Table 1. ¹H NMR spectral data of compounds 1 and 2 (400 MHz, $CDCl_3$, δ -values)

Н	1	2	multiplicity
1	6.60	6.60	br t
2	2.62	2.62	m
3	2.37	2.37	dt
3′	1.43	1.43	dtq
5	2.47	2.47	d
6	4.80	4.80	br d
8	5.38	5.38	dd
9	3.38	3.38	br dd
9'	2.73	2.73	br dd
13	5.05	5.05	br d
13'	4.92	4.94	dd
14	9.31	9.31	S
15	1.62	1.62	br d
OCOR	2.24 dd	2.59 gg	
	2.19 dd	1.19 d	
	2.05 tqq	1.14 d	
	0.94 d		
	0.93 d		
OAc	2.07 s	2.08 s	

 $J [Hz]: 1, 2=8.5; 1, 9 \sim 1; 2, 3=4.5; 2, 3'=7; 3, 3'=14; 3', 15 \sim 0.5; 5, 6=9; 6, 13'=1; 8, 9=11; 8, 9'=7.5; 9, 9'=14; 13, 13'=13; OiVal: 2, 2'=15; 2, 3=6; 3, 4=3, 5=6.5; OiBu: 2, 3=2, 4=7.$

 3 ml min^{-1} , MeOH-H₂O, 3:1) affording 3 mg 2 (R_t 2.3 min) and 20 mg 1 (R_t 3.8 min).

Glaucogalamensolide isovalerate (1). Crystals, mp 138°; IR $\nu_{\text{Max}}^{\text{CHS}_3}$ cm⁻¹: 2750, 1700 (C=CCHO), 1780 (γ -lactone), 1745 (CO₂R); MS m/z (rel. int.): 360.157 [M-HOAc]⁺ (2) (calc. for C₂₀H₂₄O₆: 360.157), 345 [360-Me]⁺ (0.5), 276 [360-O=C =CHCHMe₂]⁺ (8), 258 [360-RCO₂H]⁺ (6), 229 [258 -CHO]⁺ (17), 85 [RCO]⁺ (85), 57 [85-CO]⁺ (100); [α]_D -114° (CHCl₃; c 0.6).

Glaucogalamensolide isobutyrate (2). Crystals, mp 183°; IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 2750, 1700 (C=CCHO), 1780 (γ -lactone), 1745 (CO₂R); MS m/z (rel. int.): 346.142 [M-HOAc]⁺ (2) (calc. for C₁₉H₂₂O₆: 346.142), 318 [M-RCO₂H]⁺ (0.8), 258 [318 -HOAc]⁺ (13), 229 [258-CHO]⁺ (60), 71 [RCO]⁺ (100).

REFERENCES

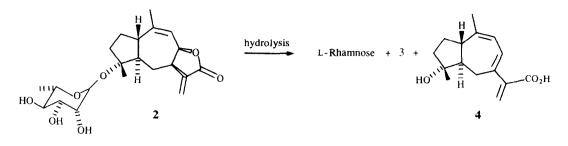
- 1. Jeffrey, C. (1988) Kew Bull. 43, 226.
- 2. Jones, S. B. (1981) Rhodora 83, 65.
- 3. Jakupovic, J., Zdero, C., Boeker, R., Warning, U., Bohlmann, F. and Jones, S. B. (1987) Liebigs Ann. Chem. 111.
- 4. Bohlmann, F. and Jakupovic, J. (1990) Progress in the Chemistry of the Vernonieae, Plant Systematics Suppl. 4, 3.
- 5. Bohlmann, F. and Zdero, C. (1988) Rev. Latinoam. Quim. 19, 63.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1979.

Phytochemistry, Vol. 29, No. 11, pp. 3669-3671, 1990. Printed in Great Britain. 0031-9422/90 \$3.00+0.00 Pergamon Press plc

SESQUITERPENE LACTONES AND FLAVONOIDS FROM HELENIUM RADIATUM

ELISA PETENATTI, MAURICIO J. PESTCHANKER, MING GUO and EDUARDO GUERREIRO

Departamento de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina


(Received in revised form 10 March 1990)

Key Word Index-Helenium radiatum; Compositae; flavones; pseudoguaianolide; guaianolide rhamnopiranoside.

Abstract—The aerial parts of *Helenium radiatum* afforded two known flavones, the pseudoguaianolide 9-0-desacetylspathulin-2-0-angelate and the guaianolide 2-desoxypleniradin-4- $O-\alpha$ -L-rhamnopyranoside. The structures were elucidated by spectroscopic methods and chemical transformations.

INTRODUCTION

As part of a general phytochemical study of the Argentinian region of Cuyo we have reinvestigated *Helenium* radiatum (Less.) Bierner known heretofore as *H. alterni*- folium (Spreng.) Cabr. [1]. In previous studies on Argentinian samples of this genus, the pseudoguaianolides tenulin, brevilin A, linifolin A and the flavone jaceosidin, were isolated from material collected in Tucuman and alternilin from that collected in Buenos Aires [2].

RESULTS AND DISCUSSION

The methanolic extract of the aerial parts of H. radiatum, collected in San Luis, Argentina, gave the flavones jaceosidin and nepetin, the pseudoguaianolide 9-O-desacetylspathulin-2-O-angelate (1)[3] and the guainianolide rhamnopiranoside (2).

The presence of the glycoside 2 was inferred from the signals at $\delta 5.03$ (1H, d, J = 1.5 Hz and the signals between, $\delta 3.00$ and 4.50 and 1.27 (3H, d, J = 6 Hz) in the ¹H NMR spectrum. This was further supported by the signals at $\delta 95.0$, 72.4, 71.9, 71.2, 67.8 and 17.1 in the ¹³C NMR spectrum were close to those of the guaianolide 2-desoxypleniradin [4]. The proton signals were assigned by COSY experiments. These ¹H shift were then used in a two dimensional heteronuclear ¹H-¹³C correlation experiment. Furthermore, the EI mass spectral fragmentation pattern and ¹³C NMR data also supported this structure.

The single sugar produced by mild acid hydrolysis of 2 was identified, as the trimethylsilyl ether derivative, by comparison with a standard sample of L-rhamnose by

GC techniques, as well as by co-chromatography with the above standard. The configuration at C-1 of the L-rhamnosyl group was determined as α from the chemical shift of H-1 and its coupling constant.

Beside L-rhamnose, hydrolysis of 2 afforded two products. One of them was characterized as 2-desoxypleniradin (3) which showed the same pattern of 2 in ¹H NMR, the second product, which exhibited higher polarity, was characterized by the ¹H NMR, IR and UV spectra as 7(8),9,11(13)-guaitrien-4-ol-12-oic acid (4). The formation of 4 in the hydrolytic conditions employed may be due to hydrolysis of the lactone moiety followed by a dehydration step whose driving force is the formation of a highly conjugate system. The *cis* junction of the lactonic ring is in total agreement with the fast dehydration suffered by 3, in the hydrolytic medium. All the data of 2 indicated that this lactone was 2-desoxypleniradin-4-O- α -L-rhamnopyranoside. Though their concentrations are very high the corresponding aglycone was not detected.

Table	1.	^{1}H	NMI	R	spec	ctral	da	ta	of
compo	un	d 2	(360) M	Hz	CDO	CI3,	TN	ИS
		as	int.	sta	nda	rd)			

Н		
1	2.95–3.10 m	
2	1.6–1.9 m	
3	1.8-2.0 m	
5	2.09 ddd (10, 10, 2)	
6	1.3 m, 1.9 m	
7	3.0-3.15 m	
8	5.24 dm (9)	
9	5.30 br s	
13a	6.25 d (3)	
13b	5.56 d (3)	
14	1.75 s	
15	1.20 s	
1′	5.04 s	
2′		
3′	3.75-3.90 m 3H	
5′		
4′	3.45 dd (9, 9)	
6'	1.29 d (6)	

Coupling constants (Hz) are given in parentheses.

tral data	¹³ C NMR spec- of compound 2 (Hz, CDCl ₃).			
C				
1	41.9			
2	36.4			
3	25.7ª			
4	86.9			
5	47.7			
6	25.5ª			
7	41.1			
8	77.9			
9	122.6			
10	139.0 ^b			
4-Me	20.6			
10-Me	22.5			
11	137.5 ^b			
12	170.4			
13	121.3			
1′	95.1			
2'	72.3			
3′	71.7			
4′	73.4			
5'	67.8			
6'	17.4			

^{a, b}Assignments may be interchanged.

EXPERIMENTAL

Air-dried aerial parts (460 g, voucher Del Vitto 2841, deposited in the Herbario de la Universidad Nacional de San Luis) were extracted with MeOH ($24 \text{ hr} \times 3$) at room temp and the resulting extract worked-up in the usual fashion. CC silica gel eluted with C₆H₆-EtOAc mixts, gave the following compounds in order of elution: jaceosidin (C₆H₆-EtOAc) (9:1), 9-0desacetylspathulin-2-0-angelate (C₆H₆-EtOAc) (6:1), nepetin (C₆H₆-EtOAc) (3:1) and 2-desoxypleniradin-4-0- α -L-rhamnopiranoside (EtOAc). Complete purification of the compounds was achieved by rechromatography over Sephadex LH-20 for the flavonoids and by crystallization for the lactones, affording 0.21 g, 2.05 g, 0.17 g and 1.65 g respectively. Known compounds were identified by comparison with previously reported data and by comparison with authentic material.

2-Desoxypleniradin-4-O-α-L-rhamnopyranoside (2). Mp 163-164°; IR ν_{max}^{KBr} cm⁻¹: 3500 (OH), 1765 (γ-lactone); MS m/z (rel. int.): 248 [M-C₆H₁₀O₄]⁺ (2), 231 [C₁₅H₁₉O₂]⁺ (51), 230 [248-H₂O] (100), 215 (14), 188 (26), 145 (62), 129 (28), 105 (30).

$$[\alpha]_{24^*}^{\lambda} = \frac{589 \quad 578 \quad 546 \quad 436 \text{ nm}}{-134.8 \quad -138.8 \quad -156.9 \quad -254.3} (CHCl_3; c \, 1.02)$$

7(8),9,11(13)-Guaiatrien-4-ol-12-oic acid (4). ¹H NMR (60 MHz, CDCl₃): δ 1.18 (3H, s, H-15), 1.74 (3H, br s, H-14), 5.47 (1H, d, J = 2 Hz), 5.60 (1H, d, J = 2 Hz) (H-8 and H-9), 5.75 (1H, s, H-13b), 6.35 (1H, s, H-13a).

Acknowledgements—The authors thanks Dr F. H. Guidugli, LEA (UNSL), for MS. The work was supported by a grant from CONICET.

REFERENCES

- 1. Bierner, M. W. (1987) Sida 12, 253.
- Herz, W., Gast, C. M. and Subramaniam, P. S. (1968) J. Org. Chem. 33, 2780.
- Gill, S., Dembinska-Migas, W., Sliwinska, E., Daniewski, W. M. and Bohlmann, F. (1980) *Phytochemistry* 19, 2049.
- Bohlmann, F., Misra, L. N., Jakupovic, J., King, R. M. and Robinson, H. (1985) Phytochemistry 24, 1315.

Phytochemistry, Vol. 29, No. 11, pp. 3671-3673, 1990 Printed in Great Britain. 0031 9422/90 \$3.00 + 0.00 Pergamon Press plc

A CLERODANE DITERPENE AND OTHER CONSTITUENTS OF CLERO-DENDRON INERME

BASUDEB ACHARI, CHANDANA CHAUDHURI, CHITTA R. SAHA, PRADEEP K. DUTTA and SATYESH C. PAKRASHI*

Indian Institute of Chemical Biology, Calcutta-700032, India

(Received 21 December 1989)

Key Word Index-Clerodendron inerme; Verbenaceae; clerodane diterpene; clerodermic acid; flavonoids.

Abstract—A new clerodane diterpene clerodermic acid was isolated from *Clerodendron inerme* and the structure deduced from spectral data. The known compounds friedelin, 5-hydroxy-7,4'-dimethoxyflavone, salvigenin, acacetin and apigenin were also found.

INTRODUCTION

Clerodendron inerme L., like many other species of the genus, is a recognized medicinal plant having alterative and febrifugal properties [1]. An alcoholic extract of the plant has also been reported to exhibit uterine stimulant activity [2]. Chemical investigations on the leaves and stems have so far shown the presence of a number of common triterpenes [3], a neolignan [4], diterpenoids [3, 5], sterols [3, 6] and flavones [7]. Reinvestigation of the leaves of this plant has now revealed the presence of

salvigenin (5-hydroxy-6,7,4'-trimethoxyflavone, 4) and 5hydroxy-7,4'-dimethoxyflavone (3), not reported earlier from any *Clerodendron* species, in addition to apigenin (6), acacetin (5,7-dihydroxy-4'-methoxyflavone, 5) and friedelin (2) detected in related species and a new diterpene acid, clerodermic acid, the structure determination of which is discussed below.

RESULTS AND DISCUSSION

Clerodermic acid (1a), mp 161–162°, $[\alpha]_D^{27^\circ} - 70^\circ$, exhibited in its IR spectrum a broad absorption band in the region 3300–2500 cm⁻¹ together with a strong absorption at 1670 cm⁻¹, indicative of a conjugated carboxyl

^{*}Author to whom correspondence should be addressed.