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Abstract :  The design, synthesis, and evaluation of small molecule, in vitro, inhibitors of human calcineurin is 
described. These ligands were derived from the known nonspecific phosphatase inhibitor endothall, and were 
modified to enhance binding and selectivity toward calcineurin using protein crystal structure information. 
© 1997 Elsevier Science Ltd. 

Calcineurin (protein phosphatase 2B [PP2B]) is a calcium and calmodulin regulated enzyme composed of 

a 59-kDa catalytic subunit (CnA) and a 19-kDa calcium binding subunit (CnB)) The catalytic subunit CnA shares 

extensive sequence homology with two other members of the serine/threonine protein phosphatase family, PP1 

and PP2A. 2 Calcineurin has been identified as a key signaling enzyme in T-lymphocyte activation. 3 Inhibition of 

calcineurin in T-lymphocytes prevents the formation of active transcription factors, such as NF-AT and NF-IL2A, 

which are essential for interleukin-2 (IL2) gene expression. 4 Inhibition of calcineurin leads to the disruption of the 

cellular immune response, since IL2 is necessary for T-cell proliferation. 5 

The immunosuppressant drugs cyclosporin A and FK506 each bind to distinct intracellular receptors, 

referred to as the immunophilins. 6 The resulting drug-immunophilin complexes independently bind to and inhibit 

the protein phosphatase activity of calcineurin. 7 A great deal of effort has been devoted to the search for synthetic 

immunosuppressants which inhibit calcineurin through an immunophilin complex) However, a more direct 

strategy has surfaced with the recent X-ray crystal structure determination of calcineurin. 9 We felt some 

advantages, in terms of toxicity and molecular simplicity, could be realized with catalytic site directed inhibitors of 

calcineurin. In the present communication, we wish to report the discovery of a series of molecules that bind 

tightly to calcineurin, as determined by inhibition of protein phosphatase activity. ~° These compounds also serve 

as a means to address ligand selectivity toward calcineurin over PP1 and PP2A. 
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The search for leads began with a survey of known direct inhibitors of protein phosphatases 1, 2A, or 

2B. ~ For example, cantharidin, ~2 endothall, ~2(b)'j3 microcystins, ~4 nodularin, ~5 okadaic acid, ~6 and tautomycin 17 

were considered. We reasoned that the exo,exo-7-oxabicyclo[2.2.1 ]heptane-2,3-dicarboxylic acid ring system of 

endothall would serve as an excellent starting point based on structural versatility and relative ease of synthesis 

compared with the other natural product inhibitorsfl A model of an endothall derivative bound to the calcineurin 

active site was generated by computational docking experiments and with information extracted from a low 

resolution co-crystal structure. ~9 Ligands were designed using this model and with clues obtained by studying 

interactions between the calcineurin autoinhibitory peptide and the catalytic domain. ~b)'2° 
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With this information in hand, we attempted to enhance ligand binding to calcineurin relative to endothall 

(Table 1). Moreover, using available PP1 crystal structure information and PP2A amino acid sequence homology 

data, we were prepared to address specificity toward calcineurin. 2~ 2~ According to our binding model, the 

dicarboxylic acid and the bridge head oxygen act as an anchor, interacting with the catalytic site metals and 

surrounding residues (Figure 1). For modification, our attention was drawn to the 5 and 6 position of the 7- 

oxabicyclo ring system (Scheme 1). 5-endo substitution appeared to provide directionality into a region of the 

protein with potential for reasonable binding interactions. Additionally, this substitution pattern allowed us to take 

advantage of some CnA specific residues in this area. 

The substituted endothall derivatives were constructed by a Diels-Alder reaction between maleic anhydride 

and an appropriate 3-substituted furan. 3-Hydroxymethylfuran was coupled to various carboxylic acids to yield 

the necessary dienes for the cycloaddition. Hydrogenation of the resulting adduct gave the desired product, in 

high yield, as a mixture of optical isomers. 22 No attempt at resolution was made, although the binding model 

suggested only the enantiomer depicted below would bind effectively. 

Scheme 1. 

o 

HO 0 " 

6 2 ~ 
O 

laq 2aq 

Reagents and Conditions: (a) RCOOH, EDC.HCI, DMAP, CH2CI2, 23 °C (b) Maleic 

anhydride, Et20, 23 °C (c) 10% Pd/C, H2, DME. 

Table 1. Inhibition of Calcineurin Phosphatase Activity by Synthetic Ligands. 

Compound R Ki, app (~M) 

endothall - -  11.5 

2a Ph 11.0 

2b CH2Ph 7.4 

2c (CH2)2Ph 3.7 

2d (CH2)3Ph 1.2 

2e (CH2)4Ph 2.3 
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Table 1 continued. 

Compound 

2f 

2g 

R Ki, app (~tM) 

H 

2.0 

(yo , 
1.8 

2h O.o ' 1.4 

2i 

2j 

(0H2)3-- ~ 1.0 

mixture of trans-cyclopropanes 

Table 2. Comparison of Ligand Inhibitory Effect on PP1 and PP2B Activity. 

PP2B PP1 

Compound Ki, app (~tM) Ki, app (~tM) 

endothall 11.5 4.0 

2j 0.5 4.0 

From the 5 position of the endothall core, we attempted to mimic an interaction observed between the 

bound autoinhibitory domain and the calcineurin active site. The interaction studied was between Phe-470 of the 

autoinhibitory peptide and a hydrophobic region of the active site specific to PP2B. 9(b~ We believe the terminal 

phenyl ring of ligand 21 binds to this area of calcineurin with a similar orientation. This region, or phenylalanine 

pocket, is located adjacent to CnA Tyr-315 (Figure 1). According to our ligand binding model, the Tyr-315 

hydroxyl forms a hydrogen bond with the ester functionality of the endothall-based ligands. In the case of PP 1, 

the residue that corresponds to this tyrosine is phenylalanine, and in PP2A the residue is cysteine. The 

unconserved nature of this position could account for differences in the inhibitory effect of ligand 2j on PP1 and 

PP2B, since no hydrogen bond opportunity is available with PP1 (Table 2). Although we do not have inhibition 

data for PP2A, it is known that endothall is a potent inhibitor of this enzyme.~2~b~ Perhaps the modifications made 

to the endothall core, along with the differences in binding regions, would result in diminished potency toward 

PP2A. 
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Figure I. Binding model of ligand 2j (as the diacid, green) with the autoinhibitory domain 
phenylalanine ring overlaid (yellow). Catalytic site Zn ~÷ and Fe 3÷ displayed (brown spheres). 

Incorporation of a trans-cyclopropylphenyl group clearly gave the best results (ligand 21, Table 1). 

Perhaps conformational preorganization, due to the rigid nature of this fragment, contributed favorably to binding. 

We also imparted significant PP2B selectivity with this substituent. Endothall was about three fold more selective 

for PP1 over PP2B, while endothall derivative 2j had an eight fold preference for PP2B over PP1 (Table 2). 

Each compound in Table 1 was submitted and tested both as the anhydride and the corresponding diacid. We 

consistently observed no significant differences in binding affinity (within experimental error) for a given 

molecule in either form. We also observed that the anhydrides were easily hydrolyzed to diacids in the presence 

of water. In fact, endothall anhydride has been reported as a desiccant. 13 As a consequence of this, we suspected 

that the anhydrides opened readily during the enzyme assay. In an attempt to maneuver away from the anhydride, 

we converted it into a variety of functional groups. A number of amides, imides, esters and reduction products 

were synthesized. In general, we found that manipulation of the anhydride/diacid resulted in compounds which 

no longer inhibited the enzyme. 

In  conclusion, potent inhibitors of calcineurin, based on the known compound endothall, were 

synthesized. Ultimately, a 23 fold enhancement in binding, relative to endothall, was obtained. Improvements 

were made toward calcineurin inhibition while the effect of these ligands on the related enzyme PP1 remained 

constant. We accomplished this using protein structure-based tools and techniques. This work could serve as a 

stepping stone on the path to more potent and selective inhibitors of calcineurin. 
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