO_2$	317.1	183, 31	9.1153 ^{d)}	317.1	165, 319	9.1171
7a	2- P y	N_3	3	99	Oil	$C_{17}H_{18}N_4O_2$		310.143	0^{d_0}		310.144	2
7b	3-Py	N_3	3	96	Oil	$C_{17}H_{18}N_4O_2$		310.143	0^{d}	;	310.143	2
7c	4-Py	N_3	3	86	Oil	$C_{17}H_{18}N_4O_2$		310.143	0^{d}		310.142	7
7d	3- P y	N_3	2	94	Oil	$C_{16}H_{16}N_4O_2$		296.127	3 ^{d)}	:	296.126	4
7e	3- P y	N_3	4	88	Oil	$C_{18}H_{20}N_4O_2$		324.158	6^{d}		324.158	8
8a	2-Py	NH_2	3	84	Oil	$C_{17}H_{20}N_2O_2$		284.152	5 ^d)		284.152	9
8b	3-Py	NH_2	3	95	Oil	$C_{17}H_{20}N_2O_2$		284.152	5^{d}		284.153	4
8c	4-Py	NH_2^2	3	96	Oil	$C_{17}H_{20}N_2O_2$		284.152	5 ^d)		284.151	8
8d	3- P y	NH ₂	2	75	Oil	$C_{16}H_{18}N_2O_2$		270.136			270.137	0
8e	3- P y	NH ₂	4	89	Oil	$C_{18}^{16}H_{22}^{2}N_{2}^{2}O_{2}^{2}$		298.168	1 ^d)	:	298.167	8

a) See footnote a in Table 1. b) Yield from 4a-e, 5a-e, 6a-e, 7a-e. c) See footnote c in Table 1. d) High-resolution MS data.

ketones (4b-e). Physicochemical data for 5a-e are summarized in Tables 4 and 5.

Methyl 4-[4-[Chloro(2-pyridyl)methyl]phenyl]butyrate (6a) Thionyl chloride (3.55 ml, 49.8 mmol) was added dropwise to a solution of 5a (7.11 g, 24.9 mmol) in benzene (35 ml) under ice-cooling, and the mixture was stirred at room temperature for 1 h. The solvent was evaporated off under reduced pressure, and the residue was taken up in CH₂Cl₂. This solution was washed successively with aqueous NaHCO₃ solution and water. The extract was dried and concentrated to yield 6a (7.34 g, 97%) as a pale violet oil.

Chlorides (6b—e) were prepared similarly from the corresponding alcohols (5b—e). Physicochemical data for 6a—e are summarized in Tables 4 and 5.

Methyl 4-[4-[Azido(2-pyridyl)methyl]phenyl]butyrate (7a) A suspension of $\mathbf{6a}$ (7.34 g, 24.2 mmol) and sodium azide (3.14 g, 48.3 mmol) in N,N-dimethylformamide (DMF) (40 ml) was heated at 40 °C for 4 h. After cooling, the reaction mixture was diluted with water and extracted with Et₂O. The extract was washed with water, dried and concentrated to yield $\mathbf{7a}$ (7.40 g, 99%) as a pale brown oil.

Azides (7b—e) were prepared similarly from the corresponding chlorides (6b—e). Physicochemical data for 7a—e are summarized in Tables 4 and 5.

Methyl 4-[4-[Amino(2-pyridyl)methyl]phenyl]butyrate (8a) A suspension of 7a (5.00 g, 16.1 mmol) and PtO₂ (50 mg) in MeOH (50 ml) was hydrogenated at ambient temperature under a hydrogen atmosphere (1 atm) for 6h. The catalyst was filtered off, and the filtrate was evaporated under reduced pressure. The residue was dissolved in dilute HCl and washed with Et₂O. The aqueous layer was made alkaline with K_2CO_3 and extracted with Et₂O. The extract was washed with water, dried and concentrated to yield 8a (3.86 g, 84%) as a pale yellow oil.

Amines (8b—e) were prepared similarly from the corresponding azides (7b—e). Physicochemical data for 8a—e are summarized in Tables 4 and 5.

Methyl 4-[4-[(4-Chlorobenzenesulfonamido)(2-pyridyl)methyl]phenyl]butyrate (9a) 4-Chlorobenzenesulfonyl chloride (2.82 g, 13.4 mmol) was added portionwise to a solution of 8a (3.80 g, 13.4 mmol) and triethylamine (2.05 ml, 14.7 mmol) in CH₂Cl₂ (38 ml) under ice-cooling. The mixture was stirred at room temperature for 1 h, and then washed

successively with water, aqueous K₂CO₃ solution and water. The extract was dried and concentrated to yield **9a** (5.33 g, 87%) as pale yellow crystals, which were recrystallized from EtOH to give colorless prisms.

Sulfonamides (9b—i) were prepared in a similar manner to that described above. Physicochemical data for 9a—i are summarized in Tables 6 and 7

4-[4-[(4-Chlorobenzenesulfonamido)(2-pyridyl)methyl]phenyl]butyric Acid (10a) A solution of 9a (3.00 g, 6.54 mmol) and $2 \,\mathrm{N}$ NaOH (12 ml) in MeOH (30 ml) was stirred at room temperature for 5 h. After evaporation of the solvent under reduced pressure, the residue was diluted with water, adjusted to pH 5 with dilute HCl, and then extracted with CH₂Cl₂. The extract was washed with water, dried and concentrated to yield 10a (2.62 g, 90%) as colorless crystals, which were recrystallized from isopropyl ether (iso-Pr₂O) to give colorless plates.

Sulfonamides (10b—i) were prepared in a similar manner to that described above. Physicochemical data for 10a—i are summarized in Tables 1 and 8.

Methyl 4-[(1-Imidazolyl)phenylmethyl]phenylacetate (12a) Thionyl chloride (0.86 ml, 11.8 mmol) was added dropwise to a solution of imidazole (3.27 g, 48 mmol) in CH_3CN (30 ml), and the mixture was stirred at room temperature for 10 min. A solution of methyl 4-(hydroxyphenylmethy)phenylacetate (11a) (3.07 g, 12 mmol) in CH_3CN (15 ml) was added to the reaction mixture, and the whole was refluxed for 1.5 h. After evaporation of the solvent under reduced pressure, the residue was diluted with aqueous K₂CO₃ solution, and extracted with Et₂O. The Et₂O layer was extracted with dilute HCl, and the aqueous layer was made alkaline with K₂CO₃ and extracted with Et₂O. The extract was washed, dried and concentrated. The residue was purified by column chromatography [SiO₂, CH_2Cl_2 -MeOH (100:1 \rightarrow 50:1)] to yield 12a (1.78 g, 48%) as a colorless oil. IR (liq.): 1738 $(C=O) \text{ cm}^{-1}$. ¹H-NMR (CDCl₃) δ : 3.63 (2H, s), 3.70 (3H, s), 6.51 (1H, s), 6.85 (1H, s), 7.00—7.15 (5H, m), 7.28 (2H, d, J=8 Hz), 7.30—7.40 (3H, m), 7.42 (1H, s). MS m/z: 306 (M⁺).

Compounds 12b and 12c were prepared similarly from the corresponding alcohols 11b and 11c, respectively.

Methyl 3-[4-[(1-Imidazolyl)phenylmethyl]phenyl]propionate (12b) Colorless oil, yield 55%. IR (liq.): 1736 (C=O) cm⁻¹. 1 H-NMR (CDCl₃) δ: 2.63 (2H, t, J=8 Hz), 2.96 (2H, t, J=8 Hz), 3.67 (3H, s), 6.49 (1H,

Table 5. Spectral Data for 5a-e, 6a-e, 7a-e, 8a-e

Compd. No.	IR (liq.) cm ⁻¹	$\frac{\mathrm{MS}\ m/z}{\mathrm{M}^+}$	1 H-NMR (CDCl ₃) δ (ppm)
5a	3396, 1738	285	1.93 (2H, qn, <i>J</i> =7.5 Hz), 2.31 (2H, t, <i>J</i> =7.5 Hz), 2.63 (2H, t, <i>J</i> =7.5 Hz), 3.65 (3H, s), 5.78 (1H, s), 7.15 (2H, d, <i>J</i> =8.5 Hz), 7.19 (1H, d, <i>J</i> =8 Hz), 7.23 (1H, dd, <i>J</i> =8, 5 Hz), 7.30 (2H, d, <i>J</i> =8.5 Hz).
			7.66 (1H, td, $J=8$, 1.5 Hz), 8.58 (1H, d, $J=5$ Hz)
5b	3176, 1734 ^{a)}	285	1.94 (2H, qn, $J = 7.5$ Hz), 2.32 (2H, t, $J = 7.5$ Hz), 2.47 (1H, br s), 2.64 (2H, t, $J = 7.5$ Hz), 3.66 (3H)
			s), 5.86 (1H, s), 7.17 (2H, d, $J = 8$ Hz), 7.25 (1H, dd, $J = 8$, 5Hz), 7.28 (2H, d, $J = 8$ Hz), 7.70 (1H,
_	2124 15244)	20.5	dt, $J=8$, 2Hz), 8.49 (1H, dd, $J=5$, 2Hz), 8.62 (1H, d, $J=2$ Hz)
5c	$3124, 1734^{a}$	285	1.93 (2H, qn, J=7.5 Hz), 2.31 (2H, t, J=7.5 Hz), 2.63 (2H, t, J=7.5 Hz), 3.14 (1H, br s), 3.65 (3Hz)
			s), 5.78 (1H, s), 7.16 (2H, d, $J=8.5$ Hz), 7.25 (2H, d, $J=8.5$ Hz), 7.35 (2H, d, $J=6$ Hz), 8.49 (2H, $J=6$ Hz)
5d	3148, 1734 ^{a)}	271	J=6 Hz) 2.61 (2H, t, $J=8$ Hz), 2.78 (1H, brs), 2.95 (2H, t, $J=8$ Hz), 3.66 (3H, s), 5.85 (1H, s), 7.19 (2H, c)
24	3110, 1731	2/1	J=8 Hz), 7.25 (1H, dd, $J=8$, 5 Hz), 7.29 (2H, d, $J=8$ Hz), 7.69 (1H, dt, $J=8$, 2 Hz), 8.47 (1H, dd
			J=5, 2 Hz), 8.59 (1H, d, $J=2$ Hz)
5e	3176, 1744 ^{a)}	299	1.58—1.70 (4H, m), 2.32 (2H, t, $J = 7.5$ Hz), 2.61 (2H, t, $J = 7.5$ Hz), 2.69 (1H, br s), 3.65 (3H, s),
			5.85 (1H, s), 7.16 (2H, d, $J = 8$ Hz), 7.24 (1H, dd, $J = 8$, 5 Hz), 7.27 (2H, d, $J = 8$ Hz), 7.70 (1H, dt
			J=8, 2 Hz), 8.47 (1H, dd, $J=5, 2 Hz$), 8.60 (1H, d, $J=2 Hz$)
6a	1738	303, 305	1.93 (2H, qn, $J=7.5$ Hz), 2.32 (2H, t, $J=7.5$ Hz), 2.63 (2H, t, $J=7.5$ Hz), 3.65 (3H, s), 6.16 (1H, s)
		(3:1)	7.16 (2H, d, $J=8.5$ Hz), 7.21 (1H, ddd, $J=8.5$, 1 Hz), 7.39 (2H, d, $J=8.5$ Hz), 7.57 (1H, d,
6 h	1726	202 205	J=8 Hz), 7.72 (1H, td, $J=8$, 1.5 Hz), 8.57 (1H, dd, $J=5$, 1.5 Hz)
6b	1736	303, 305 (3:1)	1.95 (2H, qn, <i>J</i> =7.5 Hz), 2.33 (2H, t, <i>J</i> =7.5 Hz), 2.65 (2H, t, <i>J</i> =7.5 Hz), 3.66 (3H, s), 6.12 (1H, 7.19 (2H, d, <i>J</i> =8.5 Hz), 7.31 (2H, d, <i>J</i> =8.5 Hz), 7.33 (1H, dd, <i>J</i> =8, 5 Hz), 7.80 (1H, dt, <i>J</i> =8,
		(3.1)	(211, d, J = 6.5112), $(211, d, J = 6.5112)$, $(215, d, J = 6.5112)$, $(216, dd, J = 6.5112)$
6c	1738	303, 305	1.95 (2H, qn, J = 7.5 Hz), 2.33 (2H, t, J = 7.5 Hz), 2.65 (2H, t, J = 7.5 Hz), 3.66 (3H, s), 6.02 (1H,
		(3:1)	7.18 (2H, d, $J = 8$ Hz), 7.27 (2H, d, $J = 8$ Hz), 7.37 (2H, d, $J = 6$ Hz), 8.60 (2H, d, $J = 6$ Hz)
6d	1738	289, 291	2.63 (2H, t, $J=8$ Hz), 2.95 (2H, t, $J=8$ Hz), 3.67 (3H, s), 6.12 (1H, s), 7.21 (2H, d, $J=8$ Hz), 7.3
		(3:1)	(2H, d, J=8 Hz), 7.33 (1H, dd, J=8, 5 Hz), 7.80 (1H, dt, J=8, 2 Hz), 8.55 (1H, dd, J=5, 2 Hz),
			8.64 (1H, d, $J=2$ Hz)
6e	1736	317, 319	1.59 - 1.71 (4H, m), 2.33 (2H, t, $J = 7.5$ Hz), 2.63 (2H, t, $J = 7.5$ Hz), 3.66 (3H, s), 6.12 (1H, s), 7.12
		(3:1)	(2H, d, J=8Hz), 7.30 (2H, d, J=8Hz), 7.31 (1H, dd, J=8, 5Hz), 7.78 (1H, dt, J=8, 2Hz), 8.54 (1H, dt, J=8, 2Hz), 8.64 (1
7a	2104, 1736	310	(1H, dd, $J=5$, 2Hz), 8.64 (1H, d, $J=2$ Hz)
/ a	2104, 1730	310	1.94 (2H, qn, <i>J</i> =7.5 Hz), 2.32 (2H, t, <i>J</i> =7.5 Hz), 2.64 (2H, t, <i>J</i> =7.5 Hz), 3.65 (3H, s), 5.77 (1H, 7.18 (2H, d, <i>J</i> =8 Hz), 7.21 (1H, ddd, <i>J</i> =8, 5, 1 Hz), 7.28 (2H, d, <i>J</i> =8 Hz), 7.36 (1H, d, <i>J</i> =8 Hz)
			7.70 (211, d, $J = 8$ 112), 7.21 (111, ddd, $J = 8$, 3, 1112), 7.28 (211, d, $J = 8$ 112), 7.30 (111, d, $J = 8$ 112), 7.70 (114, dd, $J = 8$, 1.5 Hz), 8.59 (114, dd, $J = 8$, 1.5 Hz)
7b	2104, 1738	310	1.95 (2H, qn, J=7.5 Hz), 2.33 (2H, t, J=7.5 Hz), 2.65 (2H, t, J=7.5 Hz), 3.66 (3H, s), 5.72 (1H,
	,		7.20 (2H, d, $J=6$ Hz), 7.21 (2H, d, $J=6$ Hz), 7.30 (1H, dd, $J=8$, 5Hz), 7.64 (1H, dt, $J=8$, 2 Hz).
			8.56 (1H, dd, $J=5$, 2Hz), 8.58 (1H, d, $J=2$ Hz)
7c	2108, 1736	310	1.82 (2H, qn, J=7.5 Hz), 2.29 (2H, t, J=7.5 Hz), 2.59 (2H, t, J=7.5 Hz), 3.57 (3H, s), 6.11 (1H, t)
	2404 4=20	•••	7.23 (2H, d, $J=8.5$ Hz), 7.27 (2H, d, $J=8.5$ Hz), 7.34 (2H, d, $J=6$ Hz), 8.56 (2H, d, $J=6$ Hz)
7d	2104, 1738	296	2.63 (2H, t, <i>J</i> =7.5 Hz), 2.95 (2H, t, <i>J</i> =7.5 Hz), 3.67 (3H, s), 5.72 (1H, s), 7.22 (4H, s), 7.30 (1H,
7e	2104, 1736	324	dd, J=8, 5 Hz), 7.64 (1H, dt, J=8, 2 Hz), 8.56 (1H, dd, J=5, 2 Hz), 8.58 (1H, d, J=2 Hz) 1.60—1.71 (4H, m), 2.33 (2H, t, J=7.5 Hz), 2.63 (2H, t, J=7.5 Hz), 3.66 (3H, s), 5.72 (1H, s), 7.2
76	2104, 1750	J2 4	(4H, s), 7.32 (1H, dd, J=8, 5 Hz), 7.66 (1H, dt, J=8, 2 Hz), 8.56 (1H, dd, J=5, 2 Hz), 8.59 (1H, dd, J=8, 5 Hz), 7.66 (1H, dd, J=8, 5 Hz), 7.66 (1H, dt, J=8, 2 Hz), 8.56 (1H, dd, J=8, 2 Hz), 8.59 (1
			J=2Hz)
8a	3376, 3300,	284	1.93 (2H, qn, J =7.5 Hz), 2.20 (2H, br s), 2.31 (2H, t, J =7.5 Hz), 2.61 (2H, t, J =7.5 Hz), 3.65 (3H)
	1736		s), 5.22 (1H, s), 7.12—7.15 (1H, m), 7.13 (2H, d, $J=8$ Hz), 7.25 (1H, d, $J=7.5$ Hz), 7.31 (2H, d,
			J=8 Hz), 7.59 (1H, td, $J=7.5$, 2 Hz), 8.56 (1H, d, $J=4$ Hz)
8b	3372, 3304,	284	1.80-2.10 (2H, br), 1.93 (2H, qn, $J=7.5$ Hz), 2.32 (2H, t, $J=7.5$ Hz), 2.62 (2H, t, $J=7.5$ Hz), 3.63
	1736		(3H, s), 5.23 $(1H, s)$, 7.14 $(2H, d, J=8 Hz)$, 7.23 $(1H, dd, J=8, 5 Hz)$, 7.28 $(2H, d, J=8 Hz)$, 7.70 $(3H, s)$
0 -	2272 2200	204	(1H, dt, J=8, 2Hz), 8.47 (1H, dd, J=5, 2Hz), 8.64 (1H, d, J=2Hz)
8c	3372, 3300, 1732	284	1.65—1.98 (2H, br), 1.93 (2H, qn, J=7.5 Hz), 2.32 (2H, t, J=7.5 Hz), 2.62 (2H, t, J=7.5 Hz), 3.6
	1134		(3H, s), 5.15 $(1H, s)$, 7.14 $(2H, d, J=8Hz)$, 7.24 $(2H, d, J=8Hz)$, 7.32 $(2H, d, J=6Hz)$, 8.52 $(2H, d, J=6Hz)$
8d	3372, 3300,	270	$\frac{1.76 \text{ (2H, br s)}}{2.76 \text{ (2H, t)}}$ $\frac{1.76 \text{ (2H, tr)}}{2.76 \text{ (2H, tr)}}$ $\frac{1.76 \text{ (2H, tr)}}{2.76 \text$
	1734	-/-	J=8 Hz), 7.23 (1H, dd, $J=8$, 5 Hz), 7.29 (2H, d, $J=8$ Hz), 7.69 (1H, dt, $J=8$, 2 Hz), 8.48 (1H, d
			J=5, 2Hz), 8.64 (1H, d, $J=2$ Hz)
8e	3380, 3304,	298	1.56—1.71 (4H, m), 1.76 (2H, br s), 2.32 (2H, t, $J=7.5$ Hz), 2.60 (2H, t, $J=7.5$ Hz), 3.66 (3H, s),
	1738		5.22 (1H, s), 7.13 (2H, d, $J=8$ Hz), 7.23 (1H, dd, $J=8$, 5 Hz), 7.27 (2H, d, $J=8$ Hz), 7.70 (1H, dt)
			J=8, 2 Hz), 8.47 (1 H, dd, $J=5$, 2 Hz), 8.64 (1 H, d, $J=2$ Hz)

a) KBr.

334.1681. Found: 334.1683.

4-[(1-Imidazolyl)phenylmethyl]phenylacetic Acid (13a) A solution of **12a** (1.66 g, 5.42 mmol) and $2 \,\mathrm{N}$ NaOH (5.4 ml) in MeOH (8 ml) was refluxed for 1 h. After evaporation of the solvent under reduced pressure, the residue was diluted with water, adjusted to pH 5 with dilute HCl, and then extracted with CH₂Cl₂. The extract was dried and concentrated to yield **13a** (1.39 g, 88%) as colorless crystals, which were recrystallized from EtOH to give colorless prisms, mp 177—179 °C. IR (KBr): 1714

s), 6.85 (1H, s), 7.03 (2H, d, J = 8 Hz), 7.05—7.15 (3H, m), 7.20 (2H, d, J = 8 Hz), 7.30—7.40 (3H, m), 7.45 (1H, s). MS m/z: 320 (M $^+$).

Methyl 4-[4-[(1-Imidazolyl)phenylmethyl]phenyl]butyrate (12c) Colorless oil, yield 56%. IR (liq.): 1736 (C=O) cm⁻¹. 1 H-NMR (CDCl₃) δ : 1.95 (2H, qn, J=7.5 Hz), 2.33 (2H, t, J=7.5 Hz), 2.65 (2H, t, J=7.5 Hz), 3.66 (3H, s), 6.48 (1H, s), 6.84 (1H, s), 7.03 (2H, d, J=8 Hz), 7.09—7.11 (3H, m), 7.17 (2H, d, J=8 Hz), 7.33—7.37 (3H, m), 7.40 (1H, s). MS m/z: 334 (M⁺). High-resolution MS m/z: Calcd for $C_{21}H_{22}N_{2}O_{2}$:

August 1996 1517

Table 6. Physicochemical Data for Pyridyl-Substituted Sulfonamides 9a—i

$$R^{1} \xrightarrow{NHSO_{2}} R^{2}$$

$$R^{1} \xrightarrow{(CH_{2})_{\overline{h}} CO_{2}CH_{3}}$$

									Analys	sis (%)		
Compd. No.	R ^{1 a)}	\mathbb{R}^2	n	Yield ^{b)} (%)	mp (°C) (Recryst. solv.) ^{c)}	Formula		Calcd			Found	
140.				(70)	(Recryst. solv.)	Pormuia	С	Н	N	С	Н	N
9a	2-Py	Cl	3	87	97.5—98.5 (E)	C ₂₃ H ₂₃ ClN ₂ O ₄ S	60.19	5.05	6.10	60.25	5.03	6.05
9b	3-Py	Cl	3	58	Òiĺ	$C_{23}H_{23}ClN_2O_4S$	458.1	067, 460	0.1038^{d}	458.1	072, 460).1049
9c	4- P y	Cl	3	32	134.5—135 (E)	$C_{23}H_{23}CIN_2O_4S$	60.19	5.05	6.10	60.10	5.07	6.06
9d	3- P y	Н	3	47	Òiĺ	$C_{23}H_{24}N_{2}O_{4}S$		424.145	7 ^d)		424.1442	2
9e	3-Py	Br	3	58	Oil	$C_{23}H_{23}BrN_2O_4S$	502.0	562, 504	1.0542^{d}	502.0	570, 504	1.0546
9f	3- P y	CH ₃	3	60	Oil	$C_{24}H_{26}N_2O_4S$		438.1613	3^{d}		438.1629	9
9g	3- P y	OCH ₃	3	57	Oil	$C_{24}H_{26}N_2O_5S$		454.1562	2 ^d)		454.155	5
9h	3-Py	Cl	2	43	161—162.5 (E)	$C_{22}H_{21}CIN_2O_4S$	59.39	4.76	6.30	59.42	4.61	6.32
9i	3-Py	Cl	4	55	132—133.5 (E–IE)	$C_{24}H_{25}ClN_2O_4S$	60.94	5.33	5.92	61.03	5.31	5.89

a) See footnote a in Table 1. b) Yield from 8a-e. c) See footnote c in Table 1. d) High-resolution MS data.

Table 7. Spectral Data for Pyridyl-Substituted Sulfonamides 9a—i

Compd. No.	IR (liq.) cm ⁻¹	MS m/z M ⁺	¹ H-NMR (CDCl ₃) δ (ppm)
9a	3092, 1734 ^{a)}	458, 460 (3:1)	1.88 (2H, qn, J =7.5 Hz), 2.30 (2H, t, J =7.5 Hz), 2.55 (2H, t, J =7.5 Hz), 3.66 (3H, s), 5.58 (1H, d, J =5.5 Hz), 6.97 (2H, d, J =8.5 Hz), 7.01—7.10 (2H, m), 7.05 (2H, d, J =8.5 Hz), 7.14—7.21 (1H, m), 7.19 (2H, d, J =8.5 Hz), 7.51—7.59 (1H, m), 7.53 (2H, d, J =8.5 Hz), 8.48 (1H, d, J =5 Hz)
9b	3272, 1736	458, 460 (3:1)	1.90 (2H, qn, J =7.5 Hz), 2.30 (2H, t, J =7.5 Hz), 2.59 (2H, t, J =7.5 Hz), 3.67 (3H, s), 5.63 (2H, s), 6.97 (2H, d, J =8.5 Hz), 7.05 (2H, d, J =8.5 Hz), 7.22 (1H, dd, J =8, 5 Hz), 7.30 (2H, d, J =9 Hz), 7.56 (1H, dt, J =8, 2 Hz), 7.59 (2H, d, J =9 Hz), 8.43 (1H, br s), 8.48 (1H, d, J =5 Hz)
9c	3268, 1730 ^{a)}	458, 460 (3:1)	1.90 (2H, qn, J = 7.5 Hz), 2.31 (2H, t, J = 7.5 Hz), 2.59 (2H, t, J = 7.5 Hz), 3.67 (3H, s), 5.54 (1H, d, J = 7.5 Hz), 5.64 (1H, d, J = 7.5 Hz), 6.90 (2H, d, J = 8 Hz), 7.05 (2H, d, J = 8 Hz), 7.18 (2H, d, J = 5.5 Hz), 7.33 (2H, d, J = 8.5 Hz), 7.61 (2H, d, J = 8.5 Hz), 8.48 (2H, d, J = 5.5 Hz)
9 d	3272, 1736	424	1.89 (2H, qn, <i>J</i> = 7.5 Hz), 2.28 (2H, t, <i>J</i> = 7.5 Hz), 2.58 (2H, t, <i>J</i> = 7.5 Hz), 3.66 (3H, s), 5.53 (1H, d, <i>J</i> = 7 Hz), 5.60 (1H, d, <i>J</i> = 7 Hz), 6.95 (2H, d, <i>J</i> = 8.5 Hz), 7.03 (2H, d, <i>J</i> = 8.5 Hz), 7.17 (1H, dd, <i>J</i> = 8.5 Hz), 7.36 (2H, t, <i>J</i> = 8 Hz), 7.49 (1H, t, <i>J</i> = 8 Hz), 7.55 (1H, d, <i>J</i> = 8.5 Hz), 7.69 (2H, dd, <i>J</i> = 8, 1.5 Hz), 8.36 (1H, br s), 8.44 (1H, d, <i>J</i> = 5 Hz)
9e	3268, 1736	502, 504 (1:1)	1.90 (2H, qn, J =7.5 Hz), 2.30 (2H, t, J =7.5 Hz), 2.59 (2H, t, J =7.5 Hz), 3.66 (3H, s), 5.61 (1H, d, J =7.5 Hz), 5.92 (1H, d, J =7.5 Hz), 6.96 (2H, d, J =8 Hz), 7.04 (2H, d, J =8 Hz), 7.17 (1H, dd, J =7.5, 5 Hz), 7.45 (2H, d, J =9 Hz), 7.50 (2H, d, J =9 Hz), 7.52 (1H, dt, J =7.5, 2 Hz), 8.39 (1H, d, J =2 Hz), 8.44 (1H, dd, J =5, 2 Hz)
9f	3276, 1738	438	1.89 (2H, qn, <i>J</i> =7.5 Hz), 2.29 (2H, t, <i>J</i> =7.5 Hz), 2.38 (3H, s), 2.59 (2H, t, <i>J</i> =7.5 Hz), 3.66 (3H, s), 5.29 (1H, d, <i>J</i> =7.5 Hz), 5.56 (1H, d, <i>J</i> =7.5 Hz), 6.96 (2H, d, <i>J</i> =8 Hz), 7.04 (2H, d, <i>J</i> =8 Hz), 7.14 (1H, dd, <i>J</i> =7.5, 5 Hz), 7.17 (2H, d, <i>J</i> =8.5 Hz), 7.55—7.59 (1H, m), 7.58 (2H, d, <i>J</i> =8.5 Hz), 8.37 (1H, br s), 8.45 (1H, d, <i>J</i> =5 Hz)
9g	3272, 1736	454	1.89 (2H, qn, $J=7.5$ Hz), 2.29 (2H, t, $J=7.5$ Hz), 2.58 (2H, t, $J=7.5$ Hz), 3.65 (3H, s), 3.83 (3H, s), 5.54 (1H, d, $J=7$ Hz), 5.65 (1H, d, $J=7$ Hz), 6.81 (2H, d, $J=9$ Hz), 6.97 (2H, d, $J=8.5$ Hz), 7.04 (2H, d, $J=8.5$ Hz), 7.15 (1H, dd, $J=7.5$, 5 Hz), 7.54 (1H, dt, $J=7.5$, 2 Hz), 7.61 (2H, d, $J=9$ Hz), 8.36 (1H, d, $J=2$ Hz), 8.42 (1H, dd, $J=5$, 2 Hz)
9h	1736 ^{a)}	444, 446 (3:1)	2.59 (2H, t, $J=7.5$ Hz), 2.90 (2H, t, $J=7.5$ Hz), 3.67 (3H, s), 5.30 (1H, d, $J=7$ Hz), 5.61 (1H, d, $J=7$ Hz), 6.97 (2H, d, $J=8$ Hz), 7.08 (2H, d, $J=8$ Hz), 7.17 (1H, dd, $J=8$, 5 Hz), 7.31 (2H, d, $J=8.5$ Hz), 7.50 (1H, dt, $J=8$, 2 Hz), 7.58 (2H, d, $J=8.5$ Hz), 8.38 (1H, d, $J=2$ Hz), 8.47 (1H, dd, $J=5$, 2 Hz)
9i	1738 ^{a)}	472, 474 (3:1)	1.56—1.68 (4H, m), 2.33 (2H, t, J =7.5 Hz), 2.57 (2H, t, J =7.5 Hz), 3.66 (3H, s), 5.34 (1H, d, J =7 Hz), 5.61 (1H, d, J =7 Hz), 6.94 (2H, d, J =8.5 Hz), 7.04 (2H, d, J =8.5 Hz), 7.17 (2H, dd, J =8, 5 Hz), 7.30 (2H, d, J =8.5 Hz), 7.51 (1H, dt, J =8, 2 Hz), 7.58 (2H, d, J =8.5 Hz), 8.40 (1H, d, J =2 Hz), 8.46 (1H, dd, J =5, 2 Hz)

Table 8. Spectral Data for Pyridyl-Substituted Sulfonamides 10a-i

Compd. No.	IR (KBr) cm ⁻¹	MS <i>m/z</i> M ⁺	1 H-NMR (CD $_{3}$ OD) δ (ppm)
10a	3168, 1696	444, 446 (3:1)	1.83 (2H, qn, J =7.5 Hz), 2.24 (2H, t, J =7.5 Hz), 2.56 (2H, t, J =7.5 Hz), 5.60 (1H, s), 7.02 (4H, s), 7.17—7.22 (1H, m), 7.29—7.35 (1H, m), 7.32 (2H, d, J =9 Hz), 7.61 (2H, d, J =9 Hz), 7.66 (1H, td, J =7.5, 2 Hz), 8.37 (1H, d, J =4.5 Hz)
10b	3256, 1698	444,446 (3:1)	1.85 (2H, qn, $J=7.5$ Hz), 2.26 (2H, t, $J=7.5$ Hz), 2.59 (2H, t, $J=7.5$ Hz), 5.67 (1H, s), 7.01 (2H, d, $J=8$ Hz), 7.06 (2H, d, $J=8$ Hz), 7.31 (1H, dd, $J=8.5$, 5 Hz), 7.34 (2H, d, $J=9$ Hz), 7.61 (2H, d, $J=9$ Hz), 7.65 (1H, d, $J=8.5$ Hz), 8.35 (1H, br s), 8.37 (1H, d, $J=5$ Hz)
10c	3212, 1696	$(M^+ - C_6 H_4 ClSO_2)$	1.84 (2H, qn, J =7.5 Hz), 2.26 (2H, t, J =7.5 Hz), 2.58 (2H, t, J =7.5 Hz), 5.60 (1H, s), 6.97 (2H, d, J =8.5 Hz), 7.04 (2H, d, J =8.5 Hz), 7.28 (2H, d, J =4.5 Hz), 7.34 (2H, d, J =8.5 Hz), 7.62 (2H, d, J =8.5 Hz), 8.39 (2H, d, J =4.5 Hz)
10d	3260, 1702	$411 \\ (M^+ + 1)$	1.84 (2H, qn, <i>J</i> =7.5 Hz), 2.24 (2H, t, <i>J</i> =7.5 Hz), 2.57 (2H, t, <i>J</i> =7.5 Hz), 5.65 (1H, s), 7.00 (2H, d, <i>J</i> =8 Hz), 7.04 (2H, d, <i>J</i> =8 Hz), 7.29 (1H, dd, <i>J</i> =8, 5 Hz), 7.35 (2H, t, <i>J</i> =8 Hz), 7.47 (1H, t, <i>J</i> =8 Hz), 7.64 (1H, dt, <i>J</i> =8, 2 Hz), 7.68 (2H, dd, <i>J</i> =8, 1.5 hz), 8.32 (1H, d, <i>J</i> =2 Hz), 8.34 (1H, dd, <i>J</i> =5, 2 Hz)
10e	3256, 1696	444, 446 (1:1, M ⁺ – CO ₂)	1.86 (2H, qn, J =7.5 Hz), 2.27 (2H, t, J =7.5 Hz), 2.59 (2H, t, J =7.5 Hz), 5.66 (1H, s), 7.00 (2H, d, J =8.5 Hz), 7.06 (2H, d, J =8.5 Hz), 7.31 (1H, dd, J =8, 5 Hz), 7.49 (2H, d, J =9 Hz), 7.54 (2H, d, J =9 Hz), 7.65 (1H, d, J =8 Hz), 8.35 (1H, d, J =2 Hz), 8.37 (1H, dd, J =5, 2 Hz)
10f	3256, 1706	425 (M ⁺ + 1)	1.84 (2H, qn, <i>J</i> = 7.5 Hz), 2.25 (2H, t, <i>J</i> = 7.5 Hz), 2.35 (3H, s), 2.58 (2H, t, <i>J</i> = 7.5 Hz), 5.61 (1H, s), 7.00 (2H, d, <i>J</i> = 8.5 Hz), 7.05 (2H, d, <i>J</i> = 8.5 Hz), 7.16 (2H, d, <i>J</i> = 8 Hz), 7.29 (1H, dd, <i>J</i> = 7.5, 5 Hz), 7.54 (2H, d, <i>J</i> = 8 Hz), 7.63 (1H, dt, <i>J</i> = 7.5, 2 Hz), 8.31 (1H, d, <i>J</i> = 2 Hz), 8.34 (1H, dd, <i>J</i> = 5, 2 Hz)
10g	3256, 1700	441 (M ⁺ + 1)	1.84 (2H, qn, <i>J</i> =7.5 Hz), 2.25 (2H, t, <i>J</i> =7.5 Hz), 2.58 (2H, t, <i>J</i> =7.5 Hz), 3.81 (3H, s), 5.59 (1H, s), 6.85 (2H, d, <i>J</i> =8.5 Hz), 7.01 (2H, d, <i>J</i> =8.5 Hz), 7.06 (2H, d, <i>J</i> =8.5 Hz), 7.30 (1H, dd, <i>J</i> =8, 5 Hz), 7.59 (2H, d, <i>J</i> =8.5 Hz), 7.64 (1H, d, <i>J</i> =8 Hz), 8.32 (1H, br s), 8.34 (1H, d, <i>J</i> =5 Hz)
10h	3252, 1698	255 $(M^+ - C_6H_4ClSO_2)$	2.55 (2H, t, <i>J</i> =7.5 Hz), 2.85 (2H, t, <i>J</i> =7.5 Hz), 5.66 (1H, s), 7.01 (2H, d, <i>J</i> =7 Hz), 7.09 (2H, d, <i>J</i> =7 Hz), 7.31 (1H, dd, <i>J</i> =8, 5 Hz), 7.34 (2H, d, <i>J</i> =8.5 Hz), 7.61 (2H, d, <i>J</i> =8.5 Hz), 7.64 (1H, d, <i>J</i> =8 Hz), 8.34 (1H, s), 8.36 (1H, d, <i>J</i> =5 Hz)
· 10i	3256, 1696	458, 460 (3:1)	1.54—1.64 (4H, m), 2.31 (2H, t, $J=7$ Hz), 2.57 (2H, t, $J=7$ Hz), 5.66 (1H, s), 6.99 (2H, d, $J=8$ Hz), 7.04 (2H, d, $J=8$ Hz), 7.31 (1H, dd, $J=8$, 5 Hz), 7.33 (2H, d, $J=9$ Hz), 7.61 (2H, d, $J=9$ Hz), 7.65 (1H, d, $J=8$ Hz), 8.35 (1H, d, $J=2$ Hz), 8.37 (1H, dd, $J=5$, 2 Hz)

(C=O) cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 3.57 (2H, s), 6.83 (1H, s), 6.95 (1H, s), 7.05—7.15 (5H, m), 7.28 (2H, d, J=8 Hz), 7.30—7.40 (3H, m), 7.61 (1H, s). MS m/z: 292 (M⁺). Anal. Calcd for C₁₈H₁₆N₂O₂: C, 73.96; H, 5.52; N, 9.58. Found: C, 73.91; H, 5.61; N, 9.37.

Compounds 13b and 13c were prepared similarly from 12b and 12c, respectively.

3-[4-[(1-Imidazolyl)phenylmethyl]phenyl]propionic Acid (13b) Colorless crystals, mp 138—139 °C (EtOH–Et₂O), yield 82%. IR (KBr): 1710 (C=O) cm⁻¹. ¹H-NMR (DMSO- d_6) δ: 2.53 (2H, t, J=7.5 Hz), 2.83 (2H, t, J=7.5 Hz), 6.80 (1H, s), 6.95 (1H, s), 7.00—7.15 (5H, m), 7.24 (2H, d, J=8 Hz), 7.30—7.40 (3H, m), 7.61 (1H, s). MS m/z: 306 (M⁺). Anal. Calcd for C₁₉H₁₈N₂O₂: C, 74.49; H, 5.92; N, 9.14. Found: C, 74.36; H, 5.94; N, 8.98.

4-[4-[(1-Imidazolyl)phenylmethyl]phenyl]butyric Acid (13c) Colorless needles, mp 150—151.5 °C (MeOH–iso-Pr $_2$ O), yield 77%. IR (KBr): 1710 (C=O) cm $^{-1}$. 1 H-NMR (CDCl $_3$) δ : 1.96 (2H, qn, J=7.5 Hz), 2.34 (2H, t, J=7.5 Hz), 2.67 (2H, t, J=7.5 Hz), 6.47 (1H, s), 6.85 (1H, s), 7.01 (2H, d, J=8.5 Hz), 7.07—7.09 (2H, m), 7.11 (1H, s), 7.18 (2H, d, J=8.5 Hz), 7.34—7.36 (3H, m), 7.49 (1H, s). MS m/z: 320 (M $^+$). Anal. Calcd for C $_2$ 0H $_2$ 0N $_2$ O $_2$: C, 74.98; H, 6.29; N, 8.74. Found: C, 74.87; H, 6.11; N, 8.67.

Methyl 3-(4-Chloroacetylphenyl)propionate (15a) Anhydrous aluminum chloride (11.9 g, 89.2 mol) was added portionwise to a solution of methyl 3-phenylpropionate (14a) (7.33 g, 44.6 mmol) in CS₂ (22 ml), and then chloroacetyl chloride (3.55 ml, 44.6 mmol) was added dropwise to the mixture under ice-cooling. The reaction mixture was stirred at room temperature for 16 h. After removal of the organic layer by decantation, the residue was taken up in CH₂Cl₂. This solution was poured into ice water and extracted with CH₂Cl₂. The extract was washed successively with aqueous K_2 CO₃ solution and water, then dried and concentrated. The residual crystals were washed with iso-Pr₂O to yield 15a (9.45 g, 88%) as pale yellow crystals, which were recrystallized from iso-Pr₂O to give colorless columns, mp 89—90.5 °C. IR (KBr): 1732, 1698 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.67 (2H, t, J=7.5 Hz), 3.03 (2H, t, J=7.5 Hz), 3.67 (3H, s), 4.69 (2H, s), 7.33 (2H, d, J=8 Hz), 7.89 (2H, d, J=8 Hz), MS m/z: 240, 242 (3:1, M+). *Anal.* Calcd for

C₁₂H₁₃ClO₃: C, 59.88; H, 5.44. Found: C, 60.02; H, 5.38.

Compound **15b** was prepared similarly from methyl 4-phenylbutyrate **(14b)**.

Methyl 4-(4-Chloroacetylphenyl)butyrate (15b) Colorless needles, mp 45—45.5 °C (iso-Pr₂O), yield 67%. IR (KBr): 1738, 1696 (C=O) cm⁻¹.

¹H-NMR (CDCl₃) δ : 1.99 (2H, qn, J=7.5 Hz), 2.35 (2H, t, J=7.5 Hz), 2.73 (2H, t, J=7.5 Hz), 3.67 (3H, s), 4.69 (2H, s), 7.31 (2H, d, J=8.5 Hz), 7.89 (2H, d, J=8.5 Hz). MS m/z: 254, 256 (3:1, M⁺). *Anal*. Calcd for C₁₃H₁₅ClO₃: C, 61.30; H, 5.94. Found: C, 61.32; H, 6.04.

Methyl 3-[4-[(1-Imidazolyl)acetyl]phenyl]propionate (16a) The mixture of 15a (7.22 g, 30.1 mmol) and imidazole (5.11 g, 75.1 mmol) in toluene (40 ml) was heated at 70 °C for 2 h. After evaporation of the solvent under reduced pressure, the residue was diluted, made alkaline with aqueous K_2CO_3 solution, and extracted with CH_2Cl_2 . The extract was washed with water, dried and concentrated. The residue was purified by column chromatography [SiO₂, CH_2Cl_2 –MeOH (30:1 \rightarrow 20:1)] to yield 16a (5.62 g, 69%) as pale yellow crystals, which were recrystallized from AcOEt to give pale yellow plates, mp 109.5—110.5 °C. IR (KBr): 1730, 1698 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.68 (2H, t, J=7.5 Hz), 3.04 (2H, t, J=7.5 Hz), 3.67 (3H, s), 5.37 (2H, s), 6.94 (1H, s), 7.14 (1H, s), 7.37 (2H, d, J=8 Hz), 7.51 (1H, s), 7.91 (2H, d, J=8 Hz). MS m/z: 272 (M⁺). Anal. Calcd for $C_{15}H_{16}N_2O_3$: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.18; H, 5.92; N, 10.24.

Compound 16b was prepared similarly from 15b.

Methyl 4-[4-[(1-Imidazolyl)acetyl]phenyl]butyrate (16b) Colorless scales, mp 90—91 °C (AcOEt–iso-Pr₂O), yield 59%. IR (KBr): 1738, 1698 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.99 (2H, qn, J=7.5 Hz), 2.35 (2H, t, J=7.5 Hz), 2.75 (2H, t, J=7.5 Hz), 3.68 (3H, s), 5.38 (2H, s), 6.95 (1H, s), 7.14 (1H, s), 7.34 (2H, d, J=8 Hz), 7.51 (1H, s), 7.90 (2H, d, J=8 Hz). MS m/z: 286 (M⁺). Anal. Calcd for C₁₆H₁₈N₂O₃: C, 67.12; H, 6.34; N, 9.78. Found: C, 67.21; H, 6.48; N, 9.68.

Methyl 3-[4-[1-Hydroxy-2-(1-imidazolyl)ethyl]phenyl]propionate (17a) Compound 17a was prepared from 16a in the same manner as 5a. Colorless scales, mp 99.5—101.5 °C (AcOEt), yield 86%. IR (KBr): 3124 (OH). 1738 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.63 (2H, t, J=7.5 Hz), 2.95 (2H, t, J=7.5 Hz), 3.67 (3H, s), 4.06 (1H, dd, J=14,

8 Hz), 4.11 (1H, dd, J=14, 4.5 Hz), 4.89 (1H, dd, J=8, 4.5 Hz), 6.88 (1H, s), 6.92 (1H, s), 7.20 (2H, d, J=8 Hz), 7.24 (2H, d, J=8 Hz), 7.34 (1H, s). MS m/z: 274 (M⁺). Anal. Calcd for $C_{15}H_{18}N_2O_3$: C, 65.68; H, 6.61; N, 10.21. Found: C, 65.54; H, 6.78; N, 10.15.

Methyl 4-[4-[1-Hydroxy-2-(1-imidazolyl)ethyl]phenyl]butyrate (17b) Compound 17b was prepared from 16b in the same manner as 5a. Colorless scales, mp 112—113 °C (AcOEt), yield 88%. IR (KBr): 3120 (OH), 1738 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.95 (2H, qn, J=7.5 Hz), 2.33 (2H, t, J=7.5 Hz), 2.65 (2H, t, J=7.5 Hz), 3.67 (3H, s), 4.06—4.14 (2H, m), 4.91 (1H, dd, J=7.5, 4 Hz), 6.90 (1H, s), 6.97 (1H, s), 7.18 (2H, d, J=8 Hz), 7.23 (2H, d, J=8 Hz), 7.38 (1H, s). MS m/z: 288 (M⁺). Anal. Calcd for C₁₆H₂₀N₂O₃: C, 66.65; H, 6.99; N, 9.72. Found: C, 66.64; H, 7.13; N, 9.68.

Methyl 3-[4-[1-Chloro-2-(1-imidazolyl)ethyl]phenyl]propionate (18a) Compound 18a was prepared from 17a in the same manner as 6a. Colorless oil, yield 100%. IR (liq.): 1734 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.63 (2H, t, J=8 Hz), 2.95 (2H, t, J=8 Hz), 3.67 (3H, s), 4.37 (1H, dd, J=14.5, 6.5 Hz), 4.45 (1H, dd, J=14.5, 6.5 Hz), 5.00 (1H, t, J=6.5 Hz), 6.80 (1H, s), 7.01 (1H, s), 7.20 (4H, s), 7.31 (1H, s). MS m/z: 292, 294 (3:1, M⁺). High-resolution MS m/z: Calcd for $C_{15}H_{17}CIN_2O_2$: 292.0979, 294.0949. Found: 292.0970, 294.0934.

Methyl 4-[4-[1-Chloro-2-(1-imidazolyl)ethyl]phenyl]butyrate (18b) Compound 18b was prepared from 17b in the same manner as 6a. Pale yellow oil, yield 100%. IR (liq.): 1734 (C=O) cm $^{-1}$. ¹H-NMR (CDCl₃) δ: 1.95 (2H, qn, J=7.5 Hz), 2.33 (2H, t, J=7.5 Hz), 2.65 (2H, t, J=7.5 Hz), 3.67 (3H, s), 4.39 (1H, dd, J=14.5, 6 Hz), 4.46 (1H, dd, J=14.5, 7 Hz), 5.02 (1H, t, J=7 Hz), 6.82 (1H, s), 7.02 (1H, s), 7.18 (2H, d, J=8 Hz), 7.21 (2H, d, J=8 Hz), 7.38 (1H, s). MS m/z: 306, 308 (3:1, M $^+$). High-resolution MS m/z: Calcd for C₁₆H₁₉ClN₂O₂: 306.1135, 308.1105. Found: 306.1121, 308.1103.

Methyl 3-[4-[1-Azido-2-(1-imidazolyl)ethyl]phenyl]propionate (19a) Compound 19a was prepared from 18a in the same manner as 7a. Pale yellow oil, yield 80%. IR (liq.): 2112 (N₃), 1736 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.64 (2H, t, J=8 Hz), 2.97 (2H, t, J=8 Hz), 3.68 (3H, s), 4.11 (2H, d, J=6.5 Hz), 4.74 (1H, t, J=6.5 Hz), 6.87 (1H, s), 7.05 (1H, s), 7.16 (2H, d, J=8 Hz), 7.24 (2H, d, J=8 Hz), 7.36 (1H, s). MS m/z: 299 (M⁺). High-resolution MS m/z: Calcd for C₁₅H₁₇N₅O₂: 299.1382. Found: 299.1390.

Methyl 4-[4-[1-Azido-2-(1-imidazolyl)ethyl]phenyl]butyrate (19b) Compound 19b was prepared from 18b in the same manner as 7a. Pale yellow oil, yield 91%. IR (liq.): 2112 (N₃), 1734 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.96 (2H, qn, J=7.5 Hz), 2.34 (2H, t, J=7.5 Hz), 2.67 (2H, t, J=7.5 Hz), 3.68 (3H, s), 4.11—4.13 (2H, m), 4.75 (1H, t, J=6.5 Hz), 6.88 (1H, s), 7.05 (1H, s), 7.16 (2H, d, J=8.5 Hz), 7.22 (2H, d, J=8.5 Hz), 7.42 (1H, s). MS m/z: 313 (M⁺). High-resolution MS m/z: Calcd for C₁₆H₁₉N₅O₂: 313.1539. Found: 313.1551.

Methyl 3-[4-[1-Amino-2-(1-imidazolyl)ethyl]phenyl]propionate (20a) Compound 20a was prepared from 19a in the same manner as 8a. Pale brown oil, yield 91%. IR (liq.): 3368 (NH₂), 1734 (C=O) cm⁻¹.

¹H-NMR (CDCl₃) δ : 1.55 (2H, br s), 2.63 (2H, t, J=8 Hz), 2.95 (2H, t, J=8 Hz), 3.68 (3H, s), 4.02 (1H, dd, J=14, 8 Hz), 4.09 (1H, dd, J=14, 5 Hz), 4.25 (1H, dd, J=8, 5 Hz), 6.87 (1H, s), 7.04 (1H, s), 7.19 (2H, d, J=8 Hz), 7.22 (2H, d, J=8 Hz), 7.38 (1H, s). MS m/z: 274 (M⁺+1).

Methyl 4-[4-[1-Amino-2-(1-imidazolyl)ethyl]phenyl]butyrate (20b) Compound 20b was prepared from 19b in the same manner as 8a. Pale brown oil, yield 92%. IR (liq.): 1736 (C=O) cm⁻¹. 1 H-NMR (CDCl₃) δ: 1.88 (2H, br s), 1.95 (2H, qn, J=7.5 Hz), 2.33 (2H, t, J=7.5 Hz), 2.65 (2H, t, J=7.5 Hz), 3.67 (3H, s), 4.04 (1H, dd, J=14, 8 Hz), 4.10 (1H, dd, J=14, 5 Hz), 4.26 (1H, dd, J=8, 5 Hz), 6.87 (1H, s), 7.04 (1H, s), 7.17 (2H, d, J=8 Hz), 7.22 (2H, d, J=8 Hz), 7.42 (1H, s). MS m/z: 288 (M⁺+1).

Methyl 3-[4-[1-(4-Chlorobenzenesulfonamido)-2-(1-imidazolyl)ethyl]-phenyl]propionate (21a) Compound 21a was prepared from 20a in the same manner as 9a. Pale yellow prisms, mp 168—169 °C (MeOH–Et₂O), yield 49%. IR (KBr): 1738 (C=O) cm $^{-1}$. 1 H-NMR (CDCl₃) δ: 2.58 (2H, t, J=7.5 Hz), 2.88 (2H, t, J=7.5 Hz), 3.68 (3H, s), 4.22—4.31 (2H, m), 4.66 (1H, t, J=6 Hz), 6.64 (1H, s), 6.91 (2H, d, J=8.5 Hz), 6.92 (1H, s), 7.02 (2H, d, J=8.5 Hz), 7.24 (2H, d, J=8.5 Hz), 7.29 (1H, s), 7.52 (2H, d, J=8.5 Hz). Anal. Calcd for C₂₁H₂₂ClN₃O₄S: C, 56.31; H, 4.95; N, 9.38. Found: C, 56.33; H, 5.01; N, 9.26. MS m/z: 366 (M $^{+}$ – C₄H₅N₂).

Methyl 4-[4-[1-(4-Chlorobenzenesulfonamido)-2-(1-imidazolyl)ethyl]-phenyl]butyrate (21b) Compound 21b was prepared from 20b in the same manner as 9a. Pale yellowish brown oil, yield 61%. IR (liq.): 1736 (C=O) cm⁻¹. 1 H-NMR (CDCl₃) δ : 1.89 (2H, qn, J=7.5 Hz), 2.30 (2H,

t, J=7.5 Hz), 2.58 (2H, t, J=7.5 Hz), 3.68 (3H, s), 4.28 (2H, d, J=6 Hz), 4.65 (1H, t, J=6 Hz), 6.63 (1H, s), 6.87 (2H, d, J=8.5 Hz), 6.92 (1H, s), 7.00 (2H, d, J=8.5 Hz), 7.25 (2H, d, J=8.5 Hz), 7.26 (1H, s), 7.54 (2H, d, J=8.5 Hz). MS m/z: 461, 463 (3:1, M $^+$). High-resolution MS m/z: Calcd for C₂₂H₂₄ClN₃O₄S: 461.1176, 463.1147. Found: 461.1190, 463.1136.

3-[4-[1-(4-Chlorobenzenesulfonamido)-2-(1-imidazolyl)ethyl]phenyl]-propionic Acid (22a) Compound **22a** was prepared from **21a** in the same manner as **10a**. Pale yellow plates, mp 215—216.5 °C (MeOH), yield 82%. IR (KBr): 3136 (NH), 1650—1700 (br, C=O) cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 2.47 (2H, t, J=7.5 Hz), 2.74 (2H, t, J=7.5 Hz), 4.09 (2H, d, J=8 Hz), 4.59 (1H, q, J=8 Hz), 6.75 (1H, s), 7.01 (2H, d, J=8 Hz), 7.05 (1H, s), 7.07 (2H, d, J=8 Hz), 7.33 (2H, d, J=9 Hz), 7.45 (1H, s), 8.45 (1H, d, J=9 Hz). MS m/z: 352 (M⁺ -C₄H₅N₂). *Anal*. Calcd for C₂₀H₂₀ClN₃O₄S: C, 55.36; H, 4.65; N, 9.68. Found: C, 55.25; H, 4.58; N, 9.68.

4-[4-[1-(4-Chlorobenzenesulfonamido)-2-(1-imidazolyl)ethyl]phenyl]butyric Acid (22b) Compound **22b** was prepared from **21b** in the same manner as **10a**. Pale yellow crystals, mp 196—198 °C (MeOH), yield 73%. IR (KBr): 1700 (C=O) cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 1.75 (2H, qn, J=7.5 Hz), 2.18 (2H, t, J=7.5 Hz), 2.50 (2H, t, J=7.5 Hz), 4.10 (2H, d, J=7.5 Hz), 4.60 (1H, q, J=7.5 Hz), 6.76 (1H, s), 6.96 (2H, d, J=8 Hz), 7.05 (1H, s), 7.07 (2H, d, J=8 Hz), 7.31 (2H, d, J=8.5 Hz), 7.40 (2H, d, J=8.5 Hz), 7.45 (1H, s), 8.46 (1H, d, J=9 Hz). MS m/z: 366 (M $^+$ – C₄H₅N₂). *Anal*. Calcd for C₂₁H₂₂ClN₃O₄S·H₂O: C, 54.13; H, 5.19; N, 9.02. Found: C, 54.38; H, 5.03; N, 9.01.

Methyl 3-[4-(2-Chloro-1-hydroxyethyl)phenyl]propionate (23a) NaBH₄ (2.23 g, 58.9 mmol) was added portionwise to a solution of 15a (18.9 g, 78.5 mmol) in MeOH (130 ml) under ice-cooling, and the mixture was stirred at the same temperature for 1 h. MeOH was evaporated off under reduced pressure, and the residue was diluted with water and extracted with Et₂O. The extract was washed with water, dried and concentrated to yield 23a (18.6 g, 98%) as a pale yellow oil. IR (liq.): 3464 (OH), 1736 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.61 (1H, d, J= 3 Hz), 2.63 (2H, t, J= 7.5 Hz), 2.95 (2H, t, J= 7.5 Hz), 3.64 (1H, dd, J= 11.5, 9 Hz), 3.67 (3H, s), 3.73 (1H, dd, J= 11.5, 3.5 Hz), 4.86—4.89 (1H, m), 7.21 (2H, d, J= 8 Hz), 7.31 (2H, d, J= 8 Hz). MS m/z: 242, 244 (3:1, M⁺). High-resolution MS m/z: Calcd for C₁₂H₁₅ClO₃: 242.0710, 244.0680. Found: 242.0709, 244.0678.

Compound 23b was prepared similarly from 15b.

Methyl 4-[4-(2-Chloro-1-hydroxyethyl)phenyl]butyrate (23b) Pale yellow oil, yield 97%. IR (liq.): 3460 (OH), 1736 (C=O) cm $^{-1}$. ¹H-NMR (CDCl₃) δ: 1.95 (2H, qn, J=7.5 Hz), 2.33 (2H, t, J=7.5 Hz), 2.62 (1H, d, J=3 Hz), 2.65 (2H, t, J=7.5 Hz), 3.64 (1H, dd, J=11, 9 Hz), 3.67 (3H, s), 3.73 (1H, dd, J=11, 3.5 Hz), 4.85—4.90 (1H, m), 7.19 (2H, d, J=8 Hz), 7.31 (2H, d, J=8 Hz). MS m/z: 256, 258 (3:1, M $^+$). High-resolution MS m/z: Calcd for C₁₃H₁₇ClO₃: 256.0866, 258.0837. Found: 256.0869, 258.0825.

Methyl 3-[4-(2-Azido-1-hydroxyethyl)phenyl]propionate (24a) A suspension of 23a (14.0 g, 57.7 mmol) and sodium azide (7.50 g, 0.115 mol) in DMF (60 ml) was heated at 90 °C for 2.5 h. After cooling, the reaction mixture was diluted with water and extracted with Et₂O. The extract was washed with water, dried and concentrated to yield 24a (13.3 g, 93%) as a pale yellow oil. IR (liq.): 3464 (OH), 2108 (N₃), 1736 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.31 (1H, d, J= 3 Hz), 2.63 (2H, t, J=7.5 Hz), 2.95 (2H, t, J=7.5 Hz), 3.43 (1H, dd, J=13, 3.5 Hz), 3.48 (1H, dd, J=13, 8.5 Hz), 3.67 (3H, s), 4.84—4.87 (1H, m), 7.21 (2H, d, J=8.5 Hz), 7.30 (2H, d, J=8.5 Hz). MS m/z: 193 (M⁺ – CH₂N₃).

Compound 24b was prepared similarly from 23b.

Methyl 4-[4-(2-Azido-1-hydroxyethyl)phenyl]butyrate (24b) Pale yellow oil, yield 99%. IR (liq.): 3464 (OH), 2108 (N₃), 1736 (C = O) cm⁻¹.
¹H-NMR (CDCl₃) δ: 1.95 (2H, qn, J=7.5 Hz), 2.31—2.34 (3H, m), 2.65 (2H, t, J=7.5 Hz), 3.43 (1H, dd, J=12.5, 4 Hz), 3.48 (1H, dd, J=12.5, 8 Hz), 3.67 (3H, s), 4.84—4.87 (1H, m), 7.19 (2H, d, J=8 Hz), 7.29 (2H, d, J=8 Hz). MS m/z: 207 (M⁺ – CH₂N₃).

Methyl 3-[4-(2-Azido-1-chloroethyl)phenyl]propionate (25a) Thionyl chloride (3.61 ml, 49.4 mmol) was added dropwise to a solution of 24a (13.3 g, 53.4 mmol) in CH₂Cl₂ (50 ml) under ice-cooling, and the mixture was stirred at 40 °C for 1 h. The solvent was evaporated off under reduced pressure to give 25a (13.2 g, 100%) as a pale yellow oil. IR (liq.): 2112 (N₃), 1738 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.63 (2H, t, J=8 Hz), 2.96 (2H, t, J=8 Hz), 3.67 (3H, s), 3.68 (1H, dd, J=13, 6 Hz), 3.75 (1H, dd, J=13, 8 Hz), 4.95 (1H, t, J=7 Hz), 7.23 (2H, d, J=8.5 Hz), 7.33 (2H, d, J=8.5 Hz). MS m/z: 211, 213 (3:1, M⁺ -CH₂N₃).

Compound 25b was prepared similarly from 24b.

Methyl 4-[4-(2-Azido-1-chloroethyl)phenyl]butyrate (25b) Pale yellow oil, yield 100%. IR (liq.): 2112 (N₃), 1738 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.94 (2H, qn, J=7.5 Hz), 2.33 (2H, t, J=7.5 Hz), 2.66 (2H, t, J=7.5 Hz), 3.67 (3H, s), 3.68 (1H, dd, J=13, 7 Hz), 3.75 (1H, dd, J=13, 6 Hz), 4.95 (1H, t, J=7 Hz), 7.20 (2H, d, J=8 Hz), 7.33 (2H, d, J=8 Hz). MS m/z: 225, 227 (3:1, M⁺ – CH₂N₃).

Methyl 3-[4-[2-Azido-1-(1-imidazolyl)ethyl]phenyl]propionate (26a) A mixture of 25a (14.3 g, 53.4 mmol) and imidazole (9.09 g, 0.133 mol) in toluene (30 ml) was heated at 110 °C for 2.5 h. After cooling, the reaction mixture was acidified with dilute HCl, and washed with Et₂O. The aqueous layer was made alkaline with K_2CO_3 , and extracted with CH_2Cl_2 . The extract was washed with water, dried and concentrated. The residue was purified by column chromatography [SiO₂, CH₂Cl₂—MeOH (40:1)] to yield 26a (2.20 g, 14%) as a pale yellowish brown oil. IR (liq.): 2108 (N₃), 1734 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.62 (2H, t, J=8 Hz), 2.95 (2H, t, J=8 Hz), 3.66 (3H, s), 3.93—4.01 (2H, m), 5.31 (1H, dd, J=8, 5.5 Hz), 6.99 (1H, s), 7.12 (1H, s), 7.13 (2H, d, J=8 Hz), 7.23 (2H, d, J=8 Hz), 7.61 (1H, s). MS m/z: 299 (M⁺). High-resolution MS m/z: Calcd for $C_{15}H_{17}N_3O_2$: 299.1382. Found: 299.1389.

Compound 26b was prepared similarly from 25b.

Methyl 4-[4-(2-Azido-1-(1-imidazolyl)ethyl]phenyl]butyrate (26b) Pale reddish brown oil, yield 25%. IR (liq.): 2108 (N₃), 1734 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.94 (2H, qn, J=7.5 Hz), 2.32 (2H, t, J=7.5 Hz), 2.65 (2H, t, J=7.5 Hz), 3.66 (3H, s), 3.93—4.01 (2H, m), 5.31 (1H, dd, J=8, 5.5 Hz), 6.99 (1H, s), 7.12 (1H, s), 7.13 (2H, d, J=8 Hz), 7.20 (2H, d, J=8 Hz), 7.61 (1H, s). MS m/z: 313 (M⁺). High-resolution MS m/z: Calcd for $C_{16}H_{19}N_5O_2$: 313.1539. Found: 313.1543.

Methyl 3-[4-[2-Amino-1-(1-imidazolyl)ethyl]phenyl]propionate (27a) Compound 27a was prepared from 26a in the same manner as 8a. Pale brown oil, yield 87%. IR (liq.): 3380 (NH₂), 1736 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.13 (1H, br), 1.68 (1H, br), 2.62 (2H, t, J=8 Hz), 2.94 (2H, t, J=8 Hz), 3.40 (1H, dd, J=14, 6 Hz), 3.45 (1H, dd, J=14, 8.5 Hz), 3.67 (3H, s), 5.13 (1H, dd, J=8.5, 6 Hz), 7.00 (1H, s), 7.11 (1H, s), 7.12 (2H, d, J=8 Hz), 7.20 (2H, d, J=8 Hz), 7.63 (1H, s). MS m/z: 244 (M⁺-CH₃N).

Methyl 4-[4-[2-Amino-1-(1-imidazolyl)ethyl]phenyl]butyrate (27b) Compound 27b was prepared from 26b in the same manner as 8a. Pale brown oil, yield 94%. IR (liq.): 3372 (NH₂), 1734 (C = O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.40 (2H, br), 1.94 (2H, qn, J = 7.5 Hz), 2.32 (2H, t, J = 7.5 Hz), 2.64 (2H, t, J = 7.5 Hz), 3.40 (1H, dd, J = 15.5, 6 Hz), 3.40 (1H, dd, J = 15.5, 8.5 Hz), 3.66 (3H, s), 5.13 (1H, dd, J = 8.5, 6 Hz), 7.00 (1H, s), 7.11 (1H, s), 7.11 (2H, d, J = 8.5 Hz), 7.17 (2H, d, J = 8.5 Hz), 7.63 (1H, s). MS m/z: 258 (M⁺ – CH₃N).

Methyl 3-[4-[2-(4-Chlorobenzenesulfonamido)-1-(1-imidazolyl)ethyl]-phenyl]propionate (28a) Compound 28a was prepared from 27a in the same manner as 9a. Colorless needles, mp 131—134 °C (AcOEt), yield 29%. IR (KBr): 1744 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 2.61 (2H, t, J=8 Hz), 2.93 (2H, t, J=8 Hz), 3.54 (1H, dd, J=14.5, 10 Hz), 3.66 (3H, s), 3.68 (1H, dd, J=14.5, 4.5 Hz), 5.34 (1H, dd, J=10, 4.5 Hz), 6.86 (1H, s), 6.92 (1H, s), 7.07 (2H, d, J=8 Hz), 7.19 (2H, d, J=8 Hz), 7.43 (1H, s), 7.48 (2H, d, J=9 Hz), 7.80 (2H, d, J=9 Hz). MS m/z: 447, 449 (3:1, M⁺). Anal. Calcd for C₂₁H₂₂ClN₃O₄S: C, 56.31; H, 4.95; N, 9.38. Found: C, 56.38; H, 4.96; N, 9.28.

Methyl 4-[4-[2-(4-Chlorobenzenesulfonamido)-1-(1-imidazolyl)ethyl]-phenyl]butyrate (28b) Compound 28b was prepared from 27b in the same manner as 9a. Colorless needles, mp 102—103 °C (AcOEt-iso-Pr₂O), yield 35%. IR (KBr): 1740 (C=O) cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.92 (2H, qn, J=7.5 Hz), 2.31 (2H, t, J=7.5 Hz), 2.63 (2H, t, J=7.5 Hz), 3.55 (1H, dd, J=14.5, 10 Hz), 3.66 (3H, s), 3.68 (1H, dd, J=14.5, 4.5 Hz), 5.34 (1H, dd, J=10, 4.5 Hz), 6.86 (1H, s), 6.91 (1H, s), 7.07 (2H, d, J=8 Hz), 7.16 (2H, d, J=8 Hz), 7.43 (1H, s), 7.47 (2H, d, J=9 Hz), 7.80 (2H, d, J=9 Hz). MS m/z: 461, 463 (3:1, M+). *Anal.* Calcd for C₂₂H₂₄ClN₃O₄S: C, 57.20; H, 5.24; N, 9.10. Found: C, 57.21; H, 5.04; N 9.09

3-[4-[2-(4-Chlorobenzenesulfonamido)-1-(1-imidazolyl)ethyl]phenyl]propionic Acid (29a) Compound **29a** was prepared from **28a** in the same manner as **10a**. Pale yellow amorphous solid, yield 94%. IR (KBr): 1710 (C=O) cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 2.50 (2H, t, J=8 Hz), 2.80 (2H, t, J=8 Hz), 3.45—3.50 (1H, m), 3.67—3.73 (1H, m), 5.44 (1H, dd, J=9,

5.5 Hz), 7.10 (1H, s), 7.20 (2H, d, J=8 Hz), 7.25 (2H, d, J=8 Hz), 7.41 (1H, s), 7.62 (2H, d, J=8.5 Hz), 7.78 (2H, d, J=8.5 Hz), 8.10 (1H, t, J=6 Hz), 8.20 (1H, s). MS m/z: 230 (M⁺ - C₇H₆ClNO₂S).

4-[4-[2-(4-Chlorobenzenesulfonamido)-1-(1-imidazolyl)ethyl]phenyl]butyric Acid (29b) Compound **29b** was prepared from **28b** in the same manner as **10a**. Colorless needles, mp 182—185 °C (MeOH–acetone), yield 90%. IR (KBr): 1696 (C=O) cm⁻¹. ¹H-NMR (DMSO- d_6) δ : 1.77 (2H, qn, J=7.5 Hz), 2.19 (2H, t, J=7.5 Hz), 2.56 (2H, t, J=7.5 Hz), 3.43—3.48 (1H, m), 3.62—3.67 (1H, m), 5.36 (1H, dd, J=9, 5.5 Hz), 6.90 (1H, s), 7.15 (2H, d, J=8 Hz), 7.22 (2H, d, J=8 Hz), 7.25 (1H, s), 7.62 (2H, d, J=8.5 Hz), 7.77 (2H, d, J=8.5 Hz), 7.80 (1H, s), 8.03 (1H, t, J=6 Hz). MS m/z: 447, 449 (3:1, M+). Anal. Calcd for $C_{21}H_{22}ClN_3O_4S$: C, 56.31; H, 4.95; N, 9.38. Found: C, 56.44; H, 4.91; N, 9.27.

Inhibitory Effect on U-46619-Induced Guinea-Pig Platelet Aggregation Blood was collected from the abdominal aorta of guinea-pigs (about 400 g wt.) into 1/10 volume of 3.8% sodium citrate, and then platelet-rich plasma (PRP: 6×10^5 cells/ μ l) was obtained by centrifugation. PRP (190 μ l) in a cuvette was incubated with 1 μ l of DMSO solution of a test compound for 2 min at 37 °C in an aggregometer (Hema Tracer I; Niko Bioscience). A 10 μ l aliquot of U-46619 (Cayman), a TXA₂/PGH₂ receptor agonist and potent platelet aggregation inducer, was added to PRP to give a final concentration of 2 μ g/ml, and platelet aggregation was measured with an aggregometer. The IC₅₀ values were calculated graphically from the concentration—% inhibition relations.

Inhibitory Effect on TXA₂ Synthase Commercial human platelet membrane fraction (Eldan Technologies) ($100 \,\mu\text{g/ml}$, $285 \,\mu\text{l}$) as a source of TXA₂ synthase, a DMSO solution of test compound ($10 \,\mu\text{l}$) and $100 \,\mu\text{g/ml}$ ($5 \,\mu\text{l}$) of PGH₂ (Cayman) were mixed and allowed to react for 3 min at 25 °C. The produced TXB₂, a stable metabolite of TXA₂, was determined by an RIA method (TXB₂ quantification kit; Du Pont/NEN Research Products). The IC values were calculated graphically.

References

- Hamberg M., Svensson J., Samuelsson B., Proc. Natl. Acad. Sci. U.S.A., 72, 2994—2998 (1975); Moncada S., Vane J. R., Pharmacol. Rev., 30, 293—331 (1979); Coleman R. A., Sheldrich R. L. G., Br. J. Pharmacol., 96, 688—692 (1989).
- 2) a) Hall S. E., Med. Res. Rev., 11, 503—579 (1991); b) Arimura A., Asanuma F., Kurosawa A., Harada M., Int. Arch. Allergy Immunol., 98, 239—246 (1992); c) Collington E. W., Finch H., "Annual Reports in Medicinal Chemistry," Vol. 25, ed. by Bristol J. A., Academic Press, Inc., New York, 1990, pp. 99—108; d) Iizuka K., Akahane K., Momose D., Nakazawa M., Tanouchi T., Kawamura M., Ohyama I., Kajiwara I., Iguchi Y., Okada T., Taniguchi K., Miyamoto T., Hayashi M., J. Med. Chem., 24, 1139—1148 (1981); e) Kato K., Ohkawa S., Terao S., Terashita Z., Nishikawa K., ibid., 28, 287—294 (1985).
- Vermylen J., Defreyn G., Carreras L. O., Machin S. J., Schaeren J. V., Verstraete M., Lancet, 1981, 1073—1075.
- Cross P. E., Dickinson R. P., "Annual Reports in Medicinal Chemistry," Vol. 22, ed. by Bailey D. M., Academic Press, Inc., New York, 1987, pp. 95—105.
- Mayeux P. R., Morton H. E., Gillard J., Lord A., Morinelli T. A., Boehm A., Mais D. E., Halushka P. V., Biochem. Biophys. Res. Commun., 157, 733—739 (1988).
- Gresele P., Deckmyn H., Nenci G. G., Vermylen J., Trends Pharmacol. Sci., 12, 158—163 (1991).
- 7) Bhagwat S. S., Drugs Fut., 19, 765—777 (1994).
- Sakurai S., Ogawa N., Suzuki T., Kato K., Ohashi T., Yasuda S., Kato H., Ito Y., Chem. Pharm. Bull., 44, 765—777 (1996).
- a) Yoshimoto T., Yamamoto S., Hayaishi O., Prostaglandins, 16, 529—540 (1978);
 b) Tanouchi T., Kawamura M., Ohyama I., Kajiwara I., Iguchi Y., Okada T., Miyamoto T., Taniguchi K., Hayashi M., J. Med. Chem., 24, 1149—1155 (1981).
- 10) Malmsten C., Life Sci., 18, 169-176 (1976).
- a) Ezumi K., Yamakawa M., Narisada M., J. Med. Chem., 33, 1117—1122 (1990); b) Cozzi P., Giordani A., Menichincheri M., Pillan A., Pinciroli V., Rossi A., Tonani R., Volpi D., Tamburin M., Ferrario R., Fusar D., Salvati P., ibid., 37, 3588—3604 (1994).