Spectral and Chemical Properties of Pyrazino-[2,1-a]-isoquinolin-4-one Derivatives

Katarzyna Kiec-Kononowicz*

Institut für Pharmazeutische Chemie der Universität Münster, Hittorfstr. 58-62, D-4400 Münster

Received December 2, 1988

Spectral properties of some acyl derivatives of pyrazino-[2,1-a]-isoquinolin-4-one are described using modern pulse sequences. The dehydrogenation of 2-(cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino-[2,1-a]-isoquinolin-4-one (2) with sulphur gave the 1,11b dehydro derivative 6. Oxidation with MCPBA of the pyridyl derivative 5 yielded the N-oxide 8, while from 2 and 6 the same product was obtained, the structure of which was assigned as 2-[2-N-(cyclohexylcarbonyl)-N-formyl-aminoacyl]-1,2,3,4-tetrahydro-isoquinolin-1-one (9) on the basis of spectral data.

Spektroskopische und chemische Eigenschaften von Pyrazino-[2,1-a]isochinolin-4-on Derivaten

Spektroskopische Eigenschaften von einigen Acylderivaten des Pyrazino-[2,1-a]-isochinolin-4-ons wurden mit Hilfe moderner Pulssequenzen beschrieben. 2-(Cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino-[2,1-a]-isochinolin-4-on (2) läßt sich mit Schwefel zur 1,11b Dehydroverbindung 6 dehydrieren. Durch Oxidation des Pyridylderivates 5 mit MCPBA wird das N-Oxid 8 hergestellt. Die Verbindungen 2 und 6 wurden auch mit MCPBA oxidiert. In beiden Reaktionen wurde dasselbe Produkt: 2-[2-N-(cyclohexylcarbonyl)-N-formyl-aminoacyl]-1,2,3,4-tetrahydro-isochinolin-1-on (9) erhalten, dessen Struktur spektroskopisch gesichert wird.

Recently we have described the synthesis and properties of *cis*- and *trans*-16-OH PZQ (16-OH-2) - the main metabolites of Praziquantel (PZQ)¹⁾. PZQ is an anthelmintic drug which possesses broad trematocidal and cestocidal activity²⁾. PZQ (2) is a pyrazino-[2,1-a]-isoquinolin-4-one derivative possessing an asymmetric center. The anthelmintic activity is mainly concerned with the (-)R enantiomer^{3,4)}. It acts as an agonist of Ca²⁺-ions permeability through membranes - the resulting influx of Ca²⁺ causes the spastic paralysis of parasites^{3,5)}. Structure and way of action of this compound allows to presume that its configuration is very important. Till now it has been difficult to ascribe exact this structure using traditional spectral analysis⁶⁻⁹⁾.

This is why we have decided to reinvestigate the spectral properties of this and related compounds by means of new spectral techniques using modern pulse sequences (The ¹H- and ¹³C-NMR assignments were made by a ¹H-¹³C-hetero-correlation and ¹H-¹H-correlated 2D-NMR experiments). The ¹³C-NMR spectra of *cis*- and *trans*-16-OH PZQ dissolved in MeOD contain for nearly all carbons the double signals of nearly the same intensity¹). In CDCl₃ the spectra were similar with the exception that now in each pair of peaks one was far more intensive. To compare the spectral properties of this class of compounds **3-5** were synthetized as reference substances.

Generally we have stated that in the ¹H-NMR spectra of 4 and 5 the signals are very broad and in the ¹³C-NMR spectra it was difficult to assign all the carbons. So we have decided to investigate the spectral properties of some pyrazino-[2,1a]-isoquinolin-4-one derivatives using modern pulse sequences. As a representative compound (-)-2 was chosen. (-)-2 was separated by liquid chromatography on microcrystalline cellulose triacetate (optical purity > 99%)¹⁰. The ¹H- and ¹³C-NMR assignments were made by a ¹H-¹³C-heterocorrelation experiment and analysis of the spectra of the related compounds (Table 1). The assignments for C-11a, C-7a, C-11b, C-13, and C-16-OH (for *trans*- and *cis*-16-OH PZQ) were confirmed by DEPT-technique. In the spectrum of **6** signals of C-1 and C-11b disappear from the aliphatic region and there remain only the signals of C-6, C-7, C-3, and of the cyclohexane ring. In the spectra of **4** and **5** there are no signals of the cyclohexane ring.

As it was stated in ¹³C-NMR spectra measured in MeOD two sets of signals exist with nearly equal intensity while in CDCl₃ one of pair signals is always much more intensive. We presume that it is connected with the dynamic properties of the pyrazin-4-one ring¹¹⁾. As in the pyrazin-4-one ring exists an amide function such topomerisation may be caused either by internal rotation or by dissociation. We do not observe the simplier spectrum in MeOD (which as a polar solvent should enable the ionic dissociation). So we assume that the dynamic process being observed is topomerisation by rotation. For 4 and 5 this process is proceeding slowly and the obtained very broad signals are connected with intermediate states. Derivatives with cycloalkylacyl groups form two prefered states in MeOD or one in CDCl₃. We have choosen the latter solvent for the analysis of a ¹H-¹H 2 D-NMR spectrum. The analysis confirmed the assignment of C-H correlation and allowed to state the connection of the following spin systems (Fig. 1).

Strong coupling is observed for the protons of C-1a with C-1e and C-11b (axial-down) and the long range coupling with C-3a protons; protons of C-11b couple with C-1a and

^{*}Present address: Department of Pharmaceutical Chemistry, Medical Academy, Skaleczna 10, Krakow, Poland

Fig. 1: ¹H, ¹H-Correlated 2D-NMR spectrum of 2

long range coupling occurs with C-3a; protons of C-7a are coupled with C-7e, C-6a and C-6e; protons of C-3a are coupled with C-3e and long range coupled with C-1a and C-11b; proton of C-3e is coupled only with C-3a; among others, protons of C-7e are long range coupled with proton C-8. Further investigations on the preferred conformations of these compounds will be performed on the basis of the Xray data and will be published later.

Results and Discussion

Compounds 3-5 were obtained by reaction of 1 with the in situ prepared acid chlorides of 3, 5 or commercially available 4 acid chloride (Scheme 1). The reactions were provided in two phases systems (water : methylene chloride) / K_2CO_3 .

As compound 6 could be a convenient starting material for the synthesis of potential 2-metabolites efforts were undertaken to obtain 6. 6 could be synthetized by dehydrogenation of 2. In the lit. DDQ, chloranil (milder reagents) or sulphur and selenium were described as dehydrogenating agents¹²⁾. Compound 2 when being refluxed with a stoichiometric amount of DDQ in dry benzene or toluene decomposed giving a product with m.w. 198 [EI-MS] and with CI-MS(NH₃) 216([M+NH₄]⁺, 100%) whose structure was established as 7. This structure was proved by ¹H- and ¹³C-NMR analysis. In the spectra of 7 the signals connected with the cyclohexyl ring were not detectable and in the ¹H-NMR spectrum apart from aromatic protons only two triplets were observed at 4.25 ppm (J = 5 Hz) and 3.10 ppm (J = 5 Hz). After refluxing 2 with an equivalent amount of chloranil (benzene or toluene) only traces of 6 were furnished. So we have used the more drastic method described by Seubert¹³): 2 was melted with a stoichiometric amount of sulphur at 180°C und N₂. A dark oil was obtained from

Scheme 1

which after column chromatography pure 6 was separated. We are studying the metabolism of 2. Therefore, we examined the behaviour of 2-acyl derivatives of the pyrazino isoquinolin-4-one ring in the presence of oxidizing agents. For this experiments compounds 2, 4, and 5 were chosen.

	C-16 C-18	27.132	27.056	25.609				127.081		150.629 147.357		141.050 138.604	24.526		25.386	
	C-7	29.610	29.540	28.621		29.610	29.562	27.967		27.947		28.735	28.168		27.846	
¹² C NMR DATA	C-15	31.035		28.897s	28.746w	27.132	27.056	124.674		126.486		126.547	24.843		25.539	
	C-14	31.242	30.924	29.426w	29.135w	31.242	31.034	126.745		127.171		126.723	27.560		29.332	
	C-6	40.418	40.220	39.007s	38.552w	40.418	40.220	38.720		38.748		39.219	37.763		42.111	
	C-13	42.283	42.018	40.692		42.282	42.018	131.807		128.643		132.000	39.925		42.671	
	C-3	47.181	46.544	46.204w	45.045s	47.181	46.544	45.384br.		45.669	45.443	n.d.	44.336		46.424	
	C-1	50.157		49.433w	48.913s	50.157	49.847	54.156br.		50.457		n.d.	105.085		162.220	
	C-11b	56.824	56.032	55.692w	54.852s	56.824	56.031	55.172br.		54.667	53.993	55.010br.	174.368		170.597	
	C-8	126.729	126.509	125.391s	125.097w	126.729	126.508	126.445		123.540		123.988	122.190		127.563	
	C-10	128.025	127.980	126.891		128.024	127.979	128.288		124.666		127.453	126.394		133.912	
	C-11	128.595	128.502	127.617w	127.358s	128.594	128.501	128.803		130.070		128.181	127.284		129.799	
	C-9	130.336	130.262	129.583w	129.206s	130.336	130.261	130.379		131.681		129.906	127.284		127.676	
	C-11a	134.184	133.772	132.656s	131.980w	134.183	133.771	133.355		134.298		134.273	127.503		128.857	
	C-7a	136.542	136.289	135.417w	134.628s	136.542	136.288	134.263		135.390		135.314	133.323		140.370	
	C 4	167.623	166.864	165.488w	164.326s	167.623	166.863	164.264		164.527	163.723	164.000	163.636		166.000	
	C-12	177.232	177.101	174.696s	174.222w	177.231	177.101	170.376		167.288		165.196	178.179		177.237	
	Compound No.	(-)2 (MeOD)		(-)2 (CDCl ₃)		3 (MeOD)		4 (CDCI ₃	MeOD)	5 (MeOD	CDCl ₃)	8 (CDC1 ₃)	6 (MeOD	CDCl ₃)	9 (CDCl ₃)	

Abbreviations: s - strong; w - weak; br. - broad; n.d. - not detected

Table 1: ¹³C-NMR data

In all cases with H_2O_2 (30%) independently on the amounts of reactants used, only a variety of traces of oxidized products were formed. So efforts were undertaken with m-chloroperbenzoic acid (MCPBA).

In the reaction of 5 with a twofold amount of MCPBA only one product was built which was identified as the N-oxide 8 by MS, ¹H- and ¹³C-NMR spectra. In the MS - fragmentation patterns the fragment ions which could originate from the hydroxylated pyrazino-isoquinolin-4-one ring did not exist. In the ¹H- and ¹³C-NMR spectra only the signals of the pyridine ring were changed.

In the reaction of MCPBA with 6 (quickly) and with 2 (after some time) the same product with m.w. 342 was obtained. The lipophilic and spectral properties excluded simple substitution (epoxidation or hydroxylation) of the pyrazino-isoquinolin-4-one ring: The molecular weight suggested that two oxygens were introduced into the starting materials 2 and 6. On the basis of IR-spectra the presence of OH groups was eliminated. In the ¹H- and ¹³C-NMR spectra of the product, when compared with those of the other derivatives (Table 1), the surroundings of C-3, C-6 and C-7 were unchanged. The picture of C-7 and C-6 protons showed that there was no coupling with the proton connected with C-11b (cf. spectrum of 6). The signals of C-1 and protons connected with this carbon atom disappeared from the aliphatic region. The appearance of the aromatic area allowed to presume that the changes appeared in the region of C-11b (two triplets well shaped and two doublets from which one was shifted downfield). In the ¹³C-NMR spectrum arised two new signals at 170.60 and 162.22 ppm,

Fig.2: ¹³C¹H-Correlated 2D-NMR Spectrum of 9

from which the latter was connected with the carbon possessing the one proton (${}^{1}\text{H}{-}{}^{13}\text{C}{-}$ heterocorrelation experiment - Fig.2) occuring in the very high region (9.23 ppm), which existed separately (${}^{1}\text{H}{-}{}^{1}\text{H}$ correlated 2D-NMR experiment). On the basis of these data we have proposed structure 9.

Compound **6** may be regarded as an enamine. It is known that in sensitized photooxygenations of enamines, oxidative splitting of enamine double bonds occurs, leading to ketones and formylamides¹⁴). *Takaishi* et al.¹⁵) have stated that tricycloalkanes may be hydroxylated with MCPBA and this process may proceed through formation of radical products. These facts can explain the formation of **9**.

I am grateful to Professor Gottfried Blaschke, Head of the University Institute of Pharmaceutical Chemistry in Münster for the possibility of providing these experiments and to the Heinrich Hertz Stiftung for supporting this work. I wish also to thank Mrs Zinab S. Farghaly for technical assistance.

Experimental Part

General remarks: 1 and racemic 2 were supplied by E. Merck, Darmstadt.- Chemical yields: non-optimized reaction conditions.- Melting points: Kofler hot stage microscope, uncorrected.- TLC: Merck Kieselgel 60 F_{254} , solvent systems: I: benzene : acetone : MeOH (4:4:1); II: toluene : MeOH (9:1); III: CHCl₃ : AcOEt (1:1); column chromatography on Kieselgel 60 (70-230 mesh ASTM).- IR spectra: Pye-Unicam SP 3-200 (cm⁻¹), KBr discs (0.5 mg: 300 mg KBr).- ¹H-NMR and ¹³C-NMR spectra: Bruker VM 300 spectrometer or Varian Gemini 200 spectrometer, δ [ppm] relative to TMS; J[Hz].- MS (70 eV): m/z (%); Varian MAT SM-1, 44S and CH-7 or Finnigan MAT 312.

2-(3-Pyridylcarbonyl)-1,2,3,6,7,11b-hexahydro-4H-pyrazino-[2,1-a]isoquinolin-4-one (5)

From 0.123 g (1 mmol) of nicotinic acid, the acid chloride was prepared with *Vilsmeier's* method¹⁶⁾. The acid chloride was dissolved in CH₂Cl₂ (4 ml) and was added dropwisely to the stirred solution of 0.300 g (1 mmol) of 1 and K₂CO₃ (1.9 g) in water (4 ml). When 1 had completely disappeared (TLC; 3 h) the org. phase was separated, washed several times with alkaline, acid, and water solutions, dried (MgSO₄) and evaporated. The white solid so obtained was recrystallized from acetone to yield 0.202 g 5 (65.8%), m.p. 162-164°C, R_f I (0.41).- C₁₈H₁₇N₃O₂ (307.4) Calcd. C 70.3 H 5.56 N 13.7 found C 70.0 H 5.74 N 13.7.- IR: 3500; 3120; 2920; 1630; 1450; 1340; 1310; 1115; 1080; 1030; 765; 710 cm^{-1.-1}H-NMR (MeOD + CDCl₃): 2.68-2.95 (m; 3H, H-6, 2xH-7); 3.10 (v.b.s; 1H, H-1); 4.18 (v.b.s; 1H, H-3); 4.70 (v.b.s; 1H, H-3); 4.90-5.00 (m; 2H, H-6, H-11b); 5.10 (v.b.s; 1H, H-1); 7.18 (s; 4H, Ar-H); 7.48 (m; 1H, H-14); 7.85 (m; 1H, H-15); 8.56-8.70 (m; 2H, H-16, H-18).- EI-MS: 307(M⁺, 11), 200(48), 185(11), 145(35), 132(75), 106(58), 78(100).

Following the same procedure compounds 3 and 4 were obtained.

3: (56%), M.p. 129-131°C, R_f I (0.76); II (0.40).- $C_{18}H_{22}N_2O_2$ (298.4) Calcd. C 72.5 H 7.44 N 9.4 found C 72.6 H 7.48 N 9.5.- ¹H-NMR (MeOD): 1.60-2.00 (m; 8H, cyclopentyl); 2.70-2.90 (d,t; 1H, H-13); 2.90-3.10 (m; 4H, H-1, H-6, 2xH-7); 3.85 (d; J=18 Hz, 1H, H-3a); 4.20 (d; J=18 Hz, 1H, H-3e); 4.60-4.75 (m; 2H, H-6, H-11b); 4.95-5.10 (d,t; 1H, H-1); 7.20-7.45 (m; 4H, Ar-H).- EI-MS: 298(M⁺, 42), 200(42), 185(28), 145(42), 132(100), 115(16), 69(66).

4: (96%), M.p. 158-160°C (acetone); Lit.¹³⁾: 161°C.- R_f II (0.26).- ¹H-NMR (MeOD+CDCl₃): 2.64-2.94 (m; 3H, H-6, 2xH-7); 2.98-3.25 (v.b.s; 1H, H-1); 3.80-4.35 (m; 2H, H-1); 4.64 (v.b.s; 1H, H-11b); 4.90 (m; 1H, H-6); 5.00-5.20 (v.b.s; 1H, H-1); 7.10 (b.s; 4H, Ar-H); 7.46 (b.s; 5H, Ar-H).-EI-MS: $306(M^+, 37)$, 201(54), 185(50), 145(44), 132(100), 105(80), 77(76).

2-(Cyclohexylcarbonyl)-2,3,6,7-tetrahydro-4H-pyrazino-[2,1-a]-isoquinolin-4-one (6)

The mixture of 0.312 g (1 mmol) of **2** and 0.032 g (1 mmol) of sulphur was melted under N₂ at 180°C for 2 h. The obtained dark oil was purified by cc (15 g) using CHCl₃ : AcOEt (1:1) as a developing system. Fractions 6-8 were evaporated, recrystallized (diethyl ether, hexane) to afford 0.118 g of 6 (38%), M.p. 128-132°C, R_f 1 (0.80), II (0.56), III (0.66).- C₁₉H₂₂N₂O₂ (310.4) Calcd. C 73.5 H 7.15 N 9.0 found C 73.3 H 7.23 N 8.9.- IR: 3450; 2960; 2880; 1680; 1650; 1425; 1315; 770 cm⁻¹.- ¹H-NMR (MeOD + CDCl₃): 1.10-1.90 (m; 10 H, cyclohexyl); 2.64-2.72 (m; 1H, H-13); 2.85 (t; J=8 Hz, 2H, H-7); 3.80 (t; J=8 Hz, 2H, H-6); 4.74 (s; 2H, H-3); 7.10-7.30 (m; 4H, Ar-H); 7.44-7.58 (m; 1H, H-1).- EI-MS: 310(M⁺, 24), 199(100), 171(98), 144(38), 130(26), 115(66), 103(20), 83(99), 55(99).

2-(N-oxide pyridyl-3-carbonyl)1,2,3,6,7,11b-hexahydro-4H-pyrazino-[2-1-a]-isoquinolin-4-one (8)

To the stirred soln. of 0.307 g (1 mmol) of 5 in 5 ml dry CH₂Cl₂ 0.406 g (2 mmol) of 85% m-chloroperbenzoic acid were added. The mixture was stirred overnight, washed with Na₂SO₃ and 5% NaHCO₃, dried with MgSO₄, and evaporated. The colourless oil so obtained was recrystallized from acetone: 0.155 g (48%) **8**, M.p. 176-178°C, R_f I (0.11).- $C_{18}H_{17}N_3O_3$ (323.3) Calcd. C 66.9 H 5.30 N 13.0 found C 66.7 H 5.52 N 13.2.- IR: 3450; 3080; 2950; 1660; 1630; 1455; 1440; 1340; 1310; 1280; 815; 785; 755 cm⁻¹. ¹H-NMR: 2.65-3.00 (m; 3H, H-6, 2xH-7); 3.00-3.20 (v.b.s; 1H, H-1); 4.12 (m; 2H, H-3); 4.63-4.98 (m; 2H, H-6, H-11b); 5.10 (v.b.s; 1H, H-1); 7.10-7.40 (m; 6H, Ar-H, H-14, H-15); 8.15-8.32 (m; 2H, H-16, H-18).- EI-MS: 323(M⁺, 0.4), 306(12), 201(2), 164(2), 145(3), 132(11), 106(1), 84(100).- CI-MS (NH₃): 341 ([M+NH₄]⁺, 100), 323(M⁺, 38), 220(60), 106(60), 80(84).

2-[2-N-(cyclohexylcarbonyl)-N-formyl-amioacyl]-1,2,3,4-tetrahydroisoquinolin-1-one (9)

Method A: Following the same procedure as for compound 8, from 1 mmol 6, a colourless oil was obtained, which was purified by cc on silica gel (15 g) with toluene : MeOH (1:1). After solvent evaporation fractions 2, 3 were recrystallized from diethyl ether to afford 0.25 g (73%) of 9.

Method B: To the soln. of 0.312 g (1 mmol) of 2 in $\text{CH}_2\text{Cl}_2 (15 \text{ ml})$ the soln. of 0.345 g (2 mmol) of purified¹⁶ MCPBA in $\text{CH}_2\text{Cl}_2 (10 \text{ ml})$ was added dropwisely at room temp. and the solution was stirred at the same temp. The reaction course was checked by TLC, and after a week the spot of the starting material 2 had disappeared. The org. phase was washed with Na₂SO₃, NaHCO₃, water, dried (MgSO₄), and evaporated. The obtained yellow oil was purified by cc on silica gel (12 g) with CHCl₃ : AcOEt (1:1). Fractions 1-5 were recrystallized from acetone to yield 0.280 g (81%) of 9.

The compounds obtained with method A and B showed the same chemical and spectral properties: M.p. 125°C, R_f III (0.75).- IR: 2930; 2860; 1770; 1695; 1665; 1385; 1310; 1230; 1160; 755 cm⁻¹.- ¹H-NMR (CDCl₃, 200 MHz): 1.10-1.95 (m; 10 H, cyclohexyl); 2.75 (m; 1H, H-13); 2.90 (t; J=6 Hz, 2H, H-7); 4.04 (t; J=6 Hz, 2H, H-6); 5.06 (s; 2H, H-3); 7.19 (d; J=5.3 Hz, 1H, Ar-H); 7.30 (t; J=6 Hz, 1H, Ar-H); 7.46 (t; J=6 Hz, 1H, Ar-H); 8.09 (d; J=5.3 Hz, 1H, Ar-H); 9.25 (s; 1H, H-1).- HR-MS: C₁₉H₂₂N₂O₄ calcd. 342.15796 found 342.15808.- EI-MS: 342(1), 324(0.8), 314(0.6), 232(9), 214(6), 203(2), 187(9), 148(24), 130(10), 111(15), 83(100).

References

- K.Kieó-Kononowicz, Z.S.Farghaly, and G.Blaschke, Synthesis and properties of cis- and trans- 4-OH-PZQ, in preparation.
- 2 P.Andrews, H.Thomas, R.Pohlke, and J.Seubert, Med.Res.Rev. 3, 147 (1983); C.A. 99, 47364f (1983).
- 3 P.Andrews, Pharmacol.Ther. 29, 129 (1985); C.A. 104, 199314z (1986).
- 4 Y.Liu, M.Qian, X.Wang, J.Jia, Q.Wang, Y.Jiang, R.Wang, S.Yan, and B.Chen, Chin.Med.J. 99, 935 (1986); C.A. 106, 207232e (1987).
- 5 A.Harder, P.Andrews, and H.Thomas, Biochem. Soc. Trans. 15, 68 (1987); C.A. 106, 131123x (1987).
- 6 J.Seubert, R.Pohlke, and F.Loebich, Experientia 33, 1036 (1977).
- 7 D.Frehel and J.-P.Maffrand, Heterocycles 20, 1731 (1983).
- 8 W.F.Berkowitz and T.V.John, J.Org.Chem. 49, 5269 (1984).
- 9 F.Yuste, Y.Pallas, H.Barrios, B.Ortiz, and R.Sanchez-Obregon, J.Heterocyclic Chem. 23, 189 (1986).
- 10 B.Fröhlingsdorf, Ph.D. dissertation, Univ.Münster 1983.
- 11 M.Oki, Applications of dynamic NMR spectroscopy to organic chemistry, in: Methods in stereochemical analysis, Vol. 4, Chapter 1, p.13-20 (Ed. A.P.Marchard), VCH Deerfield Beach, Fla. 1985.
- 12 P.P.Fu and R.G.Harvey, Chem.Rev. 78, 317 (1978).
- 13 J.Seubert, German Pat.Appl. 2 418 111; C.A. 84, 44156u (1976).
- 14 K.Pfoertner and K.Bernauer, Helv.Chim.Acta 51, 1787 (1968).
- 15 N.Takaishi, Y.Fujikura, and Y.Inamoto, Synthesis 1983, 293.
- 16 L.F.Fieser and M.Fieser, Reagents for organic synthesis, p. 286, J.Wiley, New York 1967. [Ph627]