This article was downloaded by: [Moskow State Univ Bibliote]

On: 06 September 2013, At: 08:49

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Synthesis of 9, 10-Dihydro-9-hydroxy-2H,8H-benzo-[1,2-b:3,4-b']dipyran-2-ones

V. Satyanarayana ^a , Ch. Prasad Rao ^a , G. L. David Krupadanam ^a & G. Srimannarayana ^a Department of Chemistry, Osmania University, Hyderabad, 500 007, India Published online: 23 Sep 2006.

To cite this article: V. Satyanarayana, Ch. Prasad Rao, G. L. David Krupadanam & G. Srimannarayana (1991) Synthesis of 9, 10-Dihydro-9-hydroxy-2H,8H-benzo-[1,2-b:3,4-b']dipyran-2-ones, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 21:5, 661-668, DOI: 10.1080/00397919108020834

To link to this article: http://dx.doi.org/10.1080/00397919108020834

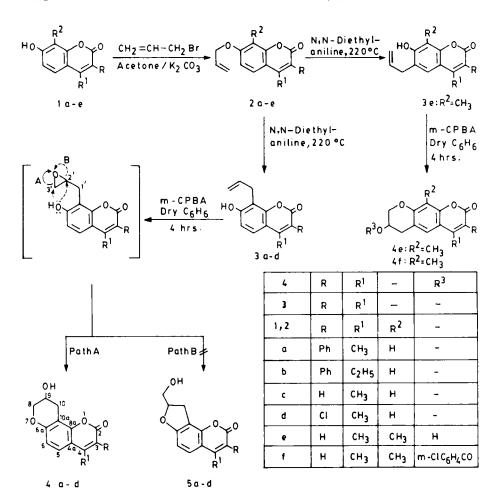
PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with

primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

SYNTHESIS OF 9,10-DIHYDRO-9-HYDROXY-2<u>H</u>,8<u>H</u>-BENZO-[1,2-b:3,4-b']DIPYRAN-2-ONES


V. Satyanarayana, Ch. Prasad Rao, G.L. David Krupadanam and G. Srimannarayana*

Department of Chemistry, Osmania University, Hyderabad 500 007, India

ABSTRACT: Oxidation of o-allyl-7-hydroxycoumarins with m-CPBA gave the corresponding 9,10-dihydro-9-hydroxy-2H,-8H-benzo[1,2-b:3,4-b']dipyran-2-ones.

In view of the interesting physiological properties of coumarins we reported earlier the synthesis of several new pyrano and furano-coumarins by adopting new routes $^{2-4}$. In this paper we report the results of the reaction of o-allyl-7-hydroxy-4-methylcoumarins (3a-e) with m-chloroperoxybenzoic acid (m-CPBA) to give the exclusively 9,10-dihydro-9-hydroxy-4-methyl-2H,8H-benzo [1,2-b:3,4-b'] dipyran-2-ones (4a-d & f). However, Murray et al. reported that oxidation of osthenol (8- γ , γ -dimethylallyl-7-hydroxycoumarin) with m-CPBA furnished dihydrofuranocoumarin [(+) columbianetin] under neutral conditions and dihydropyranocoumarin [(+) lomatin] under acidic conditions.

^{*} To whom correspondence should be addressed.

SCHEME-1

7-Hydroxycoumarins (1a-e) were allylated with allyl bromide to give corresponding 7-allyloxycoumarins (2a-e) in about 97% yield. These compounds, 2a-e on Claisen rearrangement in N,N-diethylaniline afford o-allyl-7-hydroxycoumarins (3a-e) in good yields (96%). The melting points and spectral data of 2a-e and 3a-e are in agreement with earlier reported data².

Table 1 Physical and spectral data of 4a-d & 4f

Compd. Yield* m.p.	Yield*	ġ. O.	Molecular formula	IR(KBr) max cm (C±O)	1 . 1	UV λ ^{MeOH} nm (log ε)	Mass data** (π/e)
4 48	75	206	206 C ₁₉ H ₁₆ O ₄	3500	1710	218 (4.63) 252 (3.87)sh 262 (3.80)sh 330 (4.40)	308 (M ⁺ ,100), 289 (25), 280 (60), 264 (25), 236 (80)
4	75	188	C ₂₀ H ₁₈ O ₄	3450	1705	218 (4.65) 250 (3.98)sh 263 (3.96)sh 330 (4.38)	322 (M ⁺ , 100), 303 (15), 294 (60), 278 (20), 250 (60)
90	73	123	C ₁₃ H ₁₂ O ₄	3250	1705	218 (4.60) 250 (3.96)sh 262 (3.90) sh 330 (4.41)	232 (M [*] , 100), 213 (15), 204 (50), 188 (15), 160 (40)
P	72	200	C ₁₃ H ₁₁ O ₄ CI	3400	1710	218 (4.59) 252 (3.97)sh 260 (3.91)sh 330 (4.41)	266 (M ⁺ , 100), 247 (25), 238 (55), 222 (15), 194 (45)
4f	52	197	C21H17O5CI	3200	1740 1710	218 (4.57) 248 (3.99)sh 260 (3.98)sh 330 (4.38)	384 (M ⁺ , 2), 246 (100), 218 (50), 202 (20), 174 (50), 141 (20), 139 (45), 113 (15), 111 (25)

Recrystallised from methanol. All products gave satisfactory elemental analysis. Ionisation was carried out at 70 eV by electron impact, samples were introduced directly. Prominent peaks mentioned

Downloaded by [Moskow State Univ Bibliote] at 08:49 06 September 2013

TH-NMR spectral data of 4a-d (300 MHz, DMSO-D $_6$) and 4f (90 MHz, DMSO-D $_6$), (6) ppm, J in Hz

Сотрс	Compd. C ₃ -Sub.	C4-Sub.	С ₅ -н	С ₆ -Н	C_{g} -methylene protons C_{g} - H_{ax} C_{g} -	C _B -H _{eq}	L ₉ -H	С9-Н С9-ОН	C ₁₀ -methylene protons	ons C ₁₀ ·H _{eq}
3	C ₆ H ₅ 7.40 m,5H	сн ₃ 2.23 s,3н	7.64 d,1H ^J 5H,6H ^{=8.60}	6.88 d,1H ³ 6H,5H ^{=8.60}	3.63 dd,1H _{ax} Jgh, 8H = 11.44 Jgh, 9H=6.61	7.64 d,1H 6.88 d,1H 3.63 dd,1H _a 3.79 du,1H _{eq} 5.23 ³ _{5H,6H} =8.60 ³ _{6H,5H} =8.60 ³ _{8P₄,8H_{eq} =11.44 ³_{8Hq,8H}_{ax} =11.44 ³_{8Hq,9Hax} 1.44 ^{m,1H} ³_{8Hax},9H=6.61 ³_{8Hq,9H}=^{3,32}}	5.23 m,1H	2.02 brs,1H	2.02 3.16 dd,1H _a 3.39 dd,1H _{eq} brs,1H 3 _{10H-ax,10H-eq} 15.94 3 _{10H-q} ,10H _{eq} ,10H _e	5.39 dd,1Heq =15.94 ³ 10H eq,10H _{ax} ³ 10H eq ^{,9} H ^{= 9,63}
3	C,Hs 7.36 m,5H	CH ₂ -CH ₃ 1.13 1,3H 2.63 9,2H	7.65 d,1H ^J 5H,6H ^{=8.74}	6.84 d,1H J _{6H,5H} =8.74	3.72 dd,1H _{ax} J _{BH} ax, BH =11.83 J _{BH} _{4.9H} =5.66	7.65 d,1H 6.84 d,1H 3.72 dd,1H _a 3.82 dd,1H _{eq} 5.07 ³ 6H,6H=8.74 ³ 6H,5H=8.74 ³ 8H _{ax} 8H _{eq} = ^{11.83} ³ 8H _{eq} 8H _{ax} = ^{11.83} m,1H ³ 8H _{ax} 9H=5.66 ³ 8H _{eq} 9H= ^{2.96}	5.07 m,1H	1.93 brs,1H	3.21 dd,11H _{ax} ^J 10H _{ax} ,10H _{eq} ^J 10H _{ex} ,9H ⁼ 7.22	3.42 dd,1h _{eq} ³ 10H _{eq} ,10H _{ax} ³ 10H _{eq} ,9H ^{=9,98}
Ş.	6.12 s,1H	СН ₃ 2.35 s,3H	7.50 d,1H J ₅ H,6H ⁼ 7.88	6.93 d,1H J _{6H,5H} =7.88	3.64 dd,1H _{ax} J _{BH} ax,8H _{eq} J _{BH} ax,9H=5.86	7.50 d,1H 6.93 d,1H 3.64 dd,1H _{ax} 3.82 dd,1H _{eq} 5.16 ³ 5H,6H=7.88 ³ 6H,5H=7.88 ³ BH _{eq} ⁸ H ³ H ⁹ H ⁹ H ⁴ H ⁴ H ⁴ H ⁴ H ³ H ⁴	5.16 m,1H	1.88 brs,1H	3.08 dd,1H _{ax} 3 _{10Hax} ,10H _{eq} =16.14 3 _{10Hax} ,9H=7.09	3.38 dd,1H _{eq} J _{10H} ,10H _{8×} J _{10H} ,9H ^{=9.87}
₽	៊	CH ₃ 2.41 s,3H	7.51 d,1H 7.14 d,1H ⁵ 7.86 ³ 6H,5H ^{=7.8} 6	92	3.61 m,1H _{ax}	3.88 m,1H _{eq}	5.12 m,11	2.14 brs,1H	3.10 m,1H _{ax}	3.27 m, ¹¹ H _{eq}
	C ₃ ·H	C4-CH3	C ₅ -H	C ₁₀ -CH ₃	C ₆ methylene protons	protons	C ₇ -H		C _B -methylene protons	protons
44	6.08 s,1H	сн ₃ 2.29 s,3H	mix. with aromatic protons	СН ₃ 2.48 s,3H	3.81 m,2H (6 - H _{ax} & 6 - H _{eq})	, de 6 - H	5.01 m,1H		3,33 m, 2H (8 - H _{ax} & 8 - H _{eq}	. B - H .
			Aromatic pro	otans : 7.28-7.6	1 m,5H (5-H, 2'-H,	Aromatic protons : 7,28-7,81 m,5H (5-H, 2'-H, 4'-H, 5'-H and 6'-H)				

of 8-allyl-7-hydroxy-4-methyl-3-phenylamounts coumarin (3a) and m-chloroperoxybenzoic acid were dissolved in dry benzene and refluxed for 4 hrs. Work up of the reaction mixture gave a semi-solid, which was chromatographed over a column of silica gel using benzene:chloroform (1:1 v/v) to give 9,10-dihydro-9-hydroxy-4-methyl-3-phenyl-2H,8H-benzo [1,2-b:3,4-b'] dipyran-2-one (4a), m.p. 206° C; IR(KBr) 3500 cm⁻¹ (OH), 1710 cm⁻¹ (C=O). Its PMR (300 MHz, DMSO-d₆) spectrum showed a signal pattern characteristic of -O-CH₂-CHOH-CH₂- as a part of a ring system. The C_8 -axial and C_8 -equitorial protons resonated at δ 3.63 ($J_{8H_{ax}8H_{eq}}$ = 11.44 Hz; $J_{8H}_{ax}._{9H}^{=}$ 6.61 Hz) and 3.79 (J_{8H}_{eq} , $8H_{ax}$ $J_{8H_{eq}}$, $g_{H} = 3.32$ Hz), respectively, as two double doublets. C-9 proton resonated at $\delta\,5.23$ as a complex multiplet and the $\,$ C_{_{\rm \bf Q}}\text{-OH} resonated as a broad singlet at δ 2.02. The C_{10} -axial and C_{10} -equitorial protons resonated at δ 3.16 (J_{10H_{ax}}, 10H_{eq} $J_{10H_{ax}}$, g_H = 6.96 Hz) and 3.39 ($J_{10H_{eq}}$, $10H_{ax}$ = 15.94 Hz; $J_{10H_{eq}}$, 9H = 9.63 Hz), respectively, as two double doublets. resonances due to the coumarin ring appeared at their expected positions (Table 2).

In MS, in addition to the peaks characteristic of the coumarin ring system, 4a also showed M-1-18 [M-(H+H $_2$ O)] (pyrelium ion), M-44 [M-C $_2$ H $_4$ O], M-28-44 [M-(CO+C $_2$ H $_4$ O)]. These peaks are characteristic of the newly formed 9,10-dihydro-9-hydroxy-4-methyl-3-phenyl-2 $\underline{\text{H}}$,8 $\underline{\text{H}}$ -benzo [1,2- $\underline{\text{b}}$:3,4- $\underline{\text{b}}$ '] dipyran-2-one (4a) system. The completely decoupled ¹³C-NMR spectrum of 4a, also supports the structure assigned to 4a. The carbon resonances due to the hydroxy

dihydropyran unit, -O-CH₂-CHOH-CH₂- appeared at 62.17, 84.85 and 26.95 ppm respectively. In the off resonance decoupled spectrum the C-8 appeared as a triplet, C-9 as a doublet and C-10 as a triplet. Similarly, compounds 3b-d were subjected to m-CPBA oxidation to yield angularly fused dihydropyranocoumarins, 4b-d and their characterisation data are given in Tables 1 & 2. In the m-CPBA oxidation of 3e, the product of the reaction was identified as 7,8-dihydro-4,10-dimethyl-2-oxo-2H,6H-benzo [1,2-b:5,4-b¹] dipyran-7-yl-3-chlorobenzoate (4f), instead of (4e).

The regioselective formation of 9,10-dihydro-9-hydroxy-2<u>H</u>,8<u>H</u>-benzo [1,2-<u>b</u>:3,4-<u>b</u>'] dipyran-2-ones (4a-d) is explained by considering initial formation of an epoxide. Intramolecular attack of the epoxide by the adjacent phenolic OH may be either at C-3' to give 4a-d or at C-2' to give (5a-d). Since the C-3' position is sterically less hindered than C-2', the phenolic OH attacks C-3' of the epoxide to give 4a-d exclusively (Scheme 1).

EXPERIMENTAL

The compounds $1a^7$, $1b^7$, $1c^8$, $1d^9$ and $1e^{10}$ were prepared as per the procedures reported in literature. These compounds were successively allylated to give $2a^7$, $2b^7$, $2c^{11}$, $2d^2$ and $2e^{12}$. The Claisen rearrangement of 2a-e furnished $3a^2$, 3b, $3c^{11}$, $3d^2$ and $3e^{12}$, respectively.

Typical procedure for 9,10-dihydro-9-hydroxy-4-methyl-3-phenyl-2<u>H</u>,8<u>H</u>-benzo [1,2-b:3,4-b']dipyran-2-one (4a)

8-Allyl-7-hydroxy-4-methyl-3-phenylcoumarin (3a) (1 m mol) and m-chloroperoxybenzoic acid (1 mmol) were dissolved in dry benzene (100 ml) and refluxed for 4 hrs on a water bath. After room temperature, the separated m-chlorobenzoic acid was removed by filtration and the benzene solution was washed with 2% aq. sodium bicarbonate (2 x 50 ml, to remove traces of acid), with water, and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure and the product thus obtained was subjected to column chromatography over silica gel (30 g, ACME, 200 mesh). Elution with benzene-chloroform (1:1 v/v) (200 ml) gave 4a which was crystallised from methanol as colourless crystals (0.45 g, 75% yield), m.p. 206° C. 13 C-NMR (DMSO-d₆; 22.63 MHz; fully decoulpled): δ 162.45 (C-2), 121.64 (C-3), 147.63 (C-4), 112.28 (C-4a), 129.44 (C-5), 112.86 (C-6), 159.14 (C-6a), 105.39 (C-10a), 148.67 (C-8a), 134.18 (C-1'), 127.23 (C-2' & C-6'), 126.77 (C-3' & C-5'), 125.60 (C-4'), 15.57 (C₄-CH₃), 62.17 (C-8), 84.85 (C-9), 26.95 (C-10).

Compounds 4b-d and 4f were prepared similarly by the above procedure and their characterisation data are given in Tables 1 & 2.

References:

- Murray, R.D.H., Mendez, J. and Brown, S.A., "The Natural Coumarins: Occurrence, Chemistry and Biochemistry", Wiley-Interscience, New York, 1982.
- Jagdish Kumar, R., David Krupadanam, G.L. and Srimannarayana, G., Indian J. Chem., 1987, 26B, 1078.

- 3. Prasad Rao, Ch. and Srimannarayana, G., Synth. Commun., 1990, 20(4), 535.
- 4. Jagdish Kumar, R., David Krupadanam, G.L. and Srimanna-rayana, G., Synthesis, 1990, 431.
- 5. Murray, R.D.H., Sutcliffe, M. and McCabe, P.B., Tetrahedron, 1971, 27, 4901.
- Steck, W., Can. J. Chem., 1971, 49, 1197.
- 7. Pulla Rao, P. and Srimannarayana, G., Synthesis, 1981, 887.
- 8. Mann, F.G. and Saunders, B.C., "Practical Organic Chemistry", (4th edition), Longman, Great Britain, 1960, pp 305.
- 9. Sethna, S.M. and Shah, R.C., J. Indian Chem. Soc., 1940, 17, 37.
- Rangaswami, S. and Seshadri, T.R., Proc. Indian Acad. Sci., Sect. A, 1937, 6, 112.
- 11. Baker, W. and Lothian, O.M., J. Chem. Soc., 1935, 628.
- 12. Rangaswami, S. and Seshadri, T.R., Proc. Indian Acad. Sci., Sect. A, 1938, 7, 8.

(Received in The Netherlands 7 January, 1991)