Cytotoxicity Tests. For cytotoxicity tests the compounds were dissolved in DMSO (1 mg/mL stock solution) and the solutions diluted in 20% DMSO/phosphate buffered saline just prior to addition to cultures of HL 60 cells. Control cells received equal amounts of the DMSO/phosphate buffered saline. After incubation for 48 h the cells were washed, trypan blue was added, and the cells were counted.²⁰

Acknowledgment. This investigation was supported in part by grant 1-KT-02 from the Tobacco-related Disease Research Program of the University of California. X-ray crystallographic analysis was carried out by Dr Peter Gantzel, Department of Chemistry, University of California, San Diego.

Registry No. 1, 1149-99-1; 1 monoacetate, 144156-55-8; 1 diacetate, 1099-42-9; 1 mono(3,5-dinitrobenzoate), 3677-16-5; 1 mono(fluorosulfonylbenzoate), 144156-56-9; 1 bis(fluorosulfonvlbenzoate), 144156-57-0; 2, 1146-04-9; 3, 87625-62-5; 4, 112953-13-6; 5, 112953-12-5; 6, 25532-76-7; 7, 34338-99-3; 8, 30950-46-0; 10, 35938-45-5; 10 alcohol, 93525-52-1; 11, 125392-73-6; 12, 125472-36-8; 13, 35938-43-3; 14, 137247-02-0; 15, 34175-96-7; 18, 28282-65-7; 19, 144156-45-6; 20, 144156-46-7; 21, 144156-47-8; 22, 144156-48-9; 23, 144156-49-0; 24, 144156-50-3; 25, 144156-51-4; 26, 144156-52-5; 27, 144156-53-6; 28, 144156-54-7; HSCH₂COOCH₃, 2365-48-2.

Supplementary Material Available: Experimental details of the X-ray structure determination of 22, tables of atomic coordinates and equivalent isotropic displacement coefficients, bond lengths, bond angles, and anisotropic displacement coefficients, and ¹H NMR spectra for compounds 5, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and 28 (21 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Reductive Cyclization of Quinone Methides

Steven R. Angle* and Jon D. Rainier

Department of Chemistry, University of California, Riverside, California 92521-0403

Received July 21, 1992

The first use of reduced quinone methides for the formation of carbon-carbon bonds in cyclization reactions is described. Treatment of quinone methides with SmI2 resulted in intramolecular reaction with internal activated multiple bonds to afford 5- and 6-membered carbocycles in good yields. The activated multiple bonds used are aldehydes and α,β -unsaturated esters and nitriles.

Introduction

Simple p-quinone methides such as p-benzoquinone methide A are highly reactive compounds that readily undergo 1,6-addition of nucleophiles.^{1,2} Aromatization of quinone methide A produces resonance structure B which illustrates the dipolar character of p-quinone methides. Upon O-protonation, or complexation with a Lewis Acid, the electrophilicity of the exocyclic alkylidene is enhanced to the point that even simple alkenes can act as nucleophiles toward quinone methides.^{1,2} Quinone methides have been proposed as intermediates in a number of biological transformations and synthetic reactions.¹⁻⁴ Thus far, the synthesis applications of p-quinone methides have exploited their electrophilic character in reactions with nucleophiles, whereas the biological processes where quinone

V. V. Russ. Chem. Rev. 1988, 57, 336.
(3) For recent reviews and leading references to lignans and neolignans see: (a) Macrae, W. D.; Towers, G. H. N. Phytochemistry 1984, 23, 1207.
(b) Whiting, D. A. Nat. Prod. Rep. 1990, 7, 349. (c) Whiting, D. A. Nat.

 Prod. Rep. 1987, 4, 499.
 (4) (a) Smith, D. A.; Dimmel, D. R. J. Org. Chem. 1988, 53, 5428 and references cited therein. (b) Pardini, V. L.; Smith, C. Z.; Utley, J. H. P.; Vargas, R. R.; Viertler, H. J. Org. Chem. 1991, 56, 7305.

methides have been proposed as intermediates call for them to act as electrophiles as well as electron acceptors.³

Lignin fragmentation in pulping processes is proposed to involve the reduction of transient quinone methide intermediates.⁴ In support of this notion, anthraquinone has been observed to accelerate fragmentation of lignans containing β -aryl ether linkages such as 1. The acceleration

 ^{(1) (}a) Angle, S. R.; Turnbull, K. D. J. Am. Chem. Soc. 1990, 112, 3698.
 (b) Angle, S. R.; Turnbull, K. D. J. Am. Chem. Soc. 1989, 111, 1136. (c) Angle, S. R.; Louie, M. S.; Mattson, H. L.; Yang, W. Tetrahedron Lett. 1989, 30, 1193. (d) Angle, S. R.; Arnaiz, D. O. J. Org. Chem. 1990, 55, 5700 3708

⁽²⁾ For reviews on quinone methides see: (a) Turner, A. B. Quart. Rev. 1964, 18, 347. (b) Wagner, H. U.; Gompper, R. In The Chemistry of Quinonoid Compounds; Patai, S., Ed.; John Wiley and Sons: New York, 1974; Vol. 1, pp 1145-1178. (c) Gruenanger, P. In Houben-Weyl Methoden der Organischen Chemie; Mueller, E., Bayer, O., Eds.; G. Thieme Verlag: Stuttgart, 1979; Vol. VII/36, pp 395-521. (d) Peter, M. G. Angew. Chem., Int. Ed. Engl. 1989, 22, 555. (e) Volod'kin, A. A.; Ershov,

Scheme II. Proposed Reductive Cyclization of Quinone Methides

is thought to result from electron transfer to an intermediate quinone methide 2 to afford a radical anion which then fragments to styrene 3 and phenoxy radical 4 (Scheme I).^{4a} The presence of radicals is supported by the observation that stable β -aryl ether quinone methides can be cleaved in the presence of electrochemically generated anthraquinone radical anions.⁴ In addition, Smith and Dimmel subjected phenols with pendant alkenes to pulping conditions (NaOH, 135 °C, anthraquinone or glucose) and observed small amounts of cyclized products. These authors provided evidence that the cyclized products resulted from the addition of a benzylic radical to the alkene.^{4a}

Utley and co-workers have shown that highly substituted, sterically hindered quinone methides could be electrochemically reduced to radical anions and dianions which could then be used as bases in Wittig reactions.⁵ Quinone methides lacking significant steric hindrance were not well behaved and prone to polymerization upon reduction.

We felt that it might be possible to exploit quinone methides as electron acceptors and employ the resulting intermediates in the formation of carbon-carbon bonds. Addition of an electron(s) to a preformed quinone methide followed by reaction of the resulting benzylic radical and/or anion with a pendant activated multiple bond would result in the net coupling of two electrophilic moieties. Among the many electron donors capable of chemically reducing quinone methides, we felt that reductive coupling using SmI₂ would be successful. SmI₂ has a high reduction potential and has been used in a number of one- and two-electron reduction processes.⁶

Kagan has shown that 2 equiv of SmI_2 effectively reduced benzylic bromides to benzylic samarium compounds which could be trapped with electrophiles in intermolecular reactions (eq 1).⁷ The conventional methods for coupling benzylic carbons to carbon electrophiles involves the synthesis of labile benzylic halides.⁸

$$Ar \frown Br \qquad \frac{1) \operatorname{SmCp}_2}{2) \operatorname{E}^*} \qquad Ar \frown E \qquad (1)$$

$$E^* = \operatorname{RCHQ}, \operatorname{RCOR}^{!}, \operatorname{RCOCI} \qquad 60-92\%$$

Quinone methides which could be derived from the corresponding phenols via oxidation might serve as precursors to benzylic radicals and/or anions upon reduction with SmI_2 (Scheme II). Either species might undergo cyclization by addition to an activated multiple bond. This Scheme III. Synthesis of the Cyclization Substrates

approach would avoid preparation and handling of reactive benzylic halides.

If successful, the oxidation/reduction sequence described above would be an important method for the synthesis of oxygenated aromatic compounds. In addition, it complements the present synthesis methods that we¹ and others² have developed to exploit quinone methides as electrophiles. This study might also provide further insight into the lignin degradation processes where quinone methides have been postulated as intermediates.⁴ To our knowledge, this is the first reported use of quinone methides as synthons for benzylic radicals/anions in carbon-carbon bond-forming reactions.

Results and Discussion

Cyclization precursors 15–19 containing aldehydes, α , β -unsaturated esters, and an α , β -unsaturated nitrile were synthesized as shown in Scheme III. Aldehydes 10 and 11 served as versatile intermediates that were elaborated into the cyclization substrates. Particularly noteworthy was the high yield in the reaction of the aryllithium derived from 5 with both caprolactone and valerolactone.

Oxidation of the phenolic cyclization precursors was accomplished with Ag_2O (15 equiv, benzene- d_6).⁹ The resulting quinone methides were characterized by ¹H NMR spectroscopy and were generally reduced immediately but were stable enough to be stored in solution if desired. The reaction of the quinone methides and SmI₂ afforded several products depending upon the reaction conditions (Table I). Optimized conditions afforded cyclized material in good yield and called for addition of a dilute solution of quinone methide (≤ 5 mM) to a solution of SmI₂ at 65 °C for the activated alkenes or at 35 °C for the aldehydes. Excess SmI₂ must be present during the reaction to avoid Sm³⁺-catalyzed formation of styrene byproducts.

Treatment of cyclization precursor 20 with SmI_2 afforded *trans*-arylcyclopentanol 21 as a >5:1 ratio of diastereomers (Table I, entry 1). All other cyclizations afforded 1:1 mixtures of cyclized products. The relative stereochemistry of the aryl and hydroxyl substituents of

⁽⁵⁾ Goulart, M. O. F.; Ling-Chung, S. K.; Utley, J. H. P. Tetrahedron Lett. 1987, 28, 6081.

⁽⁶⁾ For reviews on the use of SmI₂ in organic chemistry see: (a) Molander, G. A. Chem. Rev. 1992, 92, 29. (b) Soderquist, J. A. Aldrichim. Acta 1991, 24, 15.

⁽⁷⁾ Collin, J.; Namy, J. L.; Bied, C.; Kagan, H. B. Inorg. Chim. Acta 1987, 140, 29.

⁽⁸⁾ Benzylic halides are especially labile when the aromatic ring is highly oxygenated: cf. Angle, S. R.; Louie, M. S. J. Org. Chem. 1991, 56, 2853.

⁽⁹⁾ A solvent effect on the oxidation was observed. For example, the oxidation of quinone methide 24 in benzene- d_6 required 1-2 h at rt while the same oxidation in THF required 9-10 h at 65 °C.

Table I. Quinone Methide-SmI₂ Cyclizations

entry	phenol	quinone methide	reaction conds ^a	product ^b	yield ^c
1	18	↓ 20 ∠-0	A	År ↓0H 21	67%
2	19		*	23	30-50%
3	15	24 COgEt	В	47 ↓	87%
4	15	24	D	25	40%
5	16	26 CO ₂ Et	c	Ar CO ₂ Et 27	70%
6	17		B	4r CN 29	78%
7	15	24	ε	Ar CO2EI	64%

^aReaction conditions: A = quinone methide (5 mM for 20, 1 mM for 22) was added to SmI_2 (0.03 M) at 35 °C; B = quinone methide (5 mM) was added to SmI_2 (0.05 M) at 65 °C; C = quinone methide (1 mM) was added to SmI_2 (0.05 M) at 65 °C; D = quinone methide (1 mM) was added to SmI_2 (0.05 M) at 65 °C; C = quinone methide (5 mM) was added to SmI_2 (0.05 M) at 65 °C; C = SmI_2 (0.05 M) was added to quinone methide (5 mM) at 65 °C. ^b Ar = 3,5-dimethyl-4-hydroxyphenyl. °Yield for 1:1 mixture of diastereomers except for 21 which is a >5:1 mixture of diastereomers by ¹H NMR analysis.

21 (major isomer) was assigned as trans based upon comparison of the spectral data with an authentic sample obtained from addition of arylcuprate 31 (derived from 5) to cyclopentene oxide followed by desilylation.¹⁰

Addition of α,β -unsaturated ester quinone methide 24 to a solution of SmI₂ at lower temperatures (<40 °C) gave a lower yield of the desired product 25 and significant amounts of a compound that is believed to be a dimer resulting from bond formation between the two benzylic carbons (Table I, entry 4). Dimeric products retaining the α,β -unsaturated ester functionality and those with the alkene reduced were isolated as mixtures of diastereomers and characterized by ¹H NMR (structures below).¹¹ The formation of these dimers under mild conditions illustrates the ease of reduction of the quinone methide.

Cyclization to form cyclohexane 27 required that a more dilute solution (1 mM) of quinone methide 26 be added

to SmI_2 than the corresponding cyclopentane precursor 24 to avoid the formation of significant amounts of dimeric products (Table I, entry 5).

Due to the relatively high reduction potential of aldehydes, the cyclizations of aldehyde quinone methides 20 and 22 were much more sensitive to reaction conditions than were the corresponding activated alkene cyclizations.¹² The formation of products derived from competitive reduction of the aldehyde could not be eliminated under any of the conditions examined.¹³ Although we were able to optimize the reaction conditions to obtain cyclopentanol 21 as the major product, the reaction leading to cyclohexanol 23 was especially capricious. Several runs of the cyclization reaction, under seemingly identical conditions, afforded 23 in yields varying from 30% to 50%.

The mechanism of the cyclization process must involve the initial reduction of the quinone methide to afford a radical anion/dianion that then undergoes cyclization. This conclusion is based on the isolation of dimer byproducts (described above) that retain the intact activated mutiple bond and reduction potentials of the functional groups involved. Utley has shown the first reduction potential of quinone methides that are similar in structure to those used here to be about -1.0 V and the second reduction potential to be approximately 0.5 V more negative.^{14a} Reduction potentials for aldehydes normally are in the -1.5 to -2.0 V range.^{14b} The precise conditions of the reductive cyclization (solvent, temperature, etc.) and the presence of samarium(II) and -(III) will effect these values.

It is unclear from the available data whether the cvclization occurs at the radical stage or if a second oneelectron reduction occurrs followed by cyclization. The oxidation potential of SmI_2 (1.55 V) is in the right range to reduce the benzylic radical to the anion before it has a chance to cyclize. In an attempt to resolve this issue, two experiments were conducted. In the first experiment, SmI_2 was slowly added to a solution of α,β -unsaturated ester quinone methide 24 at 65 °C, conditions which should favor a radical cyclization, to afford styrene 30 as the major product. Unfortunately, this result does not distinguish between the two pathways since the formation of styrene 30 was presumably the result of competitive Sm³⁺-catalyzed enolization of the quinone methide. In the second experiment, the quinone methide derived from dimethylalkene 32 (synthesized via a Wittig reaction of isopropylidenetriphenylphosphorane and aldehyde 10) was submitted to the SmI_2 cyclization conditions (65 °C) to afford benzylic dimer 33 (eq 2).¹⁵ If cyclized product had

⁽¹⁰⁾ Lipshutz, B. H.; Kozlowski, J.; Wilhelm, R. S. J. Am. Chem. Soc.
1982, 104, 2305.
(11) The dimers were not fully characterized; however, their ¹H NMR

⁽¹¹⁾ The dimers were not fully characterized; however, their 'H NMR spectra showed the expected similarities to dimer 33. In addition, the dimer in which the alkene had been reduced showed the expected LR-MS spectrum.

⁽¹²⁾ Similar problems have been seen with SmI₂-induced Barbier coupling reactions of marginally reactive organic halides with aldehydes. For example, see: (a) Souppe, J.; Namy, J. L.; Kagan, H. B. *Tetrahedron Lett.* 1982, 23, 3497. (b) Namy, J. L.; Souppe, J.; Collin, J.; Kagan, H. B. J. Org. Chem. 1984, 49, 2045. (c) Souppe, J.; Danon, L.; Namy, J. L.; Kagan, H. B. J. Organomet. Chem. 1983, 250, 227.

⁽¹³⁾ SmI₂ has been commonly used to reduce aldehydes. For the use of ketyl radicals generated from the SmI₂ reduction of aldehydes in coupling reactions with alkenes see ref 6 and references cited therein.

^{(14) (}a) Goulart, M. O. F.; Utley, J. H. P. J. Org. Chem. 1988, 53, 2520.
(b) Kyriacou, D. K. Basics of Electroorganic Synthesis; John Wiley and Sons: New York, 1981; pp 140-141.

been obtained, a radical pathway would be implicated. The failure to see cyclization is consistent with an anionic cyclization; however, the intermediacy of a stable benzylic radical that requires an activated alkene for addition cannot be ruled out.^{16,17}

The results of our study are consistent with the intermediacy of benzylic radicals and/or anions in the key carbon-carbon bond-forming reaction. Neither intermediate can be excluded from the available information.

Conclusion

We have shown that quinone methides can be chemically reduced by SmI₂ and that these reduced species react with pendant activated multiple bonds to afford cyclized products in good yield. Formally, the process involves the mild benzylic functionalization of a substituted aromatic compound in the presence of other reactive functional groups. This oxidation-reduction sequence avoids the use of highly labile benzylic halides as precursors to benzylic anions and demonstrates the first use of reduced quinone methides in synthesis. Our work shows that the chemistry of reduced guinone methides can lead to carbon-carbon bond-forming reactions. Since quinone methides are proposed as intermediates in the biosynthesis of lignans and neolignans, our results show it is chemically reasonable to consider biosynthetic pathways that involve reduced quinone methide intermediates. Further studies to determine the nature of the reduced quinone methide intermediate (radical or anion) and to exploit the chemistry of these intermediates in synthesis are in progress.

Experimental Section¹⁸

General Information. NMR shifts reported are relative to $CDCl_3$ or C_eD_6 ; coupling constants, J, are reported in Hz and refer to apparent peak multiplicities and may not be true coupling constants. HPLC was carried out with an RI detector using a Rainin Dynamax 60-A column 8- μ m silica gel column (4.6-mm inside diameter, 25-cm length). Sm(0) was flame dried under Ar prior to use. Solvents for chromatography and recrystallization were distilled prior to use. Commercial compounds were purchased from Ficher Scientific or Aldrich Chemical Co. Concentration refers to removal of solvent under reduced pressure (water aspirator) with a Büchi rotavapor. Unless stated otherwise, all reactions were run under an atmosphere argon in flame-dried glassware.

1-[4-[(tert-Butyldimethylsilyl)oxy]-3,5-dimethylphenyl]-5-hydroxy-1-pentanone (6). t-BuLi (4.2 mL of a 1.93 M solution in pentane, 8.1 mmol) was added dropwise to a stirred solution of aryl bromide 5 (1.28 g, 4.06 mmol) and ether (20 mL) at -78 °C. The resulting white mixture was stirred for 1 h at -78 °C and then transferred dropwise via a cannula cooled in dry ice into a solution of δ valerolactone (0.75 mL, 7.9 mmol) and THF (20 mL) at -78 °C. The resulting solution was allowed to stir for 1 h at -78 °C and was then poured into aqueous saturated NH₄Cl (60 mL). The aqueous layer was extracted with ether $(3 \times 40 \text{ mL})$. The combined organic extracts were washed with brine (50 mL), dried (MgSO₄), and concentrated. Flash chromatography (3:1 hexanes/ethyl acetate followed by 1:1 hexanes/ethyl acetate) afforded 1.08 g (79%) of 6 as a colorless oil: ¹H NMR (300 MHz, $CDCl_3$) δ 7.83 (s, 2 H, ArH), 3.86 (t, J = 6.3 Hz, 2 H, CH_2OH), 3.16 (t, J = 7.0 Hz, 2 H, CH₂C(O)Ar), 2.70 (bs, 1 H, OH), 2.45 (s, 6 H, ArCH₃), 2.02 (m, 2 H), 1.85 (m, 2 H), 1.23 (s, 9 H, SiC-(CH₃)₂), 0.42 (s, 6 H, Si(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 199.8, 156.7, 130.1, 129.1, 128.6, 62.1, 37.6, 32.2, 25.9, 20.3, 18.7, 17.8, -3.0; IR (CDCl₃) 3500, 2957, 1720, 1670, 1597 cm⁻¹; MS (EI, 20 eV) m/z 336 (M⁺, 51), 318 (62), 223 (100); HRMS calcd for C₁₉H₃₂O₃Si 336.2121, found 336.2112.

1-[4-[(tert-Butyldimethylsilyl)oxy]-3,5-dimethylphenyl]-6-hydroxy-1-hexanone (7). The procedure given previously for the preparation of 6 was carried out with t-BuLi (880 μ L of a 1.91 M solution in pentane, 1.7 mmol), aryl bromide 5 (265 mg, 0.840 mmol), and ϵ -caprolactone (70 μ L, 0.63 mmol). Flash chromatography (3:1 hexanes/ethyl acetate followed by 1:1 hexanes/ethyl acetate) afforded 216 mg (98%) of aryl ketone 7 as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 7.58 (s, 2 H, ArH), 3.62 (t, J = 6.4 Hz, 2 H, CH₂OH), 2.89 (t, J = 7.2 Hz, 2 H, C(O)CH₂), 2.39 (bs, 1 H, OH), 2.22 (s, 6 H, ArCH₃), 1.74-1.39 (m, 6 H), 1.00 (s, 9 H, SiC(CH₃)₂), 0.18 (s, 6 H, Si(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 199.7, 156.6, 130.2, 129.1, 128.6, 62.4, 38.0, 32.4, 25.9, 25.4, 24.0, 18.7, 17.8, -3.0; IR (CHCl₃) 3625, 3486, 2954, 1713, 1671, 1597 cm⁻¹; MS (EI, 20 eV) m/z 350 (M⁺, 26), 278 (79), 223 (100); HRMS calcd for C₂₀H₃₄O₃Si 350.2277, found 350.2268.

5-[4-[(tert-Butyldimethylsilyl)oxy]-3,5-dimethylphenyl]pentanol (8). Pd/C (5%, 347 mg, 0.163 mmol) was added to a solution of hydroxy ketone 6 (1.04 g, 2.97 mmol) and ethanol (40 mL). The resulting mixture was placed on a hydrogenator at 1 atm of H_2 pressure for 12 h, after which the reaction mixture was filtered through silica gel (eluted with ether) and concentrated. Flash chromatography (5:1 hexanes/ethyl acetate followed by 3:1 hexanes/ethyl acetate) afforded 0.844 g (88%) of alcohol 8 as a colorless oil. HPLC (5:1 hexane/ethyl acetate, 1 mL/min, $t_{\rm R}$ 13.4 min) afforded an analytical sample: ¹H NMR (300 MHz, CDCl₃) δ 6.77 (s, 2 H, ArH), 3.64 (t, J = 6.6 Hz, 2 H, CH₂OH), 2.48 (t, J = 7.6 Hz, 2 H, CH₂Ar), 2.18 (s, 6 H, ArCH₃), 1.63 (m, 4 H), 1.42 $(m, 2 H), 1.03 (s, 9 H, SiC(CH_3)_3), 0.179, (s, 6 H, Si(CH_3)_2); {}^{13}C$ NMR (75 MHz, CDCl₃) δ 149.9, 135.0, 128.6, 128.1, 63.0, 35.0, 32.7, 31.4, 26.1, 25.4, 18.7, 17.8, -3.0; IR (CHCl₂) 3629, 2933, 2859, 1482, 1474, 1255, 1235, 904, 841 cm⁻¹; MS (EI, 20 eV) m/z 322 (M⁺, 62), 247 (13), 210 (23), 209 (100), 191 (16), 75 (16), 73 (15). Anal. Calcd for C₁₉H₃₄O₂Si: C, 70.73; H, 10.64. Found: 70.33, 10.29.

6-[4-[(tert-Butyldimethylsilyl)oxy]-3,5-dimethylphenyl]hexanol (9). The procedure given previously for the preparation of 8 was carried out with ketone 7 (91.7 mg, 0.262 mmol), Pd/C (5%, 28 mg, 0.013 mmol), and ethanol (15 mL). Flash chromatography (5:1 hexanes/ethyl acetate followed by 3:1 hexanes/ethyl acetate) afforded 87 mg (99% yield) of hexanol 9 as a colorless oil. HPLC (5:1 hexane/ethyl acetate, 1 mL/min, $t_{\rm R}$ 13.4 min) afforded an analytical sample: ¹H NMR (300 MHz) δ 6.76 (s, 2 H, ArH), 3.64 (t, J = 6.6 Hz, 2 H, CH₂OH), 2.46 (t, J = 7.7 Hz, 2 H, ArCH₂), 2.18 (s, 6 H, ArCH₃), 1.59–1.53 (m, 4 H), 1.38-1.35 (m, 4 H), 1.03 (s, 9 H, SiC(CH₃)₃), 0.18 (s, 6 H, Si(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 149.9, 135.2, 128.6, 128.1, 63.0, 35.0, 32.7, 31.6, 29.1, 26.1, 25.6, 18.8, 17.8, -3.0; IR (CHCl₃) 3625, 2933 cm⁻¹; MS (EI, 20 eV) m/z 336 (M⁺, 33), 209 (100). Anal. Calcd for C₂₀H₃₆O₂Si: C, 71.35; H, 10.80. Found: C, 71.74; H, 10.65

5-[4-[(tert-Butyldimethylsilyl)oxy]-3,5-dimethylphenyl]pentanal (10). Using the general procedure of Swern and co-workers,¹⁹ a solution of DMSO (87 μ L, 1.2 mmol) and CH₂Cl₂ (5 mL) was added dropwise to a solution of oxalyl chloride (80 μ L, 0.92 mmol) and CH₂Cl₂ (5 mL) at -50 °C. The resulting colorless solution was allowed to stir for 10 min, and then a solution of arylpentanol 8 (198 mg, 0.61 mmol) and CH₂Cl₂ (10 mL) was

⁽¹⁵⁾ For early examples of using alkenes to probe for radical reactions see:
(a) Garst, J. F.; Ayers, P. W.; Lamb, R. C. J. Am. Chem. Soc. 1966, 88, 4260.
(b) Walling, C.; Cooley, J. H.; Ponaras, A. A.; Racah, E. J. J. Am. Chem. Soc. 1966, 88, 5361.

^{(16) (}a) March, J. Advanced Organic Chemistry; John Wiley and Sons: New York, 1985; p 164. (b) The cyclization of benzylic radicals has been shown to be highly dependent upon the reacting partner of the radical; cf. Clerici, A.; Minisci, F.; Porta, O. Tetrahedron 1973, 29, 2775. (17) It is possible that a benzylic anion could be formed via addition

⁽¹⁷⁾ It is possible that a benzylic anion could be formed via addition of iodide to the quinone methide followed by in situ reduction of the resulting benzylic iodide by SmI_2 . This pathway is precedented in the Barbier reactions of alkyl tosylates with ketones which are thought to involve the formation of an alkyl iodide intermediate in the presence of SmI_2 : see ref 6, pp 46-47.

⁽¹⁸⁾ General experimental details have been recently reported: see ref 8.

^{(19) (}a) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
(b) Luly, J. R.; Dellaria, J. F.; Plattner, J. J.; Soderquist, J. L.; Yi, N. J. Org. Chem. 1987, 52, 1487.

added dropwise over 10 min. The resulting solution was allowed to stir for 15 min at -50 °C after which a solution of triethylamine (340 μ L, 2.5 mmol) and CH₂Cl₂ (5 mL) was added. The reaction mixture was warmed to 0 °C in an ice bath. After 1 h the colorless solution was poured into brine (30 mL) and CH_2Cl_2 (20 mL). The organic layer was washed sequentially with 1 N HCl (30 mL), brine (30 mL), 30% Na₂CO₃ (30 mL), and brine (30 mL). The colorless solution was dried (Na₂SO₄) and concentrated to afford 195 mg (99%) of arylpentanal 10 as a pale yellow liquid which was used without purification in subsequent reactions: ¹H NMR (300 MHz, $CDCl_3$) δ 9.75 (bs, 1 H, C(O)H), 6.78 (s, 2 H, ArH), 2.51 (t, J = 7.0 Hz, 2 H, ArCH₂ or CH₂C(O)), 2.44 (t, J = 7.0 Hz, 2 H, CH₂C(O) or ArCH₂), 2.20 (s, 6 H, ArCH₃), 1.64 (m, 4 H), 1.05 (s, 9 H, SiC(CH₃)₃), 0.20 (8, 6 H, Si(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 202.5, 150.0, 134.3, 128.5, 128.1, 43.7, 34.6, 31.0, 26.0, 21.7, 18.6, 17.7, -3.0; IR (CHCl₃) 2955, 1722 cm⁻¹; MS (EI, 20 eV) m/z 320 (M⁺, 100), 263 (63), 193 (22); HRMS calcd for C₁₉H₃₂O₂Si 320.2172, found 320.2176.

6-[4-[(tert -Butyldimethylsilyl)oxy]-3,5-dimethylphenyl]hexanal (11). The procedure given previously for the preparation of 10 was carried out with DMSO (130 μ L, 1.8 mmol), CH₂Cl₂ (5 mL), oxalyl chloride (120 μ L, 1.4 mmol), arylhexanol 9 (302 mg, 0.897 mmol), and triethylamine (500 μ L, 3.6 mmol). Concentration afforded 335 mg (112%) of arylhexanal 11 as a pale yellow liquid which was used without purification in subsequent reactions: ¹H NMR (300 MHz, CDCl₃) δ 9.76 (br s, 1 H, C(O)H), 6.77 (s, 2 H, ArH), 2.49 (t, J = 7.3 Hz, 2 H, ArCH₂ or C(O)CH₂), 2.42 (t, J = 6.9 Hz, 2 H, C(O)CH₂ or ArCH₂), 2.20 (s, 6 H, ArCH₃), 1.69–1.58 (m, 4 H), 1.39–1.36 (m, 2 H), 1.05 (s, 9 H, SiC(CH₃)₃), 0.20 (s, 6 H, Si(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 202.6, 149.9, 134.8, 128.5, 128.0, 43.7, 34.7, 31.2, 28.7, 26.0, 21.9, 18.6, 17.7, -3.0; IR (CHCl₃) 2933, 1723 cm⁻¹; MS (EI, 20 eV) m/z 334 (M⁺, 39), 209 (100); HRMS calcd for C₂₀H₃₄O₂Si 334.2328, found 334.2317.

(E and Z)-Ethyl 7-[4-[(tert-Butyldimethylsilyl)oxy]-3,5dimethylphenyl]-2-heptenoate (12). (Carbethoxymethylene)triphenylphosphorane (250 mg, 0.72 mmol) was added to a stirred solution of aldehyde 10 (154 mg, 0.481 mmol) and ether (20 mL) at rt. After 8 h the reaction mixture was poured into brine (50 mL). The aqueous layer was extracted with ether (3 \times 30 mL). The organic extracts were combined, washed with brine (50 mL), dried (MgSO₄), and concentrated. Flash chromatography (20:1 hexanes/ethyl acetate) afforded 171 mg (91%) of unsaturated ester 12 as a colorless oil (7:1 E/Z mixture, ¹H NMR): ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 150.4, 149.9, 149.1, 134.6, 128.5, 128.1, 128.1, 121.3, 119.7, 60.0, 59.7, 34.7, 32.0, 31.2, 31.0, 28.8, 28.6, 27.6, 26.1, 18.7, 17.8, 14.2, -3.0. HPLC (40:1 hexane/ethyl acetate, 1 mL/min, t_R 7.3 min) provided an analytical sample of (E)-12: ¹H NMR (300 MHz, $CDCl_3$) δ 6.96 (dt, J = 7.0, 15.6 Hz, 1 H, CHCHCO₂Et), 6.75 (s, 2 H, ArH), 5.80 (d, J = 15.6 Hz, 1 H, $CHCO_2Et$), 4.18 (q, J = 7.1 Hz, 2 H, OCH_2CH_3), 2.47 (t, J = 7.44Hz, 2 H, ArCH₂), 2.25–2.16 (m, 2 H, CH₂CHCHCO₂Et), 2.18 (s, 6 H, ArCH₃), 1.63-1.46 (m, 4 H), 1.29 (t, J = 7.1 Hz, 3 H, OCH₂CH₃), 1.03 (s, 9 H, SiC(CH₃)₃), 0.18 (s, 6 H, Si(CH₃)₂); IR $(CHCl_3)$ 3006, 1709, 1654 cm⁻¹; MS (EI, 20 eV) m/z 390 (M⁺, 16), 333 (100). Anal. Calcd for C23H38O3Si: C, 70.70; H, 9.82. Found: C, 70.59; H, 9.58

(E and Z)-Ethyl 7-[4-[(tert-Butyldimethylsilyl)oxy]-3,5dimethylphenyl]-2-octenoate (13). The procedure given previously for the preparation of 12 was carried out with (carbethoxymethylene)triphenylphosphorane (140 mg, 0.40 mmol) and aldehyde 11 (89.7 mg, 0.268 mmol). Flash chromatography (20:1 hexanes/ethyl acetate) afforded 97.6 mg (90.%) of unsaturated ester 13 as a colorless oil (7:1 E/Z mixture, ¹H NMR). HPLC (40:1, 0.9 mL/min, $t_{\rm R}$ 6.9 min) provided an analytical sample of (E)-13: ¹H NMR (300 MHz, CDCl₃) δ 6.98 (dt, J = 7.2, 15.6 Hz, 1 H, (E)-HCCHCO₂Et), 6.78 (s, 2 H, ArH), 6.21 (dt, J = 7.6, 11.4Hz, 1 H, (Z)-CHCHCO₂Et), 5.82 (d, J = 15.6 Hz, 1 H, (E)-CHCO₂Et), 5.77 (partially obscured d, J = 11.4 Hz, 1 H, (Z)- $CHCO_2Et$), 4.20 (q, J = 7.1 Hz, 2 H, OCH_2), 2.49 (t, J = 7.4 Hz, 2 H, ArCH₂), 2.26-2.14 (m, 2 H), 2.20 (s, 6 H, ArCH₃), 1.65-1.34 (m, 6 H), 1.30 (t, J = 7.1 Hz, 3 H, OCH₂CH₃), 1.05 (s, 9 H, SiC(CH₃)₃), 0.20 (s, 6 H, Si(CH₃)₂); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 150.4, 149.9, 149.2, 135.0, 128.5, 128.0, 121.2, 119.6, 60.0, 59.6, 34.9, 32.1, 31.3, 29.0, 28.8, 28.6, 27.9, 26.1, 18.7, 17.7, 14.2, -3.0; IR (CHCl₃) 2934, 1709, 1474 cm⁻¹; MS (EI, 70 eV) m/z 404 $(M^+, 4)$, 347 (100), 209 (55). Anal. Calcd for $C_{24}H_{40}O_3Si$: C, 71.22; H, 9.98. Found: C, 71.30; H, 10.10.

(E and Z)-6-[4-[(tert-Butyldimethylsilyl)oxy]-3,5-dimethylphenyl]-2-heptenenitrile (14). n-BuLi (280 µL of a 2.26 M solution in hexanes, 0.63 mmol) was added to a solution of diethyl cyanomethylphosphonate (110 μ L, 0.68 mmol) and ether (18 mL) at -78 °C. The cooling bath was removed, and the reaction mixture was allowed to warm to rt and stirred for 30 min. The resulting white mixture was cooled to -78 °C, and to this was added dropwise a solution of aldehyde 10 (154 mg, 0.481 mmol) and ether (10 mL). Immediately after the addition was completed, the cooling bath was removed and the reaction mixture was allowed to warm to rt and stirred overnight. The reaction mixture was poured into brine (50 mL), and the aqueous layer was extracted with ether $(3 \times 30 \text{ mL})$. The combined organic extracts were washed with brine (30 mL), dried (MgSO₄), and concentrated. Flash chromatography (20:1 hexanes/ethyl acetate followed by 10:1 hexanes/ethyl acetate) afforded 123 mg (74%) of α,β -unsaturated nitrile 14 as a colorless oil (inseparable 2.3:1 E/Zmixture, ¹H NMR). HPLC (40:1 hexane/ethyl acetate, 1.0 mL/min, $t_{\rm R}$ 6.7 min) afforded an analytical sample of nitrile 14 as a 2.3:1 E/Z mixture (1H NMR): 1H NMR (300 MHz, CDCl₂) δ 6.77 (s, 2 H, ArH), 6.76 (s, 2 H, ArH), 6.71 (dt, J = 16.3, 7.0 Hz, 1 H, (E)-HCCHCN), 6.46 (dt, J = 10.9, 7.7 Hz, 1 H, (Z)-HCCHCN), 5.31 (apparent d, J = 16.0 Hz, 1 H, (E)-CHCHCN and (Z)-CHCHCN), 2.53-2.41 (m, 3 H), 2.28-2.16 (m, 1 H), 2.20 (s, 6 H, ArCH₃), 1.66-1.45 (m, 4 H), 1.04 (s, 9 H, SiC(CH₃)₃), 0.19 (s, 6 H, Si(CH₂)₂); ¹³C NMR (75 MHz, CDCl₂) δ 155.9, 155.0, 150.1, 150.0, 134.4, 134.3, 128.8, 128.6, 128.5, 128.2, 128.2, 117.5, 116.0, 99.7, 99.5, 34.8, 34.7, 34.6, 33.2, 31.7, 30.9, 30.8, 27.8, 27.2, 26.3, 26.1, 18.7, 17.8, -2.8, -2.9; IR (CHCl₃) 2933, 2225, 1483 cm⁻¹; MS (EI, 70 eV) m/z 343 (M⁺, 1), 286 (100); HRMS calcd for C₂₁-H₃₃NOSi 343.2331, found 343.2313.

(E and Z)-Ethyl 7-(3,5-Dimethyl-4-hydroxyphenyl)-2heptenoate (15). The procedure given previously for the preparation of 12 was carried out with tetra-n-butylammonium fluoride $(130 \ \mu L \text{ of a } 1.0 \text{ M solution in THF}, 0.13 \text{ mmol})$ and silvl ether 12 (171 mg, 0.438 mmol). Flash chromatography (10:1 hexanes/ethyl acetate followed by 5:1 hexanes/ethyl acetate) afforded 98 mg of (E)-15 as a colorless oil and 14 mg of (Z)-15 as a colorless oil (92% total yield). HPLC (9:1 hexane/ethyl acetate, 1 mL/min, $t_{\rm R}$ 11.0 min) provided an analytical sample of (E)-15: ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 6.96 (\text{dt}, J = 15.6, 7.0 \text{ Hz}, 1 \text{ H}, \text{CHCHCO}_2\text{Et}),$ 6.78 (s, 2 H, ArH), 5.81 (d, J = 15.6 Hz, 1 H, CHCO₂Et), 4.68 (s, 1 H, ArOH), 4.19 (q, J = 7.1 Hz, 2 H, OCH₂CH₃), 2.49 (t, J = 7.4Hz, 2 H, ArCH₂), 2.23 (s, 6 H, ArCH₃), 2.25-2.18 (m, 2 H, $CH_2CHCHCO_2Et$), 1.63–1.46 (m, 4 H), 1.29 (t, J = 7.1 Hz, 3 H, OCH_2CH_2); ¹³C NMR (75 MHz, $CDCl_3$) δ 166.8, 150.2, 149.2, 133.8, 128.4, 122.8, 121.3, 60.1, 34.8, 32.1, 31.3, 27.6, 15.9, 14.3; IR (CHCl₃) 3611, 3007, 1709, 1654 cm⁻¹; MS (EI, 20 eV) m/z 276 (M⁺, 45), 135 (100). Anal. Calcd for C₁₇H₂₄O₃: C, 73.90; H, 8.80. Found: C, 73.94; H, 8.74.

(E and Z)-Ethyl 8-(3,5-Dimethyl-4-hydroxyphenyl)-2octenoate (16). The procedure given previously for the preparation of 15 was carried out with tetra-n-butylammonium fluoride $(72 \ \mu L \text{ of a } 1.0 \text{ M solution in THF}, 0.072 \text{ mmol})$ and silvl ether 13 (97.4 mg, 0.241 mmol). Flash chromatography (10:1 hexanes/ethyl acetate followed by 5:1 hexanes/ethyl acetate) afforded 61.2 mg of (E)-16 as a colorless oil and 8.5 mg of (Z)-16 as a colorless oil (99% total yield). HPLC (5:1 hexane/ethyl acetate, $1 \text{ mL/min}, t_{\text{R}} 6.7 \text{ min}$) provided an analytically pure sample of (E)-16: ¹H NMR (300 MHz, CDCl₃) δ 6.97 (dt, J = 15.6, 7.0 Hz, 1 H, HCCHCO₂Et), 6.78 (s, 2 H, ArH), 5.81 (d, J = 15.6 Hz, 1 H, CHCO₂Et), 4.67 (s, 1 H, ArOH), 4.19 (q, J = 7.1 Hz, 2 H, OCH₂), 2.47 (t, J = 7.7 Hz, 2 H, ArCH₂), 2.23 (s, 6 H, ArCH₃), 2.21-2.16 (m, 2 H, CH₂CHCHCO₂Et), 1.76-1.26 (m, 6 H), 1.30 $(t, J = 7.1 \text{ Hz}, 3 \text{ H}, \text{OCH}_2\text{CH}_3)$; ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 150.1, 149.4, 134.1, 128.4, 122.8, 121.2, 60.1, 34.9, 32.1, 31.6, 28.8, 27.9, 15.9, 14.2; IR (CHCl₃) 3609, 2934, 1709, 1654 cm⁻¹; MS (EI, 70 eV) m/z 290 (M⁺, 20), 135 (100). Anal. Calcd for $C_{18}H_{26}O_3$: C, 74.43; H, 9.04. Found: C, 74.31; H, 8.88.

(*E* and *Z*)-6-(3,5-Dimethyl-4-hydroxyphenyl)-2-heptenenitrile (17). The procedure given previously for the preparation of 12 was carried out with tetra-*n*-butylammonium fluoride (110 μ L of a 1.0 M solution in THF, 0.11 mmol) and silyl ether 14 (123 mg, 0.358 mmol). Flash chromatography (10:1 hexane/ethyl acetate followed by 5:1 hexane/ethyl acetate) afforded 68.4 mg of phenol 17 as a colorless oil (83%, 2.3:1 mixture of E/Z isomers). HPLC (9:1 hexane/ethyl acetate, 1 mL/min, $t_{\rm R}$ 9.0 min) provided an analytically pure sample of α,β unsaturated nitrile as a 2.3:1 E/Z mixture (¹H NMR): ¹H NMR (300 MHz, CDCl₃) δ 6.78 (s, 2 H, ArH), 6.77 (s, 2 H, ArH), 6.71 (dt, J = 16.3, 7.0 Hz, 1 H, (E)-CHCHCN), 6.47 (dt, J = 10.9, 7.7 Hz, 1 H, (Z)-CHCHCN), 5.31 (dm, J = 16.3 Hz, 2 H, (E)-CHCN and (Z)-CHCN), 2.53–2.41 (m, 3 H), 2.28–2.20 (m, 1 H), 2.23 (s, 6 H, ArCH₃), 1.67–1.40 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 155.9, 155.0, 150.2, 133.5, 133.4, 128.4, 128.4, 122.9, 122.8, 117.5, 99.7, 99.5, 34.6, 34.6, 33.2, 31.7, 31.0, 27.7, 27.1, 15.9; IR (CHCl₃) 3610, 2936, 2226, 1633 cm⁻¹; MS (EI, 20 eV) m/z 229 (M⁺, 41), 135 (100); HRMS calcd for C₁₅-H₁₉NO 229.1467, found 229.1468.

5-(3,5-Dimethyl-4-hydroxyphenyl)pentanal (18). The procedure given previously for the preparation of 12 was carried out with tetra-*n*-butylammonium fluoride (89 μ L of a 1 M solution in THF, 0.089 mmol) and silyl ether 10 (95.4 mg, 0.298 mmol). Concentration afforded 77.4 g (126%) of aldehyde 18 as a pale yellow oil which was used without purification in the subsequent cyclization reaction due to instability: ¹H NMR (300 MHz, CDCl₃) δ 9.75 (t, J = 1.7 Hz, 1 H, C(O)H), 6.78 (s, 2 H, ArH), 4.60 (bs, 1 H, ArOH), 2.53–2.42 (m, 4 H), 2.22 (s, 6 H, ArCH₃), 1.68–1.60 (m, 4 H); IR (CDCl₃) 3617, 2975, 1722, 1489 cm⁻¹.

6-(3,5-Dimethyl-4-hydroxyphenyl)hexanol (19). The procedure given previously for the preparation of 12 was carried out with tetra-*n*-butylammonium fluoride (250 μ L of a 1 M solution in THF, 0.25 mmol) and silyl ether 11 (275 mg, 0.823 mmol). Concentration afforded 219 mg of aldehyde 19 (121%) as a pale yellow oil which was used without purification in the subsequent cyclization reaction due to instability: ¹H NMR (300 MHz, CDCl₃) δ 9.76 (t, J = 1.6 Hz, 1 H, C(O)H), 6.77 (s, 2 H, ArH), 4.65 (bs, 1 H, ArOH), 2.45 (m, 4 H), 2.22 (s, 6 H, ArCH₃), 1.70–1.24 (m, 6 H); IR (CDCl₃) 3611, 2933, 2859, 1722, 1489, 1462, 1319, 1198, 1150, 1021 cm⁻¹.

(1S*,2S*)-2-(3,5-Dimethyl-4-hydroxyphenyl)cyclopentanol (21). From Phenol 18. Ag₂O (160 mg, 0.69 mmol) was added to a solution of phenol 18 (13.8 mg, 0.0669 mmol) and benzene- d_6 (1 mL) at 65 °C. After 2 h the pale green reaction mixture was filtered through a plug of Na₂CO₃ (THF) and dried over Na₂CO₃. This solution was filtered through glass wool and was generally used immediately but could be stored overnight. Concentration of a similar solution afforded quinone methide 20 as a yellow oil: ¹H NMR (300 MHz, CDCl₃) δ 9.80 (s, 1 H, C(O)H), 7.26 (s, 1 H, ArH), 6.88 (s, 1 H, ArH), 6.24 (t, J = 8.2 Hz, 1 H, ArCH), 2.58–1.20 (m, 6 H), 2.04 (s, 3 H, ArCH₃), 1.99 (s, 3 H, ArCH₃).

 CH_2I_2 (54 μ L, 0.67 mmol) was added to a suspension of Sm(0) (110 mg, 0.73 mmol) and THF (13 mL) at 0 °C. The resulting mixture was allowed to stir at 0 °C for 1 h followed by 1 h at rt. To the resulting violet-blue solution of SmI₂ at 35 °C was added quinone methide 20 (13.4 mL of a 5 mM solution in THF, 0.0669 mmol) via syringe pump over 1.8 h. Upon completion of addition the blue reaction mixture was cooled and then poured into aqueous saturated NaHCO₃ (30 mL) and ether (20 mL). The aqueous layer was extracted with ether $(3 \times 20 \text{ mL})$. The combined organic extracts were washed with brine (30 mL), dried (MgSO₄) and concentrated. Flash chromatography (5:1 hexanes/ethyl acetate followed by 3:1 hexanes/ethyl acetate) afforded 7.1 mg (67% from alcohol 8) of trans-cyclopentanol 21 as a white solid. The minor isomer was not isolated, but ¹H NMR of the crude reaction mixture indicated that the diastereoselectivity of the reaction was >5:1. Preparative TLC (3:1 hexane/ethyl acetate) provided an analytically pure sample of trans-cyclopentanol 21: mp 110-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.87 (s, 2 H, ArH), 4.09 (apparent q, J = 7.4 Hz, 1 H, CHOH), 2.73 (apparent q, J = 7.4 Hz, 1 H, ArCH), 2.23 (s, 6 H, ArCH₃), 2.20-2.04 (m, 2 H), 1.86-1.62 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ 150.8, 134.6, 127.4, 123.1, 80.4, 53.7, 33.7, 31.9, 21.5, 16.0; IR (CHCl₃) 3609, 2960 cm⁻¹; MS (EI, 20 eV) m/z 206 (M⁺, 56), 135 (100); HRMS calcd for C₁₃H₁₈O₂ 206.1307, found 206.1297.

From Cuprate 31. CuCN (47 mg, 0.53 mmol) was azeotropically dried with toluene $(2 \times 2 \text{ mL})$ with successive purging with argon. Ether (1.0 mL) was added, and the slurry was cooled to -78 °C. In a separate flask, t-BuLi (1.0 mL of a 1.91 M solution in pentane, 1.91 mmol) was added dropwise to a solution of 4-bromo-2,6-dimethyl-1-(*tert*-butyldimethylsilyl)phenol (5) (301 mg, 0.955 mmol) and ether (15 mL) at -78 °C. The resulting

mixture was allowed to stir for 1 h at -78 °C and was then transferred dropwise via a dry ice cooled cannula into the CuCN/ether slurry at -78 °C. The mixture was warmed to -20°C and stirred for 30 min. Cyclopentene oxide (41.7 µL, 0.478 mmol) was then added dropwise to the cuprate 31 at -20 °C. The cooling bath was removed, and the reaction mixture was allowed to warm to rt. After 12 h the reaction mixture was poured into aqueous saturated NH₄Cl (30 mL). The aqueous layer was extracted with ethyl acetate $(3 \times 30 \text{ mL})$. The combined organic extracts were washed with brine (75 mL), dried (MgSO₄), and concentrated. Flash chromatography (10:1 hexanes/ethyl acetate followed by 5:1 hexanes/ethyl acetate) afforded 42.5 mg (28%) of the silvl ether corresponding to 21. The procedure given previously for the preparation of 12 was carried out with tetra*n*-butylammonium fluoride (40 μ L of a 1.0 M solution in THF. 0.040 mmol) and the above silvl ether (42.5 mg, 0.132 mmol) to afford 22.9 mg (84%) of 21. The ¹H NMR spectra, ¹³C NMR spectra, melting point, and TLC mobility were identical to 21 prepared via reductive cyclization.

 $(1S^*, 2S^*)$ - and $(1R^*, 2S^*)$ -2-(3, 5-Dimethyl-4-hydroxyphenyl)cyclohexanol (23). The procedure given previously for the preparation of 21 was carried out with Ag₂O (82 mg, 0.35 mmol), phenol 19 (13.0 mg, 0.0590 mmol) and benzene- d_6 for 2 h to afford quinone methide 22: ¹H NMR (300 MHz, CDCl₃) δ 9.25 (s, 1 H, C(O)H), 6.95 (s, 1 H, ArH), 6.46 (s, 1 H, ArH), 5.61 (t, J = 8.1 Hz, ArCH), 2.10 (s, 3 H, ArCH₃), 2.07 (s, 3 H, ArCH₃), 1.86 (apparent q, J = 7.6 Hz, 2 H, CHCH₂), 1.72-1.67 (m, 2 H), 1.41-1.12 (m, 2 H), 1.02-0.84 (m, 2 H).

To a solution of SmI_2 from CH_2I_2 (48 μ L, 0.59 mmol), Sm(0) (98 mg, 0.65 mmol), and THF at 35 °C was added quinone methide 22 (1 mM solution in THF (59 mL), 0.059 mmol) over 8 h. After workup, flash chromatography (5:1 hexanes/ethyl acetate followed by 3:1 hexanes/ethyl acetate) afforded 6.5 mg (50% from alcohol 9) of cyclohexanol 23 as a 1:1 mixture of diastereomers (colorless oil). Preparative TLC (3:1 hexanes/ethyl acetate) afforded an analytically pure sample of cis- and trans-cyclohexanols 23 as white solids. Hi-R_f diastereomer: mp 128-130 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.87 (s, 1 H, ArH), 4.52 (bs, 1 H, ArOH), 3.96 (bs, 1 H, CHOH), 2.63 (dt, J = 12.6, 2.8 Hz, 1 H, CHOH), 2.24 (s, 6 H, ArCH₃), 2.22-1.25 (m, 9 H); ¹³C NMR δ (125 MHz, CDCl₃) 150.8, 135.4, 127.8, 123.0, 70.7, 47.0, 32.7, 26.3, 24.6, 19.6, 16.0. IR (CDCl₂) 3607, 2934, 1725, 1712 cm⁻¹; MS (EI, 20 eV) m/z 220 $(M^+, 71)$, 161 (41), 135 (100); HRMS calcd for $C_{14}H_{20}O_2$ 220.1463, found 220.1452. Low- R_f diastereomer: mp 155–157 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.86 (s, 2 H, ArH), 4.55 (bs, 1 H, ArOH), 3.62-3.54 (m, 1 H, CHOH), 2.32-1.24 (m, 9 H), 2.23 (s, 6 H, ArCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 151.0, 134.6, 127.9, 123.2, 74.6, 52.4, 34.3, 33.5, 26.2, 25.1, 16.0. IR (CDCl₃) 3700, 3610, 2934, 1733, 1716 cm⁻¹; MS (EI, 70 eV) m/z 220 (M⁺, 35), 161 (33), 135 (100); HRMS calcd for $C_{14}H_{20}O_2$ 220.1463, found 220.1468.

 $(1S^*,2S^*)$ - and $(1R^*,2S^*)$ -2-(3,5-Dimethyl-4-hydroxyphenyl)-1-[(ethoxycarbonyl)methyl]cyclopentane (25). The procedure given previously for the preparation of 21 was carried out with Ag₂O (180 mg, 0.78 mmol), phenol 15 (14.1 mg, 0.0510 mmol), and benzene- d_6 (1.5 mL) for 1 h to afford quinone methide 24: ¹H NMR (300 MHz, C_6D_6) δ 6.94 (dt, J = 15.6, 7.0 Hz, 1 H, CHCHCO₂Et), 6.91 (s, 1 H, ArH), 6.46 (s, 1 H, ArH), 5.82 (dt, J = 15.6, 1.5 Hz, 1 H, CHCO₂Et), 5.54 (t, J = 8.1 Hz, 1 H, ArCH), 4.06 (q, J = 7.1 Hz, 2 H, OCH₂), 2.09 (s, 3 H, ArCH₃), 2.06 (s, 3 H, ArCH₃), 1.84 (apparent q, J = 7.6 Hz, 2 H, ArCHCH₂), 1.76-1.66 (m, 2 H, CH₂), 1.72-1.65 (m, 2 H, CH₂CHCHCO₂Et), 1.00 (t, 3 H, J = 7.1 Hz, OCH₂CH₃).

To a solution of SmI₂ from CH_2I_2 (48 µL, 0.60 mmol), Sm(0) (99 mg, 0.66 mmol), and THF (12 mL) at 65 °C was added quinone methide 24 (10.2 mL of a 5.0 mM solution in THF, 0.0510 mmol) over 1.6 h. After workup, flash chromatography (10:1 hexanes/ethyl acetate followed by 5:1 hexanes/ethyl acetate) afforded 12.3 mg (87%) of arylcyclopentane ester 25 as a colorless oil (inseparable 1:1 mixture of diastereomers). HPLC (9:1 hexane/ethyl acetate, 1 mL/min, t_R 9.0) provided an analytically pure sample of ester 25 (1:1 mixture of diastereomers, ¹H NMR): ¹H NMR (300 MHz, CDCl₃) δ 6.81 (s, 2 H, ArH), 6.74 (s, 2 H, ArH), 4.47 (bs, 2 H, ArOH), 4.03 (q, J = 7.1 Hz, 2 H, OCH₂), 4.01 (q, J = 7.1 Hz, 2 H, OCH₂), 3.15 (apparent q, J = 7.6 Hz, 1 H, ArCH, 2.61-2.53 (m, 1 H, ArCH), 2.51-2.35 (m, 2 H, CH₂CO₂Et), 2.50-1.24 (m, 18 H), 2.22 (s, 12 H, ArCH₃), 1.19 (t, 6 H, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 173.1, 150.5, 135.5, 134.2, 128.5, 127.8, 122.8, 122.4, 60.0, 60.0, 51.8, 47.3, 44.5, 40.4, 38.8, 36.2, 35.2, 32.0, 31.0, 30.2, 23.6, 23.5, 16.0, 16.0, 15.9, 14.2; IR (CHCl₃) 3610, 3006, 1724 cm⁻¹; MS (EI, 70 eV) *m/z* 276 (M⁺, 23), 188 (100); HRMS calcd for C₁₇H₂₄O₃ 276.1725, found 276.1718.

 $(1S^*, 2S^*)$ - and $(1R^*, 2S^*)$ -2-(3,5-Dimethyl-4-hydroxyphenyl)-1-[(ethoxycarbonyl)methyl]cyclohexane (27). The procedure given previously for the preparation of 21 was carried out with Ag₂O (160 mg, 0.70 mmol), phenol 16 (13.2 mg, 0.0454 mmol), and benzene- d_6 (1.5 mL) for 1 h to afford quinone methide 26: ¹H NMR (300 MHz, C_6D_6) δ 7.00 (dt, J = 15.8, 7.0 Hz, 1 H, CHCHCO₂Et), 6.96 (s, 1 H, ArH), 6.48 (s, 1 H, ArH), 5.87 (dt, J = 15.6, 1.25 Hz, 1 H, CHCO₂Et), 5.62 (t, J = 8.1 Hz, 1 H, ArCH), 4.06 (q, J = 7.1 Hz, 2 H, OCH₂), 2.10 (s, 3 H, ArCH₃), 2.07 (s, 3 H, ArCH₃), 1.91-1.84 (m, 2 H), 1.77-1.71 (m, 2 H), 1.00 (t, J = 7.1 Hz, 3 H, OCH₂CH₃), 1.04-0.93 (m, 4 H).

To a solution of SmI_2 from CH_2I_2 (37 μ L, 0.46 mmol), Sm(0)(77 mg, 0.51 mmol), and THF (9 mL) at 65 °C was added quinone methide 26 (40 mL of a 1.15 mM solution in THF, 0.0454 mmol) over 5.3 h. After workup, flash chromatography (5:1 hexanes/ethyl acetate) afforded 9.2 mg (70%) of arylcyclohexane 27 as a colorless oil (inseparable 1:1 mixture of diastereomers). HPLC (9:1 hexane/ethyl acetate, 1 mL/min, $t_{\rm R}$ 8.6 min) provided an analytically pure sample of ester 27 (1:1 mixture of diastereomers, ¹H NMR): ¹H NMR (300 MHz, CDCl₃) δ 6.77 (s, 4 H, ArH), 4.49 (s, 2 H, ArOH), 4.01 (q, J = 7.1 Hz, 2 H, OCH₂), 3.99 (q, J = 7.1 Hz, 2 H, OCH₂), 2.78 (m, 1 H, ArCH), 2.44 (m, 1 H, ArCH), 2.34–0.85 (m, 22 H), 2.22 (s, 6 H, ArCH₃), 2.21 (s, 6 H, ArCH₃), 1.18 (t, J = 7.1 Hz, 3 H, OCH_2CH_3), 1.17 (t, J = 7.1 Hz, 3 H, OCH_2CH_3); ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 173.5, 150.4, 150.3, 137.2, 136.5, 127.7, 122.8, 122.5, 60.0, 60.0, 49.6, 44.9, 39.9, 39.9, 37.0, 35.9, 32.8, 31.8, 30.1, 26.8, 26.5, 26.2, 25.6, 20.4, 16.0, 16.0, 14.2; IR (CHCl₃) 3608, 2985, 1730 cm⁻¹; MS (EI, 20 eV) m/z 290 (M⁺, 50), 202 (100), 161 (31); HRMS calcd for C₁₈H₂₆O₃ 290.1882, found 290.1888.

(1S*,2S*)- and (1R*,2S*)-2-(3,5-Dimethyl-4-hydroxyphenyl)-1-(cyanomethyl)cyclopentane (29). The same procedure given previously for the preparation of 21 was carried out with Ag₂O (330 mg, 1.4 mmol), phenol 17 (21.9 mg, 0.0956 mmol), and benzene- d_6 (2 mL) at 65 °C for 12 h to afford quinone methide 28 (2.3:1 mixture of E/Z isomers) as a pale red solution: ¹H NMR (300 MHz, C₆D₆) δ 6.38 (s, 1 H, ArH), 6.86 (d, J = 1 Hz, 1 H), 6.46 (s, 2 H, ArH), 5.84 (dt, J = 16.3, 6.9 Hz, 1 H, CHCHCN), 5.56-5.41 (m, 3 H, ArCH, CHCHCN), 4.54-4.45 (m, 2 H, CHCHCN), 2.10 (s, 3 H, ArCH₃), 2.10 (s, 3 H, ArCH₃), 2.08 (s, 3 H, ArCH₃), 2.06 (s, 3 H, ArCH₃), 1.94-0.77 (m, 12 H).

To a solution of SmI_2 from CH_2I_2 (77 μ L, 0.96 mmol), Sm(0)(160 mg, 1.1 mmol), and THF (35 mL) at 65 °C was added quinone methide 28 (19 mL of a 5 mM solution in THF, 0.0956 mmol) over 2.5 h. After workup, flash chromatography (10:1 hexanes/ethyl acetate followed by 5:1 hexanes/ethyl acetate) afforded 17 mg (78% yield) of arylcyclopentane 29 as a colorless oil (1:1 mixture of diastereomers, ¹H NMR). HPLC (10:1 hexane/ethyl acetate, 0.8 mL/min, trans: $t_{\rm R}$ 18.2 min, cis: $t_{\rm R}$ 19.2 min) provided analytical samples of the cis- and trans-nitriles. Low- R_f diastereomer ($t_{\rm R}$ 19.2 min): ¹H NMR (300 MHz, CDCl₃) δ 6.81 (s, 2 H, ArH), 4.55 (s, 1 H, ArOH), 2.53 (dt, J = 16.5 Hz, 3.3 Hz, 1 H, ArCH), 2.23 (s, 6 H, ArCH₃), 2.41 (dd, J = 16.5 Hz, 3.3 Hz, CH₂CN), 2.20 (1 H), 1.55 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃) δ 150.9, 134.1, 127.4, 123.2, 119.0, 51.0, 44.2, 34.9, 31.2, 23.3, 20.6, 16.0; IR (CHCl₃) 3610, 2959, 2254 cm⁻¹; MS (EI, 20 eV) m/z 229 (M⁺, 100), 161 (44); HRMS calcd for C₁₅H₁₉NO 229.1467, found 229.1474. High- R_f diastereomer (t_R 18.2 min): ¹H NMR (300 MHz, CDCl₃) δ 6.76 (s, 2 H, ArH), 4.54 (bs, 1 H, ArOH), 3.19 (apparent q, J = 7.7 Hz, 1 H, ArCH), 2.50-2.43 (m, 1 H, CHCH₂CN), 2.23 (s, 6 H, ArCH₃), 2.09–1.57 (m, 8 H); ¹³C NMR (125 MHz, CDCl₃) δ 150.8, 132.5, 128.3, 122.9, 120.1, 47.2, 41.0, 30.7, 29.5, 23.2, 19.3, 16.0; IR (CHCl₃) 3609, 2959, 2261 cm⁻¹; MS (EI, 20 eV) m/z 229 (M⁺, 100), 161 (88); HRMS calcd for C₁₅-H₁₉NO 229.1467, found 229.1453.

Ethyl 7-(3,5-Dimethyl-4-hydroxyphenyl)-2,6-heptadienoate (30). SmI₂ (0.055 M) was added via syringe pump to a solution of quinone methide 24 (0.171 mmol) and THF (34 mL) at 65 °C until the blue color of SmI₂ persisted (ca. 2 mL). The resulting pale blue reaction mixture was cooled to rt and poured into aqueous saturated NaHCO₃ (50 mL) and ether (30 mL). The aqueous layer was extracted with ether (3 × 50 mL). The combined organic extracts were washed with brine (100 mL), dried (MgSO₄), and concentrated. Flash chromatography (5:1 hexanes/ethyl acetate) afforded 30.0 mg (64%) of styrene **30** as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 7.02 (partially obscured dt, J = 15.7, 6.5 Hz, 1 H, CHCHCO₂Et), 6.97 (s, 2 H, ArH), 6.28 (d, J = 15.7, 6.5 Hz, 1 H, ArCH or CHCO₂Et), 6.01 (partially obscured dt, J = 15.8, 6.4 Hz, 1 H, ArCH or CHCO₂Et), 6.01 (partially obscured dt, J = 15.8, 6.4 Hz, 1 H, ArCHCH), 5.86 (d, J = 15.6 Hz, 1 H, ArCH or CHCO₂Et), 4.77 (bs, 1 H, ArOH), 4.19 (q, J = 7.1 Hz, 2 H, OCH₂CH₃), 2.40–2.31 (m, 4 H), 2.23 (s, 6 H, ArCH₃), 1.29 (t, 3 H, OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 151.6, 148.4, 130.4, 129.6, 126.3, 126.2, 123.0, 121.7, 60.2, 32.2, 31.4, 15.9, 14.2; IR (CDCl₃) 3609, 2982, 1709, 1603 cm⁻¹; MS (EI, 20 eV) 274 (M⁺, 12), 161 (100); HRMS calcd for C₁₇H₂₂O₃ 274.1569, found 274.1564.

7-(3,5-Dimethyl-4-hydroxyphenyl)-2-methyl-2-heptene (32), *n*-BuLi (630 μ L of a 2.3 M solution in hexanes, 1.4 mmol) was added to a suspension of freshly dried (160 °C, 0.05 mmHg) isopropropyltriphenylphosphonium bromide (590 mg, 1.5 mmol) and THF (15 mL) at -78 °C. The cooling bath was removed, and the orange mixture was allowed to warm to rt and was then stirred for 30 min. The resulting red solution was cooled to -78 °C, and to this was added dropwise a solution of aldehyde 10 (197 mg, 0.615 mmol) and THF (10 mL). Immediately after the addition was completed, the cooling bath was removed and the red reaction mixture was allowed to warm to rt. After 4 h the reaction mixture was poured into brine (25 mL). The aqueous layer was extracted with ether $(3 \times 20 \text{ mL})$. The combined organic extracts were washed with brine (50 mL), dried ($MgSO_4$), and concentrated. Flash chromatography (20:1 hexanes/ethyl acetate) afforded 195 mg (91%) of 7-[3,5-dimethyl-4-[(tert-butyldimethylsilyl)oxy]phenyl]-2-methyl-2-heptene as a colorless oil: ¹H NMR (300 MHz, $CDCl_3$) δ 6.84 (s, 2 H, ArH), 5.20 (t, J = 7.0 Hz, 1 H, HCC(CH₃)₂), 2.54 (t, J = 7.7 Hz, 2 H, ArCH₂), 2.26 (s, 6 H, ArCH₃), 2.07 (m, 2 H), 1.76 (s, 3 H, (Z)-CHCCH₃), 1.70-1.60 (m, 2 H), 1.68 (s, 3 H, (E)-CHCCH₂), 1.48-1.38 (m, 2 H), 1.11 (s, 9 H, SiC(CH₃)₃, 0.26 (s, 6 H, Si(CH₃)₂); ¹³C NMR (75 MHz, CDCl₂) δ 149.8, 135.3, 131.1, 128.6, 128.0, 124.8, 35.0, 31.3, 29.6, 27.9, 26.1, 25.7, 18.7, 17.8, 17.7, -3.0; IR (CHCl₂) 3611, 2966 cm⁻¹. The procedure given previously for the preparation of 12 was carried out with tetrabutylammonium fluoride (170 μ L of a 1.0 M solution in THF, 0.17 mmol) and the above silyl ether (195 mg, 0.562 mmol). Flash chromatography (20:1 hexanes/ethyl acetate followed by 10:1 hexanes/ethyl acetate) afforded 122 mg (93%) of phenol 32 as a colorless oil. HPLC (9:1 hexane/ethyl acetate, 1 mL/min, t_{R} 9.0 min) provided an analytically pure sample of dimethylalkene 32: ¹H NMR (300 MHz, CDCl₃) δ 6.79 (s, 2 H, ArH), 5.12 (m, 1 H, $HC(CH_3)_2$), 4.45 (s, 1 H, ArOH), 2.48 (t, J = 7.7 Hz, 2 H, ArCH₂), 2.23 (s, 6 H, ArCH₃), 2.04-1.96 (m, 2 H, CHCH₂), 1.69 (s, 3 H, (Z)-CHCH₃), 1.61 (s, 3 H, (E)-CHCH₃), 1.58-1.52 (m, 2 H), 1.41-1.34 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 150.0, 134.5, 131.2, 128.5, 124.7, 122.7, 35.0, 31.5, 29.6, 27.9, 25.7, 17.7, 15.9; IR (CHCl₃) 3612, 2969 cm⁻¹; MS (EI, 20 eV) m/z 232 (M⁺, 82), 161 (98), 135 (100). Anal. Calcd for C₁₆H₂₄O: C, 82.68; H, 10.43. Found: C, 82.49; H, 10.38.

7,8-Bis(3,5-dimethyl-4-hydroxyphenyl)-2,13-dimethyl-2,12-tetradecadiene (33). The procedure given previously for the preparation of 21 was carried out with Ag₂O (490 mg, 2.1 mmol), phenol 32 (32.9 mg, 0.142 mmol), and benzene- d_6 (1.5 mL) for 1 h to afford the corresponding quinone methide: ¹H NMR (300 MHz, C₆D₆) δ 7.02 (s, 1 H, ArH), 6.48 (s, 1 H, ArH), 5.75 (t, J = 8.1 Hz, 1 H, ArCH), 5.11-5.06 (m, 1 H, CHC(CH₃)₂), 2.19-2.03 (m, 2 H, CHCH₂), 2.07 (s, 3 H, ArCH₃), 2.05 (s, 3 H, ArCH₃), 1.90 (apparent q, J = 7.1 Hz, 2 H, CHCH₂), 1.65 (s, 3 H, ArCH₃), 1.48 (s, 3 H, ArCH₃), 1.35-1.28 (m, 2 H).

To a solution of SmI₂ from CH₂I₂ (110 μ L, 1.4 mmol), Sm(0) (240 mg, 1.56 mmol), and THF (28 mL) at 65 °C was added the above quinone methide (28 mL of a 5 mM solution in THF, 0.142 mmol) dropwise over 3.7 h. After workup, flash chromatography (10:1 hexanes/ethyl acetate followed by 5:1 hexanes/ethyl acetate) afforded 13.6 mg of the high R_f diastereomer (colorless oil) and 13.3 mg of the low R_f diastereomer (white solid) of dimer 33 (82% total yield). High R_f diastereomer (oil): ¹H NMR (300 MHz, CDCl₃) δ 6.43 (s, 4 H, ArH), 5.03 (m, 2 H, CHCCH₃), 4.43 (s, 2 H, ArCH₃), 1.64 (s, 3 H, (Z)-CHCCH₃), 1.55 (s, 3 H, (E)-CHCCH₃);

¹³C NMR (75 MHz, CDCl₂) δ 150.0, 134.2, 131.1, 129.6, 124.8, 121.4, 50.1, 32.5, 28.1, 25.7, 17.6, 15.9; IR (CHCl₃) 3608, 3002, 1489 cm⁻¹ MS (FAB, positive ion, nitrobenzyl alcohol matrix) m/z 461 (MH⁺ 1), 135 (100); FAB-HRMS calcd for C₃₂H₄₅O₂ 461.3420, found 461.3423. Low R_f diastereomer (white solid): mp 110-112 °C; ¹H NMR (300 MHz, CDCl₃) δ 6.72 (s, 4 H, ArH), 4.88 (t, J = 6.8 Hz, 2 H, CHCCH₃), 4.47 (s, 2 H, ArOH), 2.42 (m, 2 H, ArCH), 2.24 (s, 12 H, ArCH₃), 1.79–0.86 (m, 12 H), 1.58 (s, 6 H, (Z)-CHCCH₃), 1.46 (s, 6 H, (E)-CHCCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 150.0, 136.4, 130.8, 128.4, 124.9, 122.3, 51.4, 34.1, 27.8, 27.7, 25.6, 17.6, 16.1; IR (CHCl₃) 3609, 2930, 1489 cm⁻¹; MS (FAB, positive ion, nitrobenzyl alcohol matrix) m/z 461 (MH⁺, 1), 161 (25), 135 (100); MS (FAB, negative ion, 1-thioglycerol matrix) m/z 461 (MH⁻, 52), 147 (100); HRMS (FAB, positive ion, nitrobenzyl alcohol matrix) calcd for C₃₂H₄₅O₂ (MH⁺) 461.3420 found 461.3397.

Acknowledgment. We thank Dr. Richard Kondrat and Mr. Ronald New of the UCR Mass Spectrometry Laboratory for the mass spectra data. We gratefully acknowledge the National Institutes of Health (GM 39354) for financial support of this work.

Registry No. 5, 139229-99-5; 6, 144180-67-6; 7, 144180-68-7; 8, 144180-69-8; 9, 144180-70-1; 10, 144180-71-2; 11, 144180-72-3;

(E)-12, 144180-73-4; (Z)-12, 144180-66-5; (E)-13, 144180-74-5; (Z)-13, 144180-93-8; (E)-14, 144180-75-6; (Z)-14, 144180-94-9; (E)-15, 144180-76-7; (Z)-15, 144180-95-0; (E)-16, 144180-77-8; (Z)-16, 144180-96-1; (E)-17, 144191-83-3; (Z)-17, 144191-84-4; 18, 144180-78-9; 19, 144180-79-0; 20, 144180-80-3; 21, 144180-81-4; 22, 144180-82-5; cis-23, 144180-83-6; trans-23, 144180-97-2; 24, 144180-84-7; cis-25, 144180-85-8; trans-25, 144180-98-3; 26, 144180-86-9; cis-27, 144180-87-0; trans-27, 144180-99-4; (E)-28, 144180-88-1; (Z)-28, 144181-01-1; cis-29, 144180-89-2; trans-29, 144181-00-0; 30, 144180-90-5; 32, 144180-91-6; 32 guinone methide derivative, 144181-03-3; 33 isomer 1, 144180-92-7; 33 isomer 2, 144181-04-4; Ph₃P=CHCO₂Et, 1099-45-2; (EtO)₂P(O)CH₂CN, 2537-48-6; Ph₃PPr-i⁺ Br⁻, 1530-33-2; δ-valerolactone, 108-29-2; ε-caprolactone, 502-44-3; cyclopentene oxide, 285-67-6; 7-[3,5dimethyl-4-[(tert-butyldimethylsilyl)oxy]phenyl]-2-methyl-2heptene, 144181-02-2.

Supplementary Material Available: ¹H NMR and ¹³C NMR spectra for compounds 6, 7, 10, 11, 14, 17, 21, 23, 25, 27, 29, 30, 32, and 33 and ¹H NMR spectra for compounds 18, 19, 20, 22, 24, 26, 28 (41 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Preparation and Reactivity of the Adducts of Ketene Alkylsilyl Acetals with Ethyl Propiolate in the Presence of Titanium Tetrachloride

Alain Quendo, Syed Massarat Ali, and Gérard Rousseau*

Laboratoire des Carbocycles, Institut de Chimie Moléculaire, Bât. 420 Université de Paris-Sud, 91405 Orsay, France

Received July 7, 1992

The reaction of ketene alkylsilyl acetals with ethyl propiolate in the presence of TiCl₄ led to intermediates whose reactivity was studied with electrophiles such as H₂O, D₂O, NBS, NCS, and PhSeCl to form glutaconate derivatives. Except in the case of the dimethylketene trimethylsilyl acetal, for which the reaction was stereospecific, with other ketene acetals the selectivity was lower. Similar results were observed in the reaction of these titanium intermediates with aldehydes and ketones. The results were interpretated as the formation of vinylic titanium intermediates (more stabilized in the case of the dimethylketene acetal) in equilibrium with the titanium allenolates.

Introduction

Numerous methods have been developed for preparing α -functionalized α,β -ethylenic esters. Among the straightforward procedures to access to such intermediates, the most promising for their simplicity employ the DAB-CO-catalyzed coupling of aldehydes with acrylates¹ or $[\alpha$ -(alkoxycarbonyl)vinyl]metal derivatives. Various metals have been used for the preparation of these vinylmetal compounds, such as Li,² Al,³ Cu,⁴ Sn,⁵ Ge,⁶ Pb,⁷ Zn,⁸ Pt,⁹ Co,¹⁰ Hg,^{2b} Ru,¹¹ and Pd.^{12,13} The most common way to prepare these metallic intermediates is the 1,4-addition of organometallic compounds to 2-alkynoates. Wide synthetic applications of this reaction were made in the case

⁽¹⁾ Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653.

 ^{(2) (}a) Köbrich, G.; Trapp, H.; Akhtar, A. Chem. Ber. 1968, 101, 2644.
 (b) Elbe, H. L.; Köbrich, G. Tetrahedron Lett. 1974, 2557. (c) Pitzcle, B. S.; Baran, J. S.; Steinman, D. H. J. Org. Chem. 1975, 40, 269. (d)
 Parham, W. E.; Boykin, D. W. J. Org. Chem. 1977, 42, 280. (e) Boykin,
 D. W.; Parham, W. E. J. Org. Chem. 1979, 44, 424. (f) Feit, B. A.;
 Melamed, U.; Schmidt, R. R.; Speer, H. J. Chem. Soc., Perkin Trans. 1,
 1981, 1329. (g) See also: Adlington, R. M.; Barrett, A. G. J. Chem. Soc., (3) (a) Tsuda, T.; Yoshida, T.; Kawamoto, T.; Saegusa, T. J. Org.

Chem. 1987, 52, 1624. (b) Tsuda, T.; Yoshida, T.; Saegusa, T. J. Org. Chem. 1988, 53, 1037.

^{(4) (}a) Bretting, C.; Munch-Peterson, J.; Jorgensen, P. M. Acta Chem. Scand. 1960, 14, 151. (b) Corey, E. J.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1969, 91, 1851. (c) Siddall, J. B.; Biskup, M.; Fried, J. H. J. Am. Chem. Soc. 1969, 91, 1853. (d) Klein, J.; Turkel, R. M. J. Am. Chem. Soc. 1969, 91, 6186.

^{(5) (}a) Leusink, A. J.; Budding, H. A.; Marsman, J. W. J. Organomet. Chem. 1967, 9, 285 and references therein. (b) Leusink, A. J.; Budding, Chem. 1967, 9, 285 and references therein. (b) Leusink, A. J.; Budding, H. A.; Drenth, W. J. Organomet. Chem. 1967, 9, 295. (c) Quintard, J. P.; Pereyre, M. J. Organomet. Chem. 1972, 42, 75. (d) Piers, E.; Chong, J. M. J. Org. Chem. 1982, 47, 1602. (e) Bew, S. P.; Sweeney, J. B. Synlett 1991, 109. (f) Cochran, J. C.; Williams, L. E.; Bronk, B. S.; Calhoun, J. A.; Fassberg, J.; Clark, K. G. Organometallics 1989, 8, 804. (g) Zhang, H. X.; Guibé, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857. (h) Cochran, J. C.; Bronk, B. S.; Terrence, K. M.; Phillips, H. K. Tetrahedron Lett. 1990, 31, 6621. (i) Zapata. A.; Fortoul. C.; Acuña, C. A. Synth, Commun. C.; Bronk, B. S.; Terrence, K. M.; Phillips, H. K. Tetrahedron Lett.
 1990, 31, 6621. (i) Zapata, A.; Fortoul, C.; Acuña, C. A. Synth. Commun.
 1985, 15, 179. (j) Piers, E.; Tillyer, R. D. J. Chem. Soc., Perkin Trans.
 1989, 2124. See also ref 6 and 17.
 (6) Piers, E.; Skerlj, R. T. J. Chem. Soc., Chem. Commun.
 1987, 1025.
 (7) Davies, A. G.; Puddephatt, R. J. J. Chem. Soc. C 1968, 1479.
 (8) Quendo, A.; Rousseau, G. Tetrahedron Lett.
 1988, 29, 6443.
 (9) Clark, H. C.; Ferguson, G.; Goel, A. B.; Janzen, E. G.; Ruegger, H.;
 Siew, F. Y.; Wong, C. S. J. Am. Chem. Soc. 1986, 108, 6961.
 (10) Bianchini, C.; Innocenti, P.; Masi, O.; Meli, A.; Sabat, M. Orgonometallics 1986, 5 72

ganometallics 1986, 5, 72. (11) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati,

A. J. Am. Chem. Soc. 1991, 113, 5453.
 (12) Ossor, H.; Pfeffer, M. J. Chem. Soc., Chem. Commun. 1985, 1541.

⁽¹³⁾ Acuña, C. A.; Zapata, A. Synth. Commun. 1988, 18, 1133.