Synthesis of HOMSi Reagents by Pd/Cu-Catalyzed Silylation of Bromoarenes with Disilanes

Yasunori Minami,*1,2 Kenta Shimizu,3 Chisato Tsuruoka,3 Takeshi Komiyama,3 and Tamejiro Hiyama*1,2

¹Research and Development Initiative, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551

²JST, ACT-C, Kasuga, Bunkyo-ku, Tokyo 112-8551

³Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551

(E-mail: yminami@kc.chuo-u.ac.jp)

Silylation of aryl bromides with disilanes of type $\{[2, (P_GOCH_2)C_6H_4]Me_2Si\}_2$ (P_G: protecting group) successfully takes place in the presence of a Pd/Ruphos or Davephos/CuI catalytic system to afford HOMSi reagents containing various functional groups in good yields. BisHOMSi reagents were also prepared directly from the corresponding arylene dibromides.

Organosilicon compounds are selective, stable, and thus, useful reagents for chemoselective organic synthesis. Of the many functional tolerant transformations, metal-catalyzed crosscoupling with organic halides are representative.¹ Accordingly, silicon-based cross-coupling reaction is gaining prominence among various cross-coupling methodologies. In particular, the tetraorganosilicon-type coupling reagents organo-[2-(hydroxymethyl)phenyl]dimethylsilanes (R-HOMSi) are unique for easy handling and facile recovery and reuse of the Si moiety; these reagents are now commercially available worldwide.^{2,3} Ar-HOMSi reagents have high potential for the synthesis of functionalized oligoarenes and polyarenes. A typical preparative method for Ar-HOMSi reagents is the reaction of organometallic reagents with a cyclic silvl ether, 1,2-(SiMe₂OCH₂)C₆H₄. However, functionalized Ar-HOMSi reagents are less accessible by this method because of the insufficient chemoselective transformation. To overcome this disadvantage, transition-metalcatalyzed silvlation of organic halides with disilanes⁴⁻⁶ or hydrosilanes⁷ appears to be highly promising for the synthesis of functionalized organosilicon reagents. In this respect, preparation of Ar-HOMSi reagents by the silvlation of bromoarenes with hydrosilanes is attractive, as reported by Kondo et al. However, yields remain only moderate and the scope is limited.^{7k} Because disilanes are also applicable to such silvlation, we focused on the use of disilanes for the silvlation of aryl halides and herein report a new synthesis of Ar-HOMSi reagents by the palladium/copper-catalyzed silvlation of organic halides.

Protected 2-bromophenylmethanol was lithiated with butyllithium; the resulting aryllithium was allowed to react with 1,2-dichlorotetramethyldisilane to afford protected disilanes (Scheme 1). Thus, THP-protected disilane $\mathbf{1}_{THP}$ was isolated in 83% yield. In a similar way, MOM-protected disilane $\mathbf{1}_{MOM}$ was prepared in 90% yield. Other protected disilanes having acetyl ($\mathbf{1}_{Ac}$) and TBDPS ($\mathbf{1}_{TBDPS}$) groups were prepared by the deprotection of $\mathbf{1}_{THP}$, followed by the protection of the resulting $\mathbf{1}_{H}$ by acetylation or silylation to afford $\mathbf{1}_{Ac}$ and $\mathbf{1}_{TBDPS}$ in 91% and quantitative yields, respectively.

We first tested the reported conditions^{4f-4h,4j} for the silylation of *p*-bromotoluene (2a) using 1_{THP} in the presence of a base without any success: no trace or only small amounts of the desired product, protected *p*-tolyl-HOMSi (3a), was pro-

Scheme 1. Preparation of disilanes 1.

duced (See Supporting Information).⁸ Thus, we next examined many other activation protocols for 1 as the silvlation reagent and found the catalyst system recorded by Hosomi^{9a} to be informative: in situ generation of silvlcopper reagents by the reaction of disilanes with Cu(OTf).9 On the basis of this report, we planned the generation of protected HOMSi copper reagent by treatment of disilyl reagents 1 with Cu(I) for the silylation of organic halides.¹⁰ Of the many catalysts and additives examined, we found that the reaction system consisting of [Pd(allyl)Cl]₂, Ruphos (2-dicyclohexylphosphino-2',6'-diisopropoxybiphenyl), CuI, K₂CO₃, and THF/DMF (3:1) as a solvent showed catalytic activity to afford **3a** in 34% (NMR) yield together with siloxane 4 in 92% yield (Table 1, Run 1). Other copper salts such as CuBr, CuBr•SMe₂, and CuCl were less effective. K₂CO₃ was proved to be the best; other bases such as Na₂CO₃, Cs₂CO₃, and K₃PO₄ resulted in lower yields of **3a**. In the absence of CuI, palladium, or K₂CO₃, formation of **3a** was not observed, though 4 was generated, maybe via an attack of the carboxylate anion or iodonium ion from CuI to 1_{THP} (Runs 2-4). These results indicate that the silyl copper reagent is formed as an active silyl nucleophile, possibly by the reaction of 1_{THP} with CuI in the presence of K₂CO₃. To enhance the efficiency, various solvents were further examined and the reaction in dioxane/NMP (4:1) at 100 °C afforded 3a in 80% yield (Run 5). In this solvent without CuI, 3a was obtained in 52% yield (Run 6). These results suggest that the highly polar solvents definitely increase the silvlation efficiency, as is evidenced by the couse of H₂O that further increased the yield and shortened the reaction time (Run 7). Finally, the yield was improved to 87% in the presence H₂O (Run 8).

Deprotection of 3a by TsOH in methanol readily afforded the cross-coupling active *p*-tolyl-HOMSi reagent **5**.

The scope and limitations of the synthetic method under the optimized conditions are summarized in Table 2. Protected disilanes 1_{MOM} , 1_{Ac} , and 1_{TBDPS} reacted with 2a in a similar manner to afford products 6a, 7a, and 8a in moderate to high

Table 1. Reaction of 2a with TTHP											
[Pd(allyl)Cl] ₂ (2.5 mol%) Ruphos (10 mol%) Si Si											
$H_{r} = \frac{1}{12} \operatorname{equiv} $											
	2a			3a	4						
$Si = \{2-(THPOCH_2)C_6H_4\}Me_2Si$											
Run	Additive	Solvent	Temp	Time	Yield/% ^b						
			/°C	/h	3a	4 ^c					
1	CuI (10 mol %)	THF/DMF ^d	80	24	34	92					
2	_	THF/DMF ^d	80	24	0	71					
3 ^e	CuI (10 mol %)	THF/DMF ^d	80	24	0	72					
4^{f}	CuI (10 mol %)	THF/DMF ^d	80	24	0	13					
5	CuI (10 mol %)	dioxane/NMP ^g	100	24	80	85					
6	_	dioxane/NMP ^g	100	24	52	76					
7	CuI (10 mol %)	dioxane/NMP ^g	100	2	83	11					
0	H_2O (4 equiv)		100	~ (on (na)h						
8	Cul (10 mol %)	dioxane/NMP ^g	100	24	87 (73) ⁿ	77					
	H_2O (4 equiv)										

Table 1 Prostion of 2e with 1 a

^aUnless otherwise noted, **2**, $\mathbf{1}_{THP}$ (1.2 equiv), [Pd(allyl)Cl]₂ (2.5 mol%), ligand (10 mol%), CuI (10 mol%), K₂CO₃ (2.2 equiv), and solvent (0.36 M). ^bNMR yield. ^cYields based on $\mathbf{1}_{THP}$ ^d3:1. ^eWithout [Pd(allyl)Cl]₂. ^fWithout K₂CO₃. ^g4:1. ^hIsolated yield.

yields (Runs 1-3). Various organic bromides were next subjected to the reaction with 1_{THP} and 1_{MOM} . Electron-donating groups such as p-MeO, p-NHBoc, and p-Ph₂N did not hamper the reaction in the presence of Ruphos, and the corresponding protected HOMSi reagents 3b-3d were isolated in moderate to good yields (Runs 4-6). In the case of 3,5-xylyl bromide (2e), H₂O did not enhance the reactivity: 3e was isolated in 63% yield in the absence of H₂O (Run 7). In contrast, electron-neutral or electron-deficient aryl bromides afforded the corresponding protected Ar-HOMSi in low yields. As pointed out in many reports on the silvlation of haloarenes with hydrosilanes or disilanes,^{4f,4j,7d,7e} we further screened ligands for silvlation using these bromides and found that Davephos, 2-dicyclohexylphosphino-2'-(N,N-dimethylamino)biphenyl, led to the improvement of the catalytic activity. Thus, with Davephos, bromobenzene (2f) was converted to protected Ph-HOMSi 3f in 64% yield (Run 8). Electron-deficient aryl bromides preferred the reaction in the absence or 1 equiv amount of H₂O (Runs 9-15). The reaction of 1-bromo-4-fluorobenzene (2g) afforded protected 4-F-C₆H₄-HOMSi reagent 3g in 60% yield (Run 9). Other electron-deficient groups such as chloro, phenyl, acetyl, cyano, trifluoromethyl, and formyl tolerated well the silvlation with 1_{THP} and 1_{MOM} to afford the corresponding protected HOMSi reagents 3h-3i, 6j, and 3k-3m in 26-70% yields (Runs 10-15). The reaction of 2-bromonaphthalene (2n) afforded 3n in 70% yield (Run 16). 3-Bromothiophene (20) was silvlated with 1_{THP} in the presence of Ruphos and 4 equiv of H₂O to afford protected 3-thienyl-HOMSi reagent 30 in 42% yield (Run 17).

This silulation can be applied to the synthesis of protected bis-HOMSi reagents **10** by the reaction of dibromoarenes **9** (Scheme 2). For example, 4,4'-dibromobiphenyl (**9a**) was bissilulated by 2.2 equiv of 1_{THP} under the optimized conditions using Ruphos to afford protected 4,4'-biphenylylene-bisHOMSi reagent **10a** in 64% yield. Similarly, 2,7-dibromo-9,9'-dioctyl-

Table 2. Silvlation of organobromides 2 using disilane 1^a

Ar	—Br +	(P_{G}) $(P_{$	$[Pd(allyl)Cl]_{2} (2.5 mol%) [igand (10 mol%) Cul (10 mol%) K_{2}CO_{3} (2.2 equiv) H_{2}O (x equiv) dioxane/NMP (4:1), 100 °C$			Ar Si Me ₂	
Run	1	2	Ligand	H ₂ O	Time	Product	
	_	_		(x equiv)	/h	/%"	
1	1 _{MOM}	2a	L1	4	24	6a , 80%	
2	1 _{Ac}	2a	L1	4	24	7a, 60%	
3	1 _{TBDPS}	2a	L1	4	24	8a, 54%	
		R Br					
4	1 _{THP}	2b : $R = OMe$	L1	4	24	3b , 75%	
5	1 _{THP}	2c: R = NH(Boc)	L1	4	13	3c , 74%	
6	1 _{THP}	$2d: R = NPh_2$	L1	4	16	3d , 67%	
7	1 _{THP}	2e : $R = 3,5$ -xylyl	L1	0	24	3e , 63%	
8	1 _{THP}	2f : $R = H$	L2	4	24	3f , 64%	
9°	1 _{THP}	2g : $R = F$	L2	0	24	3g , 60%	
10 ^c	1 _{THP}	2h : $R = Cl$	L2	0	16	3h , 63%	
11	1 _{THP}	2i: R = Ph	L2	0	24	3i , 70%	
12	1 _{MOM}	$2\mathbf{j}: \mathbf{R} = \mathbf{A}\mathbf{c}$	L2	0	48	6j, 35%	
13ª	1 _{THP}	$2\mathbf{k}: \mathbf{R} = \mathbf{C}\mathbf{N}$	L2	1	31	3k, 26%	
14 ^u	1 _{THP}	$2I: R = CF_3$	L2	I	23	31, 63%	
15	1 _{THP}	$2\mathbf{m}$: $\mathbf{R} = \mathbf{CHO}$	L2	0	48	3m , 27%	
16	1 _{THP}	2n Br	L2	0	24	3n , 70%	
17	1 _{THP}	Br 20	L1	4	24	30 , 42%	

^aUnless otherwise noted, **2** (0.5 mmol), **1** (0.6 mmol), [Pd-(allyl)Cl]₂ (0.0125 mmol), ligand (0.05 mmol), CuI (0.05 mmol), K₂CO₃ (1.1 mmol), and 1,4-dioxane/NMP (4:1, 1.4 mL) were heated at 100 °C. ^bIsolated yield. ^c120 °C. ^d80 °C. L1 = Ruphos. L2 = Davephos.

Scheme 2.

9*H*-fluorene (**9b**) was double silylated to form the corresponding products **10b** in 65% yield.

We propose the reaction mechanism illustrated in Figure 1. Oxidative addition of aryl bromide **2** to palladium(0) complex forms an Ar–Pd–Br complex, which transmetalates to the silyl copper(I) reagent derived from the reaction of disilane **1** with

Figure 1. Proposed reaction mechanism.

Cu–X and K_2CO_3 to afford Ar–Pd–*Si* complex with the generation of an oxysilane (*Si*–OY) and Cu–X. Finally, reductive elimination of Ar–Pd–*Si* complex produces protected HOMSi reagents **3** and regenerates palladium(0) to complete the catalytic cycle. The coproduced oxysilane appears to be readily converted to siloxane **4**.¹¹ The additive H₂O may be attributed to enhancement in the solubility of K₂CO₃ and thus promote the reactivity of **1** toward Cu(I) and K₂CO₃.

In conclusion, we have demonstrated that the silylation of aryl bromides with disilanes is a powerful tool for the preparation of aryl-HOMSi reagents. This method allows us to synthesize variously functionalized aryl-HOMSi reagents useful for the C–C bond-forming cross-coupling with aryl bromides after deprotection. Furthermore, bisHOMSi reagents also are readily prepared and conveniently used for polyarylene synthesis.

This work has been supported financially by a Grant-in-Aids for Scientific Research (S) (No. 21225005 to T.H.) and Young Scientists (B) (No. 25870747 to Y.M.) from JSPS.

This paper is dedicated to Prof. Irina Beletskaya for her contribution to organometallic chemistry.

References and Notes

- Reviews: a) T. Hiyama, in Metal-Catalyzed Cross-Coupling Reactions, ed. by A. de Meijere, F. Diederich, Willey-VCH, Weinheim, 1998, Chap. 10, pp. 421-454. doi:10.1002/9783527612222.ch10. b) T. Hiyama, E. Shirakawa, in Cross-Coupling Reactions: A Practical Guide in Topics in Current Chemistry, ed. by N. Miyaura, Springer, 2002, Vol. 219, pp. 61-85. doi:10.1007/3-540-45313-X_3. c) S. E. Denmark, R. F. Sweis, in Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., ed. by A. de Meijere, F. Diederich, Willey-VCH, Weinheim, 2004, Chap. 4, pp. 163-216. doi:10.1002/9783527619535.ch4. d) J. Tsuji, Palladium Reagents and Catalysts: New Perspectives for the 21st Century, Wiley, Chichester, 2004, p. 338. doi:10.1002/ 0470021209.ch3. e) C. J. Handy, A. S. Manoso, W. T. McElroy, W. M. Seganish, P. DeShong, Tetrahedron 2005, 61, 12201. f) Y. Nakao, T. Hiyama, in Pharmaceutical Process Chemistry, ed. by T. Shioiri, K. Izawa, T. Konoike, Willey-VCH, Weinheim, 2011, Chap. 5, p. 101-126. doi:10.1002/9783527633678.ch5. g) Y. Nakao, T. Hiyama, Chem. Soc. Rev. 2011, 40, 4893. h) W.-T. T. Chang, R. C. Smith, C. S. Regens, A. D. Bailey, N. S. Werner, S. E. Denmark, in Cross-Coupling with Organosilicon Compounds in Organic Reactions, ed. by S. E. Denmark, Wiley-VCH, New Jersey, 2011, Vol. 75, p. 213-746. doi:10.1002/0471264180.or075.03.
- Y. Nakao, H. Imanaka, A. K. Sahoo, A. Yada, T. Hiyama, J. Am. Chem. Soc. 2005, 127, 6952. b) Y. Nakao, A. K. Sahoo, A. Yada, J. Chen, T. Hiyama, Sci. Technol. Adv. Mater. 2006, 7, 536. c) Y. Nakao, S. Ebata, J. Chen, H. Imanaka, T. Hiyama, Chem. Lett. 2007, 36, 606. d) Y. Nakao, J. Chen, H. Imanaka, T. Hiyama, Y. Ichikawa, W.-L. Duan, R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2007, 129, 9137. e) Y. Nakao, J. Chen, M. Tanaka, T. Hiyama, J. Am. Chem. Soc. 2007,

129, 11694. f) Y. Nakao, M. Takeda, J. Chen, T. Hiyama, Y. Ichikawa, R. Shintani, T. Hayashi, *Chem. Lett.* 2008, *37*, 290. g) J. Chen, M. Tanaka, A. K. Sahoo, M. Takeda, A. Yada, Y. Nakao, T. Hiyama, *Bull. Chem. Soc. Jpn.* 2010, *83*, 554. h) S. Tang, M. Takeda, Y. Nakao, T. Hiyama, *Chem. Commun.* 2011, *47*, 307. i) Y. Nakao, T. Hiyama, *J. Synth. Org. Chem., Jpn.* 2011, *69*, 1221. j) K. Shimizu, Y. Minami, Y. Nakao, K.-i. Ohya, H. Ikehira, T. Hiyama, *Chem. Lett.* 2013, *42*, 45.

- a) N. Saito, T. Yamazaki, Y. Sato, *Tetrahedron Lett.* 2008, 49, 5073. b)
 S. J. Shirbin, B. A. Boughton, S. C. Zammit, S. D. Zanatta, S. M. Marcuccio, C. A. Hutton, S. J. Williams, *Tetrahedron Lett.* 2010, 51, 2971. c)
 S. M. Marcuccio, R. Epa, M. Moslmani, A. B. Hughes, *Tetrahedron Lett.* 2011, 52, 7178. d)
 P. F. Hudrlik, A. M. Hudrlik, Y. A. Jeilani, *Tetrahedron* 2011, 67, 10089. e)
 D. A. Rooke, E. M. Ferreira, Org. Lett. 2012, 14, 3328. f)
 J. Bergueiro, J. Montenegro, F. Cambeiro, C. Saá, S. López, Chem.—Eur. J. 2012, 18, 4401. g)
 A. B. Smith, III, A. T. Hoye, D. Martinez-Solorio, W.-S. Kim, R. Tong, J. Am. Chem. Soc. 2012, 134, 4533. h)
 Y. Miki, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2013, 15, 172. i)
 Z. Wang, S. Chang, Org. Lett. 2013, 15, 172. ii)
 Z. Wang, S. Chang, Org. Lett. 2013, 15, 4258. h)
 M. H. Nguyen, A. B. Smith, III, Org. Lett. 2013, 15, 4258. l)
 S. Tang, S.-H. Li, W.-b. Yan, Tetrahedron Lett. 2012, 53, 6743.
- 4 a) H. Matsumoto, S. Nagashima, K. Yoshihiro, Y. Nagai, J. Organomet. Chem. 1975, 85, C1. b) D. Azarian, S. S. Dua, C. Eaborn, D. R. M. Walton, J. Organomet. Chem. 1976, 117, C55. c) H. Matsumoto, K. Yoshihiro, S. Nagashima, H. Watanabe, Y. Nagai, J. Organomet. Chem. 1977, 128, 409. d) C. Eaborn, R. W. Griffiths, A. Pidcock, J. Organomet. Chem. 1982, 225, 331. e) Y. Hatanaka, T. Hiyama, Tetrahedron Lett. 1987, 28, 4715. f) L. J. Gooßen, A.-R. S. Ferwanah, Synlett 2000, 1801. g) E. Shirakawa, T. Kurahashi, H. Yoshida, T. Hiyama, Chem. Commun. 2000, 1895. h) S. E. Denmark, J. M. Kallemeyn, Org. Lett. 2003, 5, 3483. i) T. Iwasawa, T. Komano, A. Tajima, M. Tokunaga, Y. Obora, T. Fujihara, Y. Tsuji, Organometallics 2006, 25, 4665. j) E. McNeill, T. E. Barder, S. L. Buchwald, Org. Lett. 2007, 9, 3785.
- 5 a) A. Ricci, A. Degl'Innocenti, S. Chimichi, M. Fiorenza, G. Rossini, H. J. Bestmann, J. Org. Chem. 1985, 50, 130. b) K. Yamamoto, A. Hayashi, S. Suzuki, J. Tsuji, Organometallics 1987, 6, 974. c) J. D. Rich, J. Am. Chem. Soc. 1989, 111, 5886. d) T. Kashiwabara, M. Tanaka, Organometallics 2006, 25, 4648.
- 6 X.-F. Wu, H. Neumann, M. Beller, Tetrahedron Lett. 2012, 53, 582. a) M. Murata, K. Suzuki, S. Watanabe, Y. Masuda, J. Org. Chem. 1997, 62, 8569. b) A. S. Manoso, P. DeShong, J. Org. Chem. 2001, 66, 7449. c) M. Murata, M. Ishikura, M. Nagata, S. Watanabe, Y. Masuda, Org. Lett. 2002, 4, 1843. d) Y. Yamanoi, J. Org. Chem. 2005, 70, 9607. e) A. Hamze, O. Provot, M. Alami, J.-D. Brion, Org. Lett. 2006, 8, 931. f) M. Murata, H. Ohara, R. Oiwa, S. Watanabe, Y. Masuda, Synthesis 2006, 1771. g) D. Karshtedt, A. T. Bell, T. D. Tilley, Organometallics 2006, 25, 4471. h) Y. Yamanoi, H. Nishihara, Tetrahedron Lett. 2006, 47, 7157. i) M. Murata, H. Yamasaki, T. Ueta, M. Nagata, M. Ishikura, S. Watanabe, Y. Masuda, Tetrahedron 2007, 63, 4087. j) Y. Yamanoi, T. Taira, J.-i. Sato, I. Nakamula, H. Nishihara, Org. Lett. 2007, 9, 4543. k) M. Iizuka, Y. Kondo, Eur. J. Org. Chem. 2008, 1161. 1) Y. Yamanoi, H. Nishihara, J. Org. Chem. 2008, 73, 6671. m) N. Iranpoor, H. Firouzabadi, R. Azadi, J. Organomet. Chem. 2010, 695, 887. n) A. Lesbani, H. Kondo, J.-i. Sato, Y. Yamanoi, H. Nishihara, Chem. Commun. 2010, 46, 7784. o) A. Lesbani, H. Kondo, Y. Yabusaki, M. Nakai, Y. Yamanoi, H. Nishihara, *Chem.—Eur. J.* **2010**, *16*, 13519. p) C. Huang, N. Chernyak, A. S. Dudnik, V. Gevorgyan, *Adv. Synth. Catal.* **2011**, 353, 1285. q) Y. Kurihara, M. Nishikawa, Y. Yamanoi, H. Nishihara, Chem. Commun. 2012, 48, 11564. r) H. Inubushi, H. Kondo, A. Lesbani, M. Miyachi, Y. Yamanoi, H. Nishihara, Chem. Commun. 2013, 49, 134.
- 8 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.
- 9 a) H. Ito, T. Ishizuka, J.-i. Tateiwa, M. Sonoda, A. Hosomi, J. Am. Chem. Soc. 1998, 120, 11196. b) C. T. Clark, J. F. Lake, K. A. Scheidt, J. Am. Chem. Soc. 2004, 126, 84.
- a) F. Geng, R. E. Maleczka, Jr., *Tetrahedron Lett.* 1999, 40, 3113. b)
 H. Azuma, K. Okano, H. Tokuyama, *Chem. Lett.* 2011, 40, 959.
- 11 R. Minkwitz, S. Schneider, Z. Naturforsch. B 1998, 53, 849.