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Summary: 2-Halocycloheptadienone enolates, 
7 

which were generated by the reac- 
tion of 2-halotropones with hydride, Grignard, and organolithium reagents, 
reacted with cationic electrophiles including tropylium ion to give 2-substi- 
tuted tropone derivatives. 

Tropone 1 is easily attacked by nucleophiles as can be seen from its 

resonance structure la. - Fairly extensive studies have already been made on 

the reactions of 1 and its derivatives with various nucleophiles,"2) and we 

have also studied the nucleophilic reaction of 2-halotropones with tri- 

carbonyl(4-7-n-IH-1,2_diazepine)iron to provide the novel three isomers of l- 

troponyl-1H-1,2-diazepine.3) Several examples for the C-C bond forming reac- 

tions of 2-halotropones with carbanions,la) Grignard,4f5) organolithium,4'6) 

and organocopper reagents 7, have also been reported. Since the resistant na- 

ture of electrophilic attack onto the tropone nucleus is generally recog- 

nized, larb) the study of a reverse polarity (umpolung) strategy for realizing 

a formal electrophilic reaction to 1 must be fruitful for the synthesis of a 

variety of substituted troponoids. Our synthetic approach to an equivalent 

for 2-troponide ion 2 involves 2-halocycloheptadienone enolates 4a_c and S 

generated in situ by the reaction of 2-halotropones 3a-c and hydride, Grig- 

nard, and organolithium reagents. 

A typical procedure for the preparation of 4a-c involves a treatment of 

3a_c (1 mmol) with LiA1H4(0.36 mmol) or LiAlH(OBut)38) (1.3 mmol) at 0 'C or 

at ambient temperature in tetrahydrofuran (THF) (5 ml) for IO-20 min. The 

solution, which contains 4a_c, was then added dropwise to a stirred mixture of 

tropylium tetrafluoroborate (1.3 mmol) and triethylamine (1.3 mmol) in THF (5 

ml) at 0 OC, and stirred for another 10 min at ambient temperature to result 

in the formation of 2-tropyltropone 1 9,lO) in good yields (Scheme 1; Table 1, 

0 _ 

0 I \ - - 

run l-4). The 'H NMR spectral 

studies") could reveal that both 4a - 

generated by the reaction of 

& with LiA1H4 and LiA1D4 in THF-d8, 

respectively, are the mixtures of two 

enolates, the counter cations of which 

2 are presumably different from each 
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3a_c 

a: X=Cl 
b: X=Br 
c:X=I 

Scheme 1, 5& 5ao z, 70 

LiAlH4 or 

LiAlH(OButJ3 
) 

or LiAID4 
THF 4a(D) 4a-c, 6a-c, 6a(D) 

(D)H 

other. However, the cationic moieties are uncertain here. Furthermore, 

hydride and deuteride attack to g were proved to take place onto C7 to give 5 

and 4a(D) -I and not onto C2 to give a and 5a(D) 'I) -- The enolate 4a(D) was 

reasonably reacted with tropylium cation to give 

probably via the intermediate 6a(D) -- Thus, the 

give 1 and 7(D) (Table 1, run I-5) elucidated as 

the cycloheptadienone enolate has been suggested 

RMgX or RLi 

a mixture of 1 and 7(D),',12) 

reaction pathways of 3a-c to 

shown in Scheme 1. Although 

in the reaction of j_ with 

3a 
Et20 or THF EtxN THF 

LiAlH4 1 (74) 

LiAIH(OBut '3 1 (87) 

LiAIH(OBut 13 1 (83) 

LiAIH(OBut '3 
LiAlD4 7+;(D) :::;a) -- 

MeMgI %! (89) 

MeLi 9a (88) - 

BuLi z?!? (79) 

PhMgBr SC (90) 

b: R=Bu 
Scheme 2, 8 9a_c c: R=Ph 
Table 1. The reactions of tropylium tetrafluoro- 

borate with 4a_c, 4a(D) ------I and g. 

Hun 2-Halo- Nucleophile Product/ 

tropone yield ( % ) 

a) A mixture of 1. and 7(D) in a ratio of 27 : 73. 

LiAlH4 followed by protona- 

tion to give 3,5-cyclohepta- 

dienone,13) the present 

studies clarified the struc- 

tural features and the C-C 

bond forming reaction of the 

enolates 4a_c and 4a(D) -* 

In a similar way, 7- 

substituted 2-chlorocyclo- 

heptadienone enolate 8 was 

generated by the reaction of 

J+ with Grignard reagents in 

ether or organolithium 

reagents in THF, and sub- 

sequently reacted with 

tropylium cation to give 7- 

substituted 2-tropyltropones 
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Ph 
E E: a: c: 

4a Ph 
(75%) 

b: 
lOa-c 

Scheme 3, 

9a-c in good yields (Scheme 2; Table 1, run 6-9). Since the nucleophilic at- 

tack to & and its related compound has been reported to take place onto 

C7 6t14) the intermediacy of 8 is reasonably accepted. I 
The enolate 4a reacted with other cationic electrophiles, such as - 

tricarbonyl(cyclohexadienylium)iron, tricarbonyl(cyclopentadienylium)iron, and 

diphenylcyclopropenylium tetrafluoroborates to give the corresponding 2- 

substituted tropones IOa-c in moderate yields (Scheme 3). 

Bitropones, which have a skeleton similar to I, have attracted consider- 

able interest because of its potential use for the synthesis of novel r-elec- 

tron systems.15) The 2-tropyltropones which have become available through the 

methodology described here can also be very useful in further synthesis. For 

example, the compound z was reactive to 1 ,4-diazabicyclo[2.2.2loctane (DABCO) 

in 1,2-dimethylbenzene under reflux for 30 min to give a mixture of three 

isomers of dihydrodicyclohepta[b,d]furan, 12, 9,16) in 85% yield, probably via 

the enolate 11 _* Although the mixture 12 was not separable by column chromato- - 

graphy, the subsequent hydride abstraction of 12 with trityl tetrafluoroborate - 

in dichloromethane gave the cation 13,'~'~) in 96% yield as a single product 

(Scheme 4). 

Scheme 4, 11 12 rt 2h 13 

We believe that the foregoing methodology has considerable potential for 

the synthesis of a variety of substituted troponoids. The reaction of 2-halo- 

cycloheptadienone enolates with other electrophiles and the synthetic applica- 

tions of the products are now underway. 
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