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ABSTRACT: The synthesis of gem-1,3-enynes via Ni/Cu-catalyzed
decarboxylative addition of alkynoic acids to terminal alkynes has
been developed. It was found that the decarboxylation of an
alkynoic acid led predominantly to gem-1,3-enynes instead of 1,3-
diynes, which have been known to be formed through the coupling
of terminal alkynes. A variety of gem-1,3-enynes were obtained in
good yields. This catalytic system exhibited excellent regioselectivity
and high functional group tolerance.

Conjugated 1,3-enynes are important structural units in
synthetic chemistry, materials science, and bioactive

product synthesis.1 A number of synthetic methods for the
preparation of 1,3-enynes have been reported,2 including the
Wittig reaction with propargyl aldehydes3 and dehydration of
propargyl alcohols4 (Scheme 1a,b). In terms of atom economy

and availability of starting materials, direct catalytic coupling is
very attractive. In this context, transition metal-catalyzed
reactions of alkenes with terminal alkynes and hydroalkynation
of alkynes have been developed (Scheme 1c).5 The cross-
dimerization of two different terminal alkynes has been
challenging because a number of isomers can be formed and
because it is difficult to control (Scheme 1d). To achieve
different chemo-, regio-, and stereoselectivities, Ir,6 Rh,7 Ru,8

Co,9 Fe,10 Pd,11 and Ni12 catalysts have been used. However,
gem-selective cross-dimerization of alkynes, which occurs
through head-to-tail cross-coupling, has been performed

successfully only using Rh,13 Ti,14 and Pd15 catalysts.
Moreover, all of these methods have been limited to terminal
alkynes.
We have been developing a number of synthetic methods

that use alkynoic acids, including transition metal-catalyzed
decarboxylative coupling reactions.16 Since simple preparation
methods for aryl alkynoic acid derivatives were reported,
decarboxylative reactions involving them have received much
attention and have been widely applied in organic synthesis.17

There are very few examples of metal-catalyzed coupling
reactions between alkynoic acids and terminal alkynes in which
they show different reactivity. Recently, we reported metal-free
synthesis of propargyl amines and selective synthesis of (Z)-
allyl nitriles and showed that only alkynoic acid derivatives
afforded the desired products under our optimal conditions.18

These results and the advantages of aryl alkynoic acids
stimulated our interest in developing new synthetic methods
using these compounds.
In the course of our studies of novel reactions using alkynoic

acid derivatives, we found that alkynoic acids provide gem-1,3-
enynes when they are allowed to react with terminal alkynes in
the presence of Ni/Cu dual catalysts. Decarboxylative addition
was preferred, and this preference is not in agreement with
findings from other groups. Lei demonstrated that two
different terminal alkynes afforded 1,3-diynes in the presence
of Ni and Cu catalysts. In 2016, Zhou, Yin, and co-workers
reported the selective heterocoupling of terminal alkynes in the
presence of a copper catalyst (Scheme 2a).19 However, 1,3-
enynes were not found in either report. Hence, our finding is
very interesting and represents the first synthesis of gem-1,3-
enynes through a decarboxylative coupling reaction and the
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Scheme 1. Synthesis of 1,3-Enynes
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first example of nickel/copper-catalyzed synthesis of gem-1,3-
enynes. We envisioned that these intricate transformations
could be controlled at certain stages by tuning the reaction
parameters to furnish the desired products. Herein, we report
the selective synthesis of gem-1,3-enynes from alkynoic acids
and terminal alkynes using a nickel/copper catalyst (Scheme
2b).
To find the optimal conditions for the formation of gem-1,3-

enynes, p-tolylpropiolic acid (1a) and 2-methylbut-3-yn-2-ol
(2a) were chosen as standard substrates and evaluated with
varied parameters. The results are summarized in Table 1.
When 10 mol % NiCl2·6H2O and CuI were used as catalysts

with 10 mol % tetramethylethylenediamine (TMEDA) in
tetrahydrofuran (THF) at 50 °C, enyne 3a was produced in
45% yield. However, hetero-cross-coupling product 4a was also
found in 15% yield (entry 1). All tested ligands and solvents
provided unsatisfactory results (entries 2−9). When TMEDA

was employed as the solvent, the reaction improved
dramatically to give 3a in 69% yield (entry 10). Keeping
TMEDA as the solvent, we tested other copper sources,
namely, CuBr and CuCl, and other nickel sources, namely,
NiF2, NiBr2, NiI2, Ni(acac)2, and Ni(OAc)2. However, each
reaction gave poorer results (entries 11−17, respectively).
Keeping NiCl2·6H2O and CuI as the catalysts, we tested
different reaction temperatures. No products were found when
the reaction was conducted at 25 °C (entry 18). When the
reaction temperature was increased to 80 °C, 3a was afforded
in 85% yield and with less 4a (entry 19). Increasing the
reaction temperature to 100 °C decreased the yield of 3a and
resulted in a significant amount of byproduct 4a; however,
other isomers were not found (entry 20). In the absence of
CuI, only 3a was produced; however, its yield was low (entry
21). The reaction without NiCl2·6H2O provided 3a in only 9%
yield (entry 22). When the amount of Ni/Cu was decreased to
5 mol %, the yield decreased to 59% (entry 23). Character-
ization of decarboxylative addition product 3a was accom-
plished using 1H−13C heteronuclear multiple-bond correlation
(HMBC) experimental data. In addition, isomer 3a′ was not
found in any case (Figure 1). Finally, the optimal conditions
are as follows: 1.0 equiv of alkynoic acid, 3.0 equiv of terminal
alkyne, 10 mol % NiCl2·6H2O, and 10 mol % CuI in TMEDA
at 80 °C for 3 h.

Scheme 2. Synthesis of 1,3-Diyne and gem-1,3-Enyne

Table 1. Optimal Conditions for the Synthesis of gem-1,3-Enynea

yield (%)b

entry Ni Cu ligand additive temp (°C) 3a 4a

1 NiCl2·6H2O CuI TMEDA THF 50 45 15
2 NiCl2·6H2O CuI bipyridine THF 50 4 2
3 NiCl2·6H2O CuI 1,10-Phen THF 50 3 −
4 NiCl2·6H2O CuI PPh3 THF 50 6 2
5 NiCl2·6H2O CuI Xantphos THF 50 2 −
6 NiCl2·6H2O CuI TMEDA toluene 50 10 8
7 NiCl2·6H2O CuI TMEDA CH3CN 50 5 2
8 NiCl2·6H2O CuI TMEDA dioxane 50 1 9
9 NiCl2·6H2O CuI TMEDA DMSO 50 2 7
10 NiCl2·6H2O CuI − TMEDA 50 69 4
11 NiCl2·6H2O CuBr − TMEDA 50 37 7
12 NiCl2·6H2O CuCl − TMEDA 50 6 6
13 NiF2 CuI − TMEDA 50 2 10
14c NiBr2 CuI − TMEDA 50 43 4
15 NiI2 CuI − TMEDA 50 36 3
16 Ni(acac)2 CuI − TMEDA 50 5 3
17 Ni(OAc)2 CuI − TMEDA 50 2 −
18 NiCl2·6H2O CuI − TMEDA 25 − −
19 NiCl2·6H2O CuI − TMEDA 80 85 2
20 NiCl2·6H2O CuI − TMEDA 100 65 10
21 NiCl2·6H2O − − TMEDA 80 45 −
22 − CuI − TMEDA 80 9 21
23d NiCl2·6H2O CuI − TMEDA 80 59 4

aReaction conditions: 1a (0.3 mmol), 2a (0.9 mmol), Ni (0.03 mmol), Cu (0.03 mmol), and ligand (0.06 mmol) in solvent (1.0 mL) for 3 h.
bDetermined through gas chromatography and 1H nuclear magnetic resonance spectroscopy. cNiBr2·O(CH2CH2OCH3)2 was used.

dUsing 0.015
mmol of Ni and Cu.
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Using the optimal conditions, a variety of aryl propiolic acids
were evaluated for the reaction with propargyl alcohol 2a for
the formation of gem-1,3-enynes as shown in Scheme 3.
As expected, aryl alkynoic acids featuring alkyl groups such

as methyl or tert-butyl groups on the aryl ring reacted smoothly
to generate the corresponding products, 3a−3e in good yields.

Aryl propiolic acids with a methoxy group at the para or meta
position afforded gem-1,3-enynes 3f and 3g in 79% and 62%
yields, respectively. However, the o-methoxyphenyl and
benzo[d][1,3]dioxol-4-yl propiolic acids provided 3h and 3i,
respectively, in slightly lower yields. Biphenyl and naphthyl
propiolic acids provided corresponding gem-1,3-enynes 3j and
3k in 86% and 82% yields, respectively. 2-Thiophenyl propiolic
acid gave 3l in 65% yield. Aryl propiolic acids featuring halide
groups such as bromide, chloride, and fluoride led to the
formation of corresponding gem-1,3-enynes 3m−3p in good
yields. 4-Trifluoromethylphenyl propiolic acid provided 3q in
72% yield. Aryl propiolic acids bearing electron-withdrawing
groups such as a ketone, an aldehyde, an ester, and a nitrile
were converted to corresponding products 3r−3u in 76%,
74%, 68%, and 65% yields, respectively. It was found that all
aryl propiolic acids afforded corresponding gem-1,3-enynes 3 as
the major products, and trace amounts of the corresponding
1,3-diynes 4 were detected. Unfortunately, alkyl-substituted
alkynoic acid such as 2-octynoic acid did not give the desired
product.
In addition to 2a, other terminal alkynes, namely, pent-4-yn-

1-ol, 1-phenylprop-2-yn-1-ol, 1-ethynylcyclohexanol, and ethy-
nylcyclohexane, were allowed to react with arylpropiolic acids,
viz., p-tolylpropiolic acid and 4-bromophenylpropiolic acid.
Scheme 4 shows that all terminal alkynes provided the

corresponding gem-1,3-enynes. It was noteworthy that the
heterocoupling product, the 1,3-diyne, was not found in any
case. It was found that only one regioisomer formed and each
product was characterized using 1H−13C HMBC analysis (see
the Supporting Information). When phenyl acetylene and
trimethylsilyl acetylene were employed as terminal alkynes, the
corresponding gem-1,3-enynes were not detected via 1H NMR
analysis.
To study the different reactivities between terminal alkynes

and alkynoic acids, control experiments were conducted
(Scheme 5). When p-tolylacetylene (1a′) was employed
instead of p-tolylpropiolic acid under the standard conditions,
3a was not found; however, cross-coupling product 4a was
afforded in 14% yield. When the previously reported
conditions, which provided the cross-coupling products in
the reactions with terminal alkynes, were used in reactions

Figure 1. Isomers 3a and 3a′.

Scheme 3. Synthesis of gem-1,3-Enynes from Aryl Propiolic
Acids and 2aa

aReaction conditions: 1 (2.0 mmol), 2a (6.0 mmol), NiCl2·6H2O
(0.2 mmol), and CuI (0.2 mmol) in TMEDA (5.0 mL) at 80 °C for 3
h. Numbers in parentheses are the ratios of 3 to 4.

Scheme 4. Reactions with Other Terminal Alkynesa

aReaction conditions: 1a (2.0 mmol), terminal alkyne (6.0 mmol),
NiCl2·6H2O (0.2 mmol), and CuI (0.2 mmol) in TMEDA (5.0 mL)
at 80 °C for 3 h.
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between p-tolylpropiolic acid and 2a, neither 3a nor 4a was
found at 25 °C. However, 3a and 4a were formed with 20%
and 9% yields, respectively, when the reaction temperature
increased to 80 °C. To study the roles of nickel and copper, 1a
was treated with nickel and/or copper in the absence of 2a. No
homocoupling products 5a formed when a nickel-only catalyst
system was used. The reaction with the copper catalyst
afforded 5a in 60% yield. However, its yield decreased when
the nickel and copper catalysts were combined.
To better understand the experimental results, density

functional theory (DFT) calculations were carried out to shed
light on the exact mechanism of the transformation (Figure
2).20

The reaction conditions suggest that stable chelation
complexes LCuI and LNiCl2 (L = TMEDA) should be formed
favorably from the corresponding metals and TMEDA.
Theoretical results indicated that Cu(I) is more effective in
the decarboxylation process while Ni(II) is essential for the
coupling process. To start the reaction, complex IM1 could be
formed through the deprotonation of 1a by the basic solvent
(L). This step is endergonic by 7.9 kcal/mol. Prior to the
decarboxylation, IM2 could be formed via an interaction
between HL+ and iodide. The decarboxylation occurs via TS1
with an activation barrier of 20.0 kcal/mol, generating Cu(I)-
acetylide IM3 exergonically. This step is facilitated by the

association of the L·HI moiety with Cu(I), as a higher barrier
was predicted if L·HI was removed. The direct coupling of
IM3 with 2a was found to be difficult; however, the
incorporation of Ni(II) through transmetalation via TS2 is
quite facile and affords more stable Ni(II)-acetylide
intermediates IM4 and IM5. The complexation of IM5 with
2a produces IM6 endergonically, and migratory insertion in
the latter intermediate occurs via TS3. This step requires an
overall activation barrier of 23.9 kcal/mol and generates
alkenyl Ni(II) intermediate IM7 highly exergonically. In the
last step, the protodemetalation could occur smoothly via TS4
if HCl is involved as the proton source. The resulting π
complex, IM8, undergoes dissociation favorably, forming 3a
and regenerating LNiCl2 with an overall exergonicity of 58.8
kcal/mol. The potential energy surface in Figure 2 suggests
that the Cu(I)-catalyzed decarboxylation step is relatively easy
and generates the acetylide irreversibly, while the Ni(II)-
catalyzed migratory insertion is the rate-determining step of
the entire reaction. Other possible pathways and isomeric TSs
were thoroughly studied using DFT but were found to be
higher in energy (more details are provided in the Supporting
Information). All of the DFT results corroborate the beneficial
combination of Ni(II) and Cu(I) for the generation of enynes
3 from 1 and 2.
In summary, we have found that reactions between alkynoic

acids and terminal alkynes in the presence of NiCl2·6H2O and
CuI provide decarboxylative head-to-tail dimerized products,
gem-1,3-enynes, in good yields. The employment of first-row
transition metals like nickel and copper for catalysts has
advantages. They are not only inexpensive because of their
abundance but also stable toward catalyst poisoning as a result
of heteroatom coordination. The reaction system uses mild
conditions and shows good functional group tolerance. It was
found that the nickel catalyst suppressed alkyne coupling,
which was dominated by the copper catalyst. Our findings were
different from those of reports that stated that two different
terminal alkynes coupled to give 1,3-diynes in the presence of a
Ni/Cu or Cu catalyst system. This was the first example of a
decarboxylative addition to an alkyne to afford a gem-1,3-
enyne. On the basis of DFT calculations, we suggested that
alkynyl copper is formed through decarboxylation and this is
followed by transmetalation to provide an alkynyl nickel
complex; in addition, Ni(II)-catalyzed migratory insertion is
the rate-determining step of the entire reaction.
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