Synthesis of Naphthalene Amino Esters by the Blaise Reaction of o-Alkynylarenenitriles

Karuppusamy Sakthivel and Kannupal Srinivasan*

School of Chemistry, Bharathidasan University, Tiruchirapalli 620 024, Tamil Nadu, India

Supporting Information

ABSTRACT: The action of a Reformatsky reagent on *o*-alkynylarenenitriles provides a convenient access to naphthalene amino esters *via* tandem *6-endo-dig* carbannulation of *in situ* generated Blaise reaction intermediates. The products are formed in moderate to good yields with high chemo- and regioselectivity.

he Blaise reaction, which involves the addition of a L Reformatsky reagent to nitrile, is an important carbon carbon bond forming reaction.¹ A zinc bromide complex of β enaminoester is generated as an intermediate in the reaction, and the intermediate after acidic or basic workup gives β ketoester or β -enaminoester (Scheme 1, eq 1). The reaction has been exploited in the synthesis of numerous heterocycles and natural products.^{1,2} In recent years, the Blaise reaction intermediates have been trapped with suitable partners in a tandem manner, which has provided access to a variety of compounds. Thus, the trapping of the intermediates with acetic anhydride,³ propiolates,⁴ epoxides,⁵ 1,4-benzoquinones,⁶ 1,3enynes,⁷ nitriles,⁸ isocyanates,⁹ and nitroolefins¹⁰ have yielded α -acyl- β -enaminoketoesters (subsequently, pyrazoles), 2-pyridones, α -aminomethylene- γ -butyrolactones, benzofuran-2ones, pyridines, pyrimidin-4-ones, pyrimidin-2,4-diones, and pyrroles, respectively. A palladium-catalyzed intramolecular Nalkylative/arylative trapping of the intermediate has furnished indoles,¹¹ and a chemoselective intramolecular alkylation of the intermediate has afforded various N-fused heterocyclic compounds via exo-cyclic enamino esters.¹² An interesting addendum to the list is Lee's tandem alkenylation of the Blaise reaction intermediates with unactivated alkynes, which has resulted in various α -vinylated β -enaminoesters (Scheme 1, eq 2).^{13,14} The work caused us to envisage that an intramolecular version of the reaction using o-alkynylarenenitriles as substrates would result in naphthalene amino esters through tandem 6endo-dig carbannulation of in situ generated Blaise reaction intermediates (Scheme 1, eq 3).

Earlier methods reported for the synthesis of naphthalene amino esters include addition of α -lithio derivatives of 2alkylbenzonitriles to α,β -unsaturated carboxylic acids or esters *via* tandem Michael addition/enolate coupling,¹⁵ copper(I) cyanide-mediated cascade cyclization of 4-(2-bromoaryl)-2butenoates,¹⁶ and hypervalent iodine(III)-mediated benzannulation of β -enaminoesters with alkynes.¹⁷ The development of new methods for the access of functionalized naphthalenes is actively pursued owing to the widespread applications of substituted naphthalenes in academia and industry and the occurrence of the naphthalene core in many natural products, pharmaceuticals, and functional materials.¹⁸ In this context, the present method would be an interesting and useful addition to the existing methods.

To test our hypothesis, we required a variety of oalkynylarenenitriles with various substitution patterns. They were prepared from appropriate o-haloarenenitriles and terminal acetylenes by a standard Sonogashira coupling procedure. The requisite o-haloarenenitriles were in turn prepared from the corresponding o-haloarenecarbaldehydes by heating with hydroxylamine hydrochloride and DMSO.¹⁹ We began the study with the generation of methyl zincbromoacetate in situ from methyl bromoacetate and activated zinc and its addition to o-alkynylbenzonitrile 1a in THF under reflux conditions. To our delight, the desired naphthalene amino ester 2a was obtained in 65% isolated yield after 2 h. After several attempts, we found that the yield of 2a could be improved to 81% when solvent was switched to 1,4-dioxane (under reflux) and 5 equiv of methyl bromoacetate and 7.5 equiv of zinc were used for the formation of the Reformatsky reagent (Table 1, entry 1). Under these optimized conditions, we investigated the scope of the reaction for various *o*-alkynylarenenitriles using different Reformatsky reagents (Table 1).²⁰ The reaction of 1awith ethyl zincbromoacetate afforded the respective naphthalene amino ester 2b in almost similar yield (83%) (entry 2). When tert-butyl zincbromoacetate was employed in the reaction, 1a did not undergo any change even after 12 h (entry 3), probably due to the lower nucleophilicity of the

Received: January 20, 2014 Published: March 7, 2014

Scheme 1. Inter- and Intramolecular Tandem Alkenylation of Blaise Reaction Intermediates

reagent caused by the bulky tert-butyl group. Next, we tested the suitability of o-alkynylarenenitriles 1b-g having different aromatic rings (R^1) attached to the yne unit. The presence of phenyl rings with electron-donating and halogen substituents was tolerated (entries 4-7) as well as the bulky naphthyl ring (entry 8) and the heteroaromatic thienyl ring, albeit in low yield in the latter case (entry 9). However, the reaction failed for a terminal acetylene **1h**, in which $R^1 = H$ (entry 10), likely due to abstraction of the acidic terminal acetylenic hydrogen by the Reformatsky reagent.²¹ We then examined *o*-alkynylbenzonitriles 1i-r bearing one or two methoxy groups on the main aryl ring (entries 11-20). The yields were comparatively low and the reaction time was longer (6 h) when an alicyclic ring or aliphatic chain was linked to the yne unit (entries 12-14). The reaction did not take place when a p-nitrophenyl group was attached to the yne unit (entry 20). Except for these pitfalls, all other o-alkynylbenzonitriles furnished the corresponding naphthalene amino esters in moderate to good yields (entries 11 and 15-19). Finally, we tested the tetrahydrobenzothiophene-based o-alkynylarenenitrile 1s, which also afforded the corresponding amino ester 2r in 45% yield (entry 21). All the products were thoroughly characterized by various spectroscopic techniques, and for one of the products, 2i, the structure was further confirmed by X-ray analysis.²²

In all the successful reactions mentioned above, we obtained only naphthalene amino esters 2 as single or only isolable products. Obviously, the initially formed Blaise reaction intermediate has acted as a carbon nucleophile and attacked the triple bond in a tandem manner via 6-endo-dig cyclization mode producing the carbannulated product 2. The high chemoand regioselectivities of the reactions are noteworthy. We did not observe any products 3-5 arising from 5-exo-dig carbannulation or 6-endo-dig/5-exo-dig hydroamination (when the Blaise reaction intermediate acts as a N-nucleophile) (Scheme 2). It may be noted that Lee's alkenylation of Blaise reaction intermediates with alkynes (Scheme 1, eq 2) was applicable mainly to terminal alkynes and only one internal alkyne (methyl phenyl acetylene) has been successfully employed in the reaction.¹³ In contrast, our intramolecular strategy is applicable only to internal diaryl or alkylaryl alkynes.

In summary, we have developed a convenient protocol for the synthesis of naphthalene amino esters from *o*-alkynylarenenitriles and Reformatsky reagents. The reaction proceeds in a highly chemo- and regioselective manner *via* tandem *6-endo-dig* carbannulation of *in situ* formed Blaise reaction intermediates.

EXPERIMENTAL SECTION

General Remarks. Melting points were determined using an apparatus by the open capillary tube method and are uncorrected. The ¹H and ¹³C NMR spectra were recorded on a 400 MHz NMR spectrometer. HRMS (ESI) were recorded on Q-TOF mass spectrometers. Low resolution mass spectra (ESI) were recorded on LC-MS spectrometers. Elemental analyses were performed on a CHN analyzer. X-ray crystallographic data were collected on a CCD diffractometer using graphite-monochromated Mo K α radiation. Thin layer chromatography (TLC) was performed on precoated alumina sheets and detected under UV light. Silica gel (100–200 mesh) was used for column chromatography.

General Procedures for the Synthesis of Naphthalene Amino Esters 2a–r. To a stirred suspension of zinc dust (3.75 mmol) in anhydrous 1,4-dioxane (5 mL) was added methanesulfonic acid (5 mol %) and heated to reflux. After 10 min, *o*-alkynylarenenitrile 1 (0.5 mmol) was added followed by slow addition (15 min) of alkyl bromoacetate (2.5 mmol) in 1,4-dioxane (1 mL). After 2 h (6 h for 1j–l), the reaction mixture was cooled to room temperature, quenched with saturated NH₄Cl, and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using hexane/ ethyl acetate (9.5/0.5) as eluent to obtain pure naphthalene amino ester 2.

Methyl 1-Amino-3-phenyl-2-naphthoate (**2a**). Brown viscous liquid. Yield: 112 mg (81%). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.56–7.52 (m, 1H), 7.49–7.45 (m, 1H), 7.39–7.36 (m, 4H), 7.33–7.30 (m, 1H), 7.13 (s, 1H), 6.02 (brs, 2H), 3.41 (s, 3H); ¹³C NMR (100 MHz,CDCl₃): δ 170.5, 146.3, 143.7, 139.9, 134.9, 128.7, 128.4, 127.91, 127.85, 126.5, 125.5, 122.4, 121.4, 119.1, 107.7, 51.2 ppm; HRMS (ESI): [M + H]⁺ Calcd for C₁₈H₁₆NO₂, 278.1181; found, 278.1165.

Ethyl 1-Amino-3-phenyl-2-naphthoate (**2b**).¹⁵ Brown viscous liquid. Yield: 121 mg (83%). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.40–7.32 (m, 5H), 7.14 (s, 1H), 6.10 (brs,

Entry	o-alkynylarenenitrile Br	ZnCH ₂ CO ₂ R ²	Product	Yield (%) ^b
	R ¹		R ¹ CO ₂ R ² NH ₂	2
1	R ¹ = Ph, 1a	Me	2a	81
2	R ¹ = Ph, 1a	Et	2b	83
3	R ¹ = Ph, 1a	^t Bu	-	NR
4	$R^1 = 4 - MeC_6H_4$, 1b	Me	2c	79
5	R ¹ = 2-MeC ₆ H ₄ , 1c	Ме	2d	75
6	R ¹ = 4-OMeC ₆ H ₄ , 1d	Me	2e	67
7	R ¹ = 4-ClC ₆ H ₄ , 1e	Ме	2f	64
8	R ¹ = 4-methoxy-1-naphthyl, ⁻	1f Me	2g	60
9	R ¹ = 2-thienyl, 1g	Et	2h	45
10	R ¹ = H, 1h	Et	-	NR
11 12 13	$R^{1} = Ph, 1i$ $R^{1} = cyclopropyl, 1j$ $R^{1} = butyl, 1k$	N Et Et	$\begin{array}{c} & \\ \text{MeO} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	2 78 38 ^c 48 ^c
14	R ¹ = heptyl, 1I	Et	21	43 ^c
	MeO MeO CN	N	NeO R ¹ NeO NH ₂	2
15	$R^1 = Ph, 1m$	Et	2m	74
16	$R^{1} = 4 - MeC_{6}H_{4}$, 1n	Et	2n	70
17	R ¹ = 2-OMeC ₆ H ₄ , 1o	Et	20	62
18	R ¹ = 4-ClC ₆ H ₄ , 1p	Et	2р	64
19	R ¹ = 4-methoxy-1-naphthyl,	1q Et	2q	54
20	R ¹ = 4-NO ₂ C ₆ H ₄ , 1r	Et	-	NR
21	CN 1s	Me		45 e

Table 1. Substrate Scope for the Tandem Carbannulation of Blaise Reaction Intermediates^a

^{*a*}Reaction conditions: nitrile (0.5 mmol), alkyl bromoester (2.5 mmol), zinc (3.75 mmol, preactivated with 5 mol % of methanesulfonic acid) in 1,4dioxane (6 mL) at reflux for 2 h. ^{*b*}Isolated yield. ^{*c*}Reaction time was 6 h.

Scheme 2. Possible Tandem Carbannulation/ Hydroamination of the Blaise Reaction Intermediates

2H), 3.94 (q, J = 7.2 Hz, 2H), 0.73 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.1, 146.5, 144.1, 140.1, 134.9, 128.7, 128.4, 128.1, 127.9, 126.5, 125.5, 122.5, 121.5, 119.1, 107.7, 60.4, 13.2 ppm; MS (ESI): m/z 292 (M + H)⁺.

Methyl 1-Amino-3-(4-methylphenyl)-2-naphthoate (2c). Brown solid. Yield: 115 mg (79%). Mp 78–80 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.53–7.49 (m, 1H), 7.45–7.41 (m, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.12 (s, 1H), 5.94 (brs, 2H), 3.44 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 146.1, 140.7, 139.8, 136.1, 135.0, 128.69, 128.68, 128.3, 127.8, 125.4, 122.4, 121.4, 119.1, 108.0, 51.3, 21.2 ppm; HRMS (ESI): [M + H]⁺ Calcd for C₁₉H₁₈NO₂, 292.1338; found, 292.1321.

Methyl 1-Amino-3-(2-methylphenyl)-2-naphthoate (2d). Brown viscous liquid. Yield: 109 mg (75%). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.56–7.52 (m, 1H),

7.49–7.45 (m, 1H), 7.21–7.13 (m, 4H), 6.97 (s, 1H), 6.29 (brs, 2H), 3.36 (s, 3H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 147.1, 143.8, 139.8, 135.2, 135.0, 129.2, 128.52, 128.51, 128.4, 126.5, 125.4, 125.1, 122.4, 121.5, 119.0, 107.5, 51.1, 20.1 ppm; HRMS (ESI): [M + H]⁺ Calcd for C₁₉H₁₈NO₂, 292.1338; found, 292.1347.

Methyl 1-*Amino*-3-(4-*methoxyphenyl*)-2-*naphthoate* (**2e**). Orange liquid. Yield: 103 mg (67%). ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.2 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.12 (s, 1H), 6.94 (d, J = 8.8 Hz, 2H), 5.95 (brs, 2H), 3.86 (s, 3H), 3.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 158.5, 146.0, 139.4, 136.1, 134.9, 128.9, 128.6, 128.3, 125.3, 122.3, 121.4, 118.9, 113.5, 108.1, 55.3, 51.3 ppm; HRMS (ESI): [M + H]⁺ Calcd for C₁₉H₁₈NO₃, 308.1287; found: 308.1278.

Methyl 1-Amino-3-(4-chlorophenyl)-2-naphthoate (**2f**). Pale yellow liquid. Yield: 100 mg (64%). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.0 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.08 (s, 1H), 6.13 (brs, 2H), 3.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 146.8, 142.3, 138.7, 134.8, 132.4, 129.2, 128.7, 128.6, 128.0, 125.7, 122.5, 121.4, 119.1, 106.9, 51.2 ppm; MS (ESI): *m*/*z* 312 (M + H)⁺. Anal. Calcd for C₁₈H₁₄ClNO₂: C, 69.35; H, 4.53; N, 4.49. Found: C, 69.55; H, 4.63; N 4.62.

Methyl 4'-*Amino*-4-*methoxy*-1,2'-*binaphthyl*-3'-*carboxylate* (**2***g*). Orange oil. Yield: 107 mg (60%). ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.59–7.49 (m, 2H), 7.46–7.36 (m, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.17 (s, 1H), 6.86 (d, J = 7.6 Hz, 1H), 6.27 (brs, 2H), 4.06 (s, 3H), 3.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 154.4, 146.8, 138.4, 135.1, 134.4, 133.1, 128.6, 128.4, 126.3, 125.6, 125.5, 125.4, 125.2, 124.8, 122.6, 121.9, 121.5, 120.4, 108.8, 103.2, 55.5, 51.0 ppm; HRMS (ESI): [M + H]⁺ Calcd for C₂₃H₂₀NO₃, 358.1443; found, 358.1430.

Ethyl 1-Amino-3-(thiophen-2-yl)-2-naphthoate (**2***h*). Brown viscous liquid. Yield: 67 mg (45%). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.22 (d, J = 5.2 Hz, 1H), 7.19 (s, 1H), 6.98–6.92 (m, 2H), 5.87 (brs, 2H), 3.97 (q, J = 7.0 Hz, 2H), 0.84 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 145.9, 145.3, 134.6, 131.9, 128.7, 128.4, 126.9, 125.8, 125.1, 124.6, 122.8, 121.4, 119.9, 108.6, 60.7, 13.4 ppm; MS (ESI): m/z 320 (M + Na)⁺. Anal. Calcd for C₁₇H₁₅NO₂S: C, 68.66; H, 5.08, N, 4.71. Found: C, 68.75; H, 5.20; N, 4.90.

Ethyl 1-*Amino-7-methoxy-3-phenyl-2-naphthoate* (2*i*). Orange solid. Yield: 125 mg (78%). Mp 135–137 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.8 Hz, 1H), 7.39–7.35 (m, 4H), 7.33–7.28 (m, 1H), 7.23 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.13 (d, *J* = 2.4 Hz, 1H), 7.11 (s, 1H), 5.81 (brs, 2H), 3.96 (s, 3H), 3.91 (q, *J* = 7.0 Hz, 2H), 0.71 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 157.7, 145.0, 144.0, 137.7, 130.3, 130.0, 128.1, 127.9, 126.3, 123.5, 120.1, 119.2, 108.9, 101.1, 60.4, 55.5, 13.1 ppm; MS (ESI): *m/z* 344 (M + Na)⁺. Anal. Calcd for C₂₀H₁₉NO₃: C, 74.75; H, 5.96; N, 4.36. Found: C, 74.83; H, 6.02; N, 4.50. Single crystals suitable for X-ray studies were grown from a solution of **2i** in hexane/ethyl acetate (9.5:0.5).

Ethyl 1-*Amino-3-cyclopropyl-7-methoxy-2-naphthoate* (2*j*). Brown liquid. Yield: 54 mg (38%). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 8.8 Hz, 1H), 7.16 (dd, *J* = 9.2, 2.2 Hz, 1H), 7.05 (d, *J* = 2.0 Hz, 1H), 6.96 (s, 1H), 5.58 (brs, 2H), 4.44 (q, *J* = 7.2 Hz, 2H), 3.92 (s, 3H), 2.39–2.32 (m, 1H), 1.42 (t, *J* = 7.0 Hz, 3H), 0.88–0.84 (m, 2H), 0.68–0.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 157.3, 143.9, 137.4, 130.2, 129.7, 123.1, 119.6, 116.7, 111.8, 100.93, 100.90, 60.8, 55.5, 16.3, 14.3, 7.1 ppm; HRMS (ESI): $[M + H]^+$ Calcd for C₁₇H₂₀NO₃, 286.1443; found, 286.1434.

Ethyl 1-*Amino-3-butyl-7-methoxy-2-naphthoate* (**2***k*). Brown liquid. Yield: 72 mg (48%). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.8 Hz, 1H), 7.16 (dd, *J* = 8.8, 2.4, Hz, 1H), 7.05 (d, *J* = 2.4 Hz, 1H), 6.97 (s, 1H), 5.68 (brs, 2H), 4.41 (q, *J* = 7.0 Hz, 2H), 3.90 (s, 3H), 2.90 (t, *J* = 7.8 Hz, 2H), 1.63–1.53 (m, 2H), 1.43–1.34 (m, SH), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 157.2, 144.8, 137.2, 130.3, 129.5, 123.0, 119.7, 118.5, 109.8, 100.9, 60.8, 55.4,

35.9, 34.0, 22.9, 14.2, 14.1 ppm; HRMS (ESI): $[M + H]^+$ Calcd for $C_{18}H_{24}NO_{37}$ 302.1756; found, 302.1750.

Ethyl 1-*Amino-3-heptyl-7-methoxy-2-naphthoate* (**2***I*). Brown liquid. Yield: 74 mg (43%). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 9.2 Hz, 1H), 7.17 (dd, J = 8.8, 2.4 Hz, 1H), 7.06 (d, J = 2.0 Hz, 1H), 6.98 (s, 1H), 5.67 (brs, 2H), 4.42 (q, J = 7.0 Hz, 2H), 3.92 (s, 3H), 2.89 (t, J = 8.0 Hz, 2H), 1.62–1.56 (m, 3H), 1.42 (t, J = 7.2 Hz, 3H), 1.33–1.26 (m, 7H), 0.88 (t, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 157.2, 144.8, 137.3, 130.4, 129.5, 122.9, 119.7, 118.5, 109.8, 100.9, 60.8, 55.4, 36.2, 31.90, 31.87, 29.8, 29.3, 22.7, 14.3, 14.1 ppm; HRMS (ESI): [M + H]⁺ Calcd for C₂₁H₃₀NO₃, 344.2226; found, 344.2218.

Ethyl 1-Amino-6,7-dimethoxy-3-phenyl-2-naphthoate (**2m**). Brown solid. Yield: 130 mg (74%). Mp 118–120 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.36–7.35 (m, 4H), 7.34–7.28 (m, 1H), 7.10 (s, 1H), 7.05 (s, 1H), 7.03 (s, 1H), 5.83 (brs, 2H), 4.03 (s, 3H), 3.99 (s, 3H), 3.91 (q, J = 7.2 Hz, 2H), 0.70 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 151.2, 149.2, 145.2, 144.2, 138.8, 131.0, 128.1, 127.8, 126.3, 118.4, 117.3, 107.6, 107.4, 101.1, 60.3, 56.0, 55.9, 13.1 ppm; MS (ESI): m/z 352 (M + H)⁺. Anal. Calcd for C₂₁H₂₁NO₄: C, 71.78; H, 6.02; N, 3.99. Found: C, 71.90; H, 6.21; N, 4.10.

Ethyl 1-*Amino*-6,7-*dimethoxy*-3-(4-*methylphenyl*)-2-*naphthoate* (**2n**). Pale yellow solid. Yield: 128 mg (70%). Mp 205–207 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.25 (d, J = 8.8 Hz, 2H), 7.19 (s, 1H), 7.17 (s, 1H), 7.09 (s, 1H), 7.03 (d, J = 6.8 Hz, 2H), 5.77 (brs, 2H), 4.03 (s, 3H), 3.99 (3H), 3.93 (q, J = 7.0 Hz, 2H), 2.40 (s, 3H), 0.74 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 151.1, 149.1, 144.9, 141.1, 138.7, 135.9, 131.0, 128.5, 127.9, 118.3, 117.2, 107.9, 107.3, 101.0, 60.3, 56.0, 55.9, 21.1, 13.2 ppm; MS (ESI): *m/z* 388 (M + Na)⁺. Anal. Calcd for C₂₂H₂₃NO₄: C, 72.31; H, 6.34; N, 3.83. Found: C, 72.56; H, 6.47; N, 3.96.

Ethyl 1-Amino-6,7-dimethoxy-3-(2-methoxyphenyl)-2-naphthoate (**20**). Pale orange liquid. Yield: 118 mg (62%). ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.27 (m, 2H), 7.10 (s, 1H), 7.03–6.98 (m, 3H), 6.87 (d, J = 8.0 Hz, 1H), 4.02 (s, 3H), 3.98 (s, 3H), 3.94– 3.85 (m, 2H), 3.72 (s, 3H), 0.75 (t, J = 7.2 Hz, 3H); ¹H NMR (400 MHz, DMSO- d_6): δ 7.64 (s, 1H), 7.38–7.34 (m, 1H), 7.29 (d, J = 1.6Hz, 1H), 7.27 (s, 1H), 7.07–7.01 (m, 2H), 6.96 (brs, 2H), 6.86 (s, 1H), 3.99 (s, 3H), 3.93 (s, 3H), 3.87–3.85 (m, 2H), 3.69 (s, 3H), 0.72 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 156.3, 151.0, 149.1, 145.1, 135.2, 133.6, 131.2, 129.8, 127.8, 120.6, 119.1, 117.8, 109.9, 108.0, 107.4, 101.2, 59.9, 56.0, 55.9, 55.4, 13.2 ppm; MS (ESI): m/z 382 (M + H)⁺. Anal. Calcd for C₂₂H₂₃NO₅: C, 69.28; H, 6.08; N, 3.67. Found: C, 69.46; H, 6.17; N, 3.74.

Ethyl 1-Amino-3-(4-chlorophenyl)-6,7-dimethoxy-2-naphthoate (**2p**). Semibrown solid. Yield: 123 mg (64%). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7 10 (s, 1H), 7.04 (s, 1H), 6.96 (s, 1H), 5.94 (brs, 2H), 4.03 (s, 3H), 3.99 (s, 3H), 3.94 (q, J = 7.2 Hz, 2H), 0.78 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 151.4, 149.3, 145.7, 142.8, 137.6, 132.2, 130.9, 129.4, 127.9, 118.3, 117.4, 107.4, 106.8, 101.1, 60.3, 56.1, 55.9, 13.3 ppm; MS (ESI): m/z 385 (M)⁺. Anal. Calcd for C₂₁H₂₀ClNO₄: C, 65.37; H, 5.22; N, 3.63. Found: C, 65.50; H, 5.34; N, 3.79.

Ethyl 4'-Amino-4,6',7'-trimethoxy-1,2'-binaphthyl-3'-carboxylate (**2q**). Pale orange solid. Yield: 116 mg (54%). Mp 128–130 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.29 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.45–7.41 (m, 1H), 7.38–7.36 (m, 1H), 7.27–7.25 (m, 1H), 7.16 (s, 1H), 7.04 (d, J = 7.6 Hz, 2H), 6.84 (d, J = 7.6 Hz, 1H), 6.11 (brs, 2H), 4.06 (s, 3H), 4.05 (s, 3H), 3.98 (s, 3H), 3.67–3.59 (m, 1H), 3.55–3.46 (m, 1H), 0.22 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 154.5, 151.3, 149.2, 145.8, 137.2, 135.0, 133.6, 131.2, 126.2, 126.0, 125.3, 124.8, 121.8, 119.7, 117.5, 108.5, 107.3, 103.2, 101.3, 59.8, 56.1, 55.9, 55.6, 12.7 ppm; MS (ESI): m/z 432 (M + H)⁺. Anal. Calcd for C₂₆H₂₅NO₅: C, 72.37; H, 5.84; N, 3.25. Found: C, 72.50; H, 5.56; N, 3.38.

Methyl 1-Amino-3-phenyl-6,7,8,9-tetrahydrodibenzo[b,d]thiophene-2-carboxylate (2r). Pale yellow solid. Yield: 76 mg (45%). Mp 146–148 °C. ¹H NMR (400 MHz, $CDCl_3$): δ 7.38–7.28 (m, 5H), 7.05 (s, 1H), 5.76 (brs, 2H), 3.37 (s, 3H), 3.15 (d, *J* = 5.6 Hz, 2H), 2.82 (d, *J* = 4.0 Hz, 2H), 1.93–1.88 (m, 4H); ¹³C NMR (100 MHz,

The Journal of Organic Chemistry

CDCl₃): δ 170.7, 145.4, 143.4, 142.5, 139.1, 135.5, 129.1, 127.92, 127.85, 126.5, 126.3, 113.8, 109.1, 51.1, 27.3, 26.0, 22.9, 22.5 ppm; HRMS (ESI): $[M + H]^+$ Calcd for C₂₀H₂₀NO₂S, 338.1215; found, 338.1207.

ASSOCIATED CONTENT

S Supporting Information

Copies of ¹H and ¹³C NMR spectra for all products and X-ray structural information of **2i** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: srinivasank@bdu.ac.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the Council of Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST), India for financial support; Sophisticated Analytical Instrumentation Facility (SAIF), Lucknow for HRMS; DST-FIST for instrumentation facilities at School of Chemistry, Bharathidasan University; and Dr. N. Sampath, Sastra University for X-ray structure determination.

REFERENCES

(1) For reviews, see: (a) Rathke, M. W.; Weipert, P. In Zinc Enolates: The Reformatsky and Blaise Reaction in Comprehensive Organic Reactions; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 2, pp 277–299. (b) Rao, H. S. P.; Rafi, S.; Padmavathy, K. Tetrahedron 2008, 64, 8037. (c) Denes, F.; Perez-Luna, A.; Chemla, F. Chem. Rev. 2010, 110, 2366.

(2) (a) Hoang, C. T.; Nguyen, V. H.; Alezra, V.; Kouklovsky, C. J. Org. Chem. 2008, 73, 1162. (b) Hoang, C. T.; Bouillere, F.; Johannesen, S.; Zulauf, A.; Panel, C.; Pouilhes, A.; Gori, D.; Alezra, V.; Kouklovsky, C. J. Org. Chem. 2009, 74, 4177. (c) Hertzberg, R.; Moberg, C. J. Org. Chem. 2013, 78, 9174.

(3) Chun, Y. S.; Lee, K. K.; Ko, Y. O.; Shin, H.; Lee, S.-G. Chem. Commun. 2008, 5098.

(4) Chun, Y. S.; Ryu, K. Y.; Ko, Y. O.; Hong, J. Y.; Hong, J.; Shin, H.; Lee, S.-G. J. Org. Chem. **2009**, 74, 7556.

(5) Ko, Y. O.; Chun, Y. S.; Kim, Y.; Kim, S. J.; Shin, H.; Lee, S.-G. Tetrahedron Lett. 2010, 51, 6893.

(6) Chun, Y. S.; Ryu, K. Y.; Kim, J. H.; Shin, H.; Lee, S.-G. Org. Biomol. Chem. 2011, 1317.

(7) Chun, Y. S.; Lee, J. H.; Kim, J. H.; Ko, Y. O.; Lee, S.-G. Org. Lett. **2011**, *13*, 6390.

(8) Chun, Y. S.; Kim, J. H.; Choi, S. Y.; Ko, Y. O.; Lee, S.-G. Org. Lett. **2012**, 14, 6358.

(9) Chun, Y. S.; Xuan, Z.; Kim, J. H.; Lee, S.-G. Org. Lett. 2013, 15, 3162.

(10) Zhao, M.-N.; Liang, H.; Ren, Z.-H.; Guan, Z.-H. Adv. Synth. Catal. 2013, 355, 221.

(11) Kim, J. H.; Lee, S.-G. Org. Lett. 2011, 13, 1350.

(12) Kim, J. H.; Shin, H.; Lee, S.-G. J. Org. Chem. 2012, 77, 1560.

(13) Chun, Y. S.; Ko, Y. O.; Shin, H.; Lee, S.-G. Org. Lett. 2009, 11, 3414.

(14) For general reviews on carbozincation of alkynes, see: (a) Lorthiois, E. Carbozincation of alkenes and alkynes. In *The Chemistry of Organozinc Compounds*; Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, 2006; Part 2, pp 863–978. (b) Lorthiois, E.; Meyer, C. Carbozincation of Alkenes and Alkynes. Patai's Chemistry of Functional Groups; Wiley: New York, 2009.

(15) Kobayashi, K.; Uneda, T.; Takada, K.; Tanaka, H.; Kitamura, T.; Morikawa, O.; Konishi, H. J. Org. Chem. **1997**, 62, 664. (16) Reddy, R. S.; Prasad, P. K.; Ahuja, B. B.; Sudalai, A. J. Org. Chem. 2013, 78, 5045.

(17) Gao, P.; Liu, J.; Wei, Y. Org. Lett. 2013, 15, 2872.

(18) (a) Ward, R. S. Nat. Prod. Rep. 1999, 16, 75. (b) Ragot, J. P.;
Steeneck, C.; Alcaraz, M. -L.; Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 1999, 1073. (c) Ukita, T.; Nakamura, Y.; Kubo, A.;
Yamamoto, Y.; Kotera, J.; Ikeo, T. J. Med. Chem. 1999, 42, 1293.
(d) Watson, M. D.; Fechtenkötter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267. (e) de Koning, C. B.; Rousseau, A. L.; van Otterlo, W. A. L. Tetrahedron 2003, 59, 7.

(19) Augustine, J. K.; Bombrun, A.; Atta, R. N. Synlett **2011**, 2223. (20) We also tested an *o*-alkenylarenenitrile **A** under the reaction conditions, and it afforded only the β -enaminoester **B**. Characterization data for compound **B**: Yellow viscous liquid. Yield: 132 mg (90%). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (brs, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.53–7.48 (m, 2H), 7.41–7.25 (m, 7H), 7.06 (d, *J* = 16.0 Hz, 1H), 4.73 (s, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz,CDCl₃): δ 170.2, 160.5, 137.2, 135.1, 130.6, 129.5, 128.9, 128.7, 128.5, 127.9, 127.6, 126.8, 126.1, 125.8, 87.2, 58.2, 14.6 ppm; HRMS (ESI): [M + H]⁺ Calcd for C₁₉H₁₉NO₂, 294.1494; found, 294.1493.

(21) Kim, J. H.; Chun, Y. S.; Lee, S.-G. J. Org. Chem. 2013, 78, 11483.
(22) CCDC 981061 for compound 2i. See the Supporting Information for details.