

Volume 20, Number 11, May 28, 2001

© Copyright 2001 American Chemical Society

Communications

Cationic Vinyl and Dicationic Carbene Ruthenium(II) Complexes from a Vinylidene(hydrido) Precursor

Stefan Jung, Kerstin Ilg, Justin Wolf, and Helmut Werner*

Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received January 30, 2001

Summary: The reaction of the vinylidene(hydrido)ruthenium(II) compound [RuHCl(=C=CH₂)(PCy₃)₂] (**1a**) with excess KPF₆ in CH₂Cl₂/CH₃CN affords the five-coordinate vinyl complex [Ru(CH=CH₂)(CH₃CN)₂(PCy₃)₂]PF₆ (**2a**), which on treatment with NaBPh₄ or NaB(Ar_f)₄ gives the tetraaryloborate salts **2b** and **2c** in excellent yields. The six-coordinate compounds [Ru(CH=CHPh)-(CH₃CN)₃(PiPr₃)₂]X (**3a**, X = Cl; **3b**, X = PF₆) were obtained in a similar route using [RuHCl(=C=CHPh)-(PiPr₃)₂] (**1b**) as the starting material. Protonation of **2c** or **2d** (X = BF₄) with, respectively, [H(OEt₂)₂]B(Ar_f)₄ or HBF₄ yields [Ru(=CHCH₃)(CH₃CN)₂(PCy₃)₂]X₂ (**4a**,**b**), which to the best of our knowledge represent the first dicationic carbeneruthenium(II) complexes.

Recently, we reported¹ that the reaction of the hydrido(vinylidene) compound [RuHCl(=C=CH₂)(PCy₃)₂] (**1a**) with acids HA, containing an anion that does *not* coordinate to the metal center, in diethyl ether affords instead of the anticipated cationic carbene derivative [RuCl(=CHCH₃)(PCy₃)₂]⁺ the corresponding carbyne-(hydrido) complex [RuHCl(=CCH₃)(PCy₃)₂(OEt₂)]⁺. This cation catalyzes with high efficiency not only the ringopening metathesis polymerization of cyclooctene but also the cross-olefin metathesis of cyclopentene with methylacrylate.¹ Since the lifetime of the carbyne-(hydrido)ruthenium cation is limited and significantly Treatment of a solution of **1a** in CH_2Cl_2/CH_3CN with excess KPF_6 leads to a gradual change of color from brown-yellow to brown and results in the formation of the vinyl complex **2a** in 87% isolated yield.³ Salt metathesis of **2a** with NaBPh₄ in methanol affords **2b** (Scheme 1), the molecular structure of which has been determined by X-ray crystallography.⁴

As shown in Figure 1, the coordination geometry around the metal center of the cation corresponds to that of a square pyramid with the two phosphines and the two acetonitriles *trans* disposed. The atoms C5 and C6 of the vinyl ligand (which occupies the apical position) lie in the same plane as the nitrogen and carbon atoms of the CH₃CN units. In contrast to the almost linear N1–Ru–N2 axis, the P1–Ru–P2 axis is slightly bent with the phosphorus atoms pointing away

lower than that of the corresponding neutral carbene $[\operatorname{RuCl}_2(=\operatorname{CHCH}_3)(\operatorname{PCy}_3)_2]^2$ we attempted to prepare more stable carbyneruthenium(II) species by using stronger σ -donors than diethyl ether. In the context of these studies we observed that the starting material **1a** can be easily converted, in the presence of acetonitrile, to cationic vinylruthenium(II) compounds which react with acids HA to give dicationic five-coordinate ruthenium carbenes.

⁽¹⁾ Stüer, W.; Wolf, J.; Werner, H.; Schwab, P.; Schulz, M. Angew. Chem. **1998**, 110, 3603–3606; Angew. Chem., Int. Ed. **1998**, 37, 3421– 3423.

^{(2) (}a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem. **1995**, *107*, 2179–2181; Angew. Chem., Int. Ed. Engl. **1995**, *34*, 2039–2041. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. **1996**, *118*, 100–110.

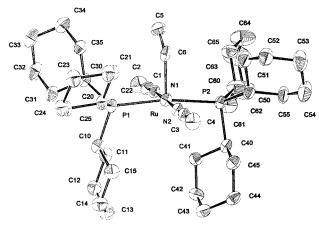
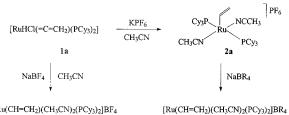
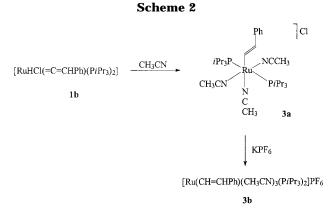



Figure 1. Molecular structure (ORTEP plot) of compound **2b**, with anisotropic uncertainty parameters depicting 50% probability. Selected bond distances (Å) and angles (deg): Ru-C6 2.001(5), Ru-N1 2.008(4), Ru-N2 2.006(4), Ru-P1 2.3975(13), Ru-P2 2.3979(12), C5-C6 1.340(7), N1-C1 1.160(6), N2-C3 1.142(6); C6-Ru-P1 92.48(12), C6-Ru-P2 96.24(12), C6-Ru-N1 92.35(16), C6-Ru-N2 89.52(16), N1-Ru-N2 178.05(15), P1-Ru-P2 171.04(4), N1-C1-C2 178.7(5), N2-C3-C4 179.0(5).

[Ru(CH=CH₂)(CH₃CN)₂(PCy₃)₂]BF₄


2d

2b 2c R

 C_6H_5

3,5-C₆H₃(CF₃)₂

2b. c

from the CH=CH₂ moiety. The distance Ru-C6 of 2.001 (5) Å is relatively short but comparable to that found in other ruthenium compounds with a Ru-C(sp²) bond.⁵

The bis(triisopropylphosphine) complex 1b behaves similarly to 1a and reacts with acetonitrile in CH₂Cl₂ to give 3a (Scheme 2). Treatment of 3a with KPF₆ affords the more stable PF₆ salt **3b**, which was isolated as an orange solid in 75% yield.⁶ Both the elemental analyses and the spectroscopic data of 3a,b confirm that in contrast to 2a,b three acetonitrile ligands are coor-

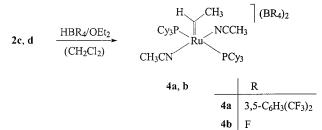
dinated to the metal center. The smaller cone angle of $P_{i}Pr_{3}$ (160°) compared to PCy_{3} (170°)⁷ probably favors the increase of the coordination number from five to six in the Ru(PiPr₃)₂ derivative. An uncharged six-coordinate ruthenium compound of composition [RuCl₂(CH₃- $(CN)_2(P_iPr_3)_2$ has recently been prepared by Ozawa et al. from [(p-cymene)RuCl₂]₂ and PiPr₃ in toluene/acetonitrile.⁸ Moreover, Caulton et al. found that the hydrido-(iodo) complex [RuHI(=C=CHSiMe₃)(P*t*Bu₂Me)₂] reacts with excess methylisocyanide to give the substituted vinylruthenium(II) derivative [Ru(CH=CHSiMe₃)(CN- $Me_{3}(PtBu_{2}Me_{2})$]I.⁹

While the protonation of 2a or 2b with excess HBF₄/ OEt_2 gives a saltlike product with $[Ru(=CHCH_3)(CH_3)]$ $CN_2(PCy_3)_2]^{2+}$ as the cation and different ratios of, respectively, PF_6^-/BF_4^- and BPh_4^-/BF_4^- as the anion, the reaction of $2c^3$ with Brookhart's acid¹⁰ [H(OEt₂)₂]B- $(Ar_f)_4$ (Ar_f = 3,5-bis(trifluoromethyl)phenyl) affords cleanly the bis(tetraaryloborate) 4a in 91% yield (Scheme

(4) Crystal data for **2b**: crystals from CH₂Cl₂; triclinic, $P\overline{1}$ (No. 2), a = 12.7193(17) Å, b = 15.482(2) Å, c = 17.447(2) Å, $\alpha = 88.771(16)^\circ$, $\beta = 79.931(15)^\circ$, $\gamma = 69.452(15)^\circ$, V = 3164.3(7) Å³, Z = 2, $D_{calcd} =$ 1.227 g cm⁻³, T = 173(2) K, μ (Mo K α) = 0.423 cm⁻¹; data collected on a Stoe IPDS diffractometer using Φ scan mode ($2\theta_{max} = 50.06^{\circ}$); 25 291 reflections scanned, 10 533 unique, 6204 observed ($I > 2\sigma(I)$); extinction parameter 0.0051(5), 686 parameters refined to give R = 4.95% and $R_{\rm w} = 12.80\%$ with a reflex-parameter ratio of 15.4 and a residual electron density +1.064/-0.948 e Å⁻³. (5) Daniel, T.; Mahr, N.; Braun, T.; Werner, H. *Organometallics*

1993, 12, 1475-1477

(6) The preparation of **3a** and **3b** is as follows. A solution of **1b** (81 mg, 0.14 mmol) in 8 mL of CH₂Cl₂ was treated with acetonitrile (3 mL) and stirred for 5 min at room temperature. The solvent was evaporated in vacuo, and the residue was washed repeatedly with pentane (5 mL) and dried. A light yellow solid of **3a** was obtained: yield 87 mg (93%); mp 59 °C dec; Λ (CH₃NO₂) 55.8 cm² Ω^{-1} mol⁻¹. A sample of 3a (85 mg, 0.12 mmol) was dissolved in 8 mL of CH2Cl2/ CH₃CN (5:3) and then treated with KPF₆ (150 mg, 0.81 mmol). After stirring for 30 min at room temperature, the reaction mixture was worked up as described for 2a: orange solid; yield 73 mg (75%); mp 36 °C dec; IR (KBr) ν(CN) 2260 cm⁻¹; ¹H NMR (200 MHz, CD₂Cl₂) δ 8.56 (d, J(HH) = 16.8 Hz, 1H, CH=CHPh), 7.14, 6.92 (both m, 5H, C_6H_5), 6.34 (d, J(HH) = 16.8 Hz, 1H, CH=CHPh), 2.46 (m, 6H, PCHCH3), 2.42 (s, 6H, CH3CN), 2.31 (s, 3H, CH3CN), 1.27 (m, 36H, PCHCH₃); ¹³C NMR (50.3 MHz, CD₂Cl₂) & 159.7 (br s, RuCH), 141.2 (s, *ipso-C* of C₆H₅), 133.3 (s, =*C*HPh), 128.2, 123.6, 123.1 (all s, C₆H₅), 125.4 (s, CN), 24.1 (vt, N = 17.1 Hz, P*C*HCH₃), 19.1 (s, PCH*C*H₃), 5.0, 3.3 (both s, CH₃CN); ³¹P NMR (81.0 MHz, CD₂Cl₂) δ 28.3 (s, P*i*Pr₃), 144.0 (sept, J(PF) = 709.4 Hz, PF_6^{-1})


(7) Tolman, C. A. Chem. Rev. 1977, 77, 313-348.

(8) Katayama, H.; Ozawa, F. Organometallics 1998, 17, 5190-5196. (9) Oliván, M.; Clot, E.; Eisenstein, O.; Caulton, K. G. Organometallics 1998, 17, 3091-3100.

(10) Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920-3922.

⁽³⁾ The preparation of 2a is as follows. A solution of 1a (270 mg, 0.30 mmol) in 30 mL of CH₂Cl₂/CH₃CN (1:1) was treated with KPF₆ (250 mg, 1.36 mmol) and stirred for 35 min at room temperature. The solvent was removed, and the residue was extracted twice with 10 mL of CH₂Cl₂ each. The combined extracts were evaporated in vacuo, and the remaining red-brown solid was washed twice with pentane (8 mL) and dried: yield 307 mg (87%); mp 55 °C dec; Λ (CH₃NO₂) 68.6 cm² Ω^{-1} mol⁻¹; IR (KBr) ν (CN) 2253 cm⁻¹; ¹H NMR (400 MHz, CD₂Cl₂) δ 7.38 (dd, J(HH) = 7.9 and 15.8 Hz, 1H, CH=CH₂), 4.84 (d, J(HH) = 7.9 Hz, 1H, one H of CH₂, cis to CH), 4.70 (d, J(HH) = 15.8 Hz, 1H, one H of CH₂, trans to CH), 2.49 (s, 6H, CH₃CN), 2.24-1.22 (m, 66H, C₆H₁₁); ¹³C NMR (100.6 MHz, CD₂Cl₂) δ 150.2 (br s, RuCH), 125.5 (s, CN), 117.3 (s, =CH₂), 34.3 (vt, N = 16.2 Hz, CH of C₆H₁₁), 29.7, 26.5 (both s, C_6H_{11}), 28.1 (vt, N = 10.2 Hz, $CHCH_2$ of C_6H_{11}), 5.0 (s, CH_3) CN); ³¹P NMR (162.0 MHz, CD₂Cl₂) δ 22.4 (s, PCy₃), -144.0 (sept, J(PF) = 709.4 Hz, PF_6^{-}). Compound **2b** was prepared from **2a** (450 mg, 0.40 mmol) and NaBPh₄ (200 mg, 0.58 mmol) in 20 mL of methanol: orange solid; yield 416 mg (78%); mp 100 °C dec; Λ (CH₃NO₂) 62.5 cm² Ω mol⁻¹. Compound **2c** was prepared from **2a** (54 mg, 0.06 mmol) and NaB(Ar_f)₄ (55 mg, 0.06 mmol) in 10 mL of ether at 0 °C: red-brown solid; yield 94 mg (97%); mp 70 °C dec; Λ (CH₃NO₂) 78.2 cm² Ω^{-1} mol⁻¹. Compound 2d was prepared analogously as described for 2a, from 1a (101 mg, 0.14 mmol) and NaBF₄ (250 mg, 2.28 mmol) in 15 mL of CH₂-Cl₂/CH₃CN (2:1): orange-red solid; yield 109 mg (91%); mp 52 °C dec; Λ (CH₃NO₂) 57.8 cm² Ω^{-1} mol⁻¹.

3).¹¹ Analogously, the bis(tetrafluoroborate) **4b** was prepared on treatment of 2d with an excess of a solution of HBF₄ in ether. Both **4a** and **4b** are yellow, moderately air-stable solids, the conductivity of which (in nitromethane) corresponds to that of 1:2 electrolytes. Regarding the spectroscopic data, the most typical features are the signal for the =CH carbone proton at δ 17.20 (4a) or 17.70 (4b) in the ¹H NMR and the multiplet for the carbon carbon atom at δ 335.1 (4a) in the ¹³C NMR spectrum. The single resonance for the phosphorus nuclei at δ 41.0 (**4a**) or 38.0 (**4b**) in the ³¹P NMR spectra indicates that the phosphine ligands are stereochemically equivalent and therefore in trans disposition. Attempts to generate the dication [Ru(= $CHCH_3)(CH_3CN)_2(PCy_3)_2]^{2+}$ from $[RuCl_2(=CHCH_3)-$ (PCy₃)₂] by substitution of the chloride ligands for acetonitrile failed. It should be mentioned that, to the

best of our knowledge, compounds **4a** and **4b** are the first *dicationic* five-coordinate carbeneruthenium complexes described as yet.

The formation of a metal carbene from a metal vinyl precursor is not without precedence. Casey and Helquist showed already in 1982 that neutral cyclopentadienyliron compounds with CR=CH₂ as ligand can be converted with HBF₄ to corresponding cationic carbene derivatives.¹² Similar transformations of neutral vinyl to monocationic carbene complexes via attack of an electrophile at the β -carbon atom of the vinyl ligand have since been carried out by Gladysz and others.¹³ We note, however, that as far as we know, there is no report about the preparation of a *dicationic* carbene complex from a *monocationic* vinylmetal precursor by protonation. Our present interests are aimed to find out whether **4a** or **4b** can be used, in the absence or in the presence of a Lewis acid, as catalysts for olefin metathesis.

Acknowledgment. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Grant No. 347), the Fonds der Chemischen Industrie, and the BASF AG. We also thank Mr. S. Stellwag for valuable experimental assistance.

Supporting Information Available: A table with the elemental analysis of compounds **2a–2d**, **3a**, **3b**, and **4a** as well as fully labeled diagrams and tables of crystallographic data, data collection and solution and refinement details, positional and thermal parameters, and both distances and angles for **2b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0100737

⁽¹¹⁾ The preparation of **4a** was as follows. A solution of **2c** (94 mg, 0.06 mmol) in 8 mL of CH₂Cl₂ was treated with a solution of [H(OEt₂)₂]B(Ar_i)₄ (58 mg, 0.06 mmol) in 4 mL of CH₂Cl₂ at 0 °C. After the solution was stirred for 5 min, it was warmed to room temperature and the solvent was removed in vacuo. The yellow residue was washed three times with 5 mL portions of pentane and dried: yield 130 mg (91%); mp 130 °C dec; Λ (CH₃NO₂) 138.9 cm² Ω^{-1} mol⁻¹; H NMR (400 MHz, CD₂Cl₂) δ 17.20 (q, *J*(HH) = 5.9 Hz, 1H, =CHCH₃), 7.72 (s, 16H, ortho-H of Ar_i), 7.57 (s, 8H, *p*-H of Ar_i), 2.87 (d, *J*(HH) = 5.9 Hz, 3H, =CHCH₃), 2.75 (s, 6H, CH₃CN), 2.17–1.23 (m, 66H, C₆H₁₁); ¹³C NMR (100.6 MHz, acetone-d₆) δ 335.1 (m, Ru=C), 163.0 (d, *J*(BC) = 49.6 Hz, *ipso*-C of Ar_i), 135.9 (s, ortho-C of Ar_i), 130.4, 118.8 (both m, meta-and para-C of Ar_i), 125.7 (q, *J*(FC) = 272.1 Hz, CF₃), 48.5 (s, =CHCH₃), 35.3 (vt, N = 19.1 Hz, CH of C₆H₁₁), 5.7 (s, *C*H₃CN); ³¹P NMR (162.0 MHz, acetone-d₆) δ 41.0 (s). Compound **4b** was prepared from **2d** (275 mg, 0.32 mmol) in CH₂Cl₂ (8 mL) and an excess of HBF₄ (ca. 1.60 mmol) in ether: yellow solid; yield 225 mg (75%); mp 55 °C dec; Λ (CH₃NO₂) 98.8 cm² Ω^{-1} mol⁻¹; IR (KBr) ν (CN) 2275 cm⁻¹.

^{(12) (}a) Casey, C. A.; Miles, W. H.; Tukada, H.; O'Connor, J. M. J. Am. Chem. Soc. **1982**, 104, 3761–3762. (b) Kremer, K. A. M.; Kuo, G.-H.; O'Connor, E. J.; Helquist, P.; Kerber, R. C. J. Am. Chem. Soc. **1982**, 104, 6119–6121.

^{(13) (}a) Bodner, G. S.; Smith, D. E.; Hatton, W. G.; Heah, P. C.; Georgiou, S.; Rheingold, A. L.; Geib, S. J.; Hutchinson, J. P.; Gladysz, J. A. J. Am. Chem. Soc. **1987**, 109, 7688–7705. (b) Esteruelas, M. A.; Lahoz, F. J.; Onate, E.; Oro, L. A.; Zeier, B. Organometallics **1994**, 13, 4258–4265. (c) Jia, G.; Wu, W. F.; Yeung, R. C. Y.; Xia, H. J. Organomet. Chem. **1997**, 538, 31–40. (d) Alias, F. M.; Poveda, M. L.; Sellin, M.; Carmona, E. J. Am. Chem. Soc. **1998**, 120, 5816–5817. (e) Alias, F. M.; Poveda, M. L.; Sellin, M.; Carmona, E.; Gutiérrez-Puebla, E.; Monge, A. Organometallics **1998**, 17, 4124–4126.