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Dioxiranes1 are important oxidants for organic reactions such
as epoxidation,2 heteroatom oxidation,3 and oxygenation of C-H
bonds.4 In particular, epoxidation mediated by dioxiranes is
stereospecific and highly efficient toward both electron-rich and
electron-deficient olefins.5 Moreover, dioxirane epoxidation can
be a catalytic process as dioxiranes can be generatedin situ
from ketones and Oxone.6 Chiral ketones are thus expected to
be ideal catalysts for asymmetric epoxidation. However, limited
progress has been made in this direction, as the reported chiral
ketones exhibit poor catalytic activities and low asymmetric
induction.7,8 Here we report the firstC2 symmetric chiral ketone
as a promising catalyst for asymmetric epoxidation of unfunc-
tionalizedtrans-olefins and trisubstituted olefins.9-11

We recently discovered that, in a homogeneous CH3CN-
H2O solvent system, epoxidation with Oxone can be catalyzed
efficiently by trifluoroacetone.6d This simple protocol allows
us to directly compare the catalytic activities of various ketones
in epoxidation oftrans-stilbene. The results for acyclic ketones

1a-g and cyclic ketones2a-c are summarized in Table 1.
Here two general trends are observed. (1) Ketones with
electron-withdrawing groups, such as F, Cl, and OAc, atR
positions show higher activities (entries 2-6 vs entry 1; entry
9 vs entry 8). (2) Steric hindrance atR positions decreases the
activity (entry 7 vs entry 2; entry 10 vs entry 8). Therefore,
both steric and electronic factors need to be considered in
designing efficient ketone catalysts.
We also note that dioxiranes have two faces for oxygen

transfer. It is expected that ketone catalysts withC2 symmetry
and rigid conformations have the potential for asymmetric
epoxidation. Therefore, cyclic analogs of 1,3-diacetoxyacetone
1f were designed and synthesized.12 Among them, ketone3
showed unprecedented catalytic activity (Table 2).13 In a 1:1
ketone:substrate ratio at room temperature,in situ epoxidation
of trans-stilbene catalyzed by ketone3 proceeded faster than
that by trifluoroacetone (1b) or acyclic ketone1f. Ketone3
was stable under the reaction conditions and can be recovered
in high yield without loss of catalytic activity.14 To further
demonstrate the catalytic efficiency of ketone3, epoxidation
of trans-stilbene was carried out using 1 mol % of ketone3 at
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Table 1. Activities of Various Ketones in Catalyzingin Situ
Epoxidation oftrans-Stilbenea

catalyst

entry R1 R2 R3

reaction
time (min)b

1 CH3 CH3 (1a) 300
2 CH3 CF3 (1b) <4
3 CH3 CH2F (1c) 20
4 CH3 CH2Cl (1d) 18
5 CH3 CH2OAc (1e) 30
6 CH2OAc CH2OAc (1f) 30
7 Ph CF3 (1g) 70
8 H (2a) 210
9 Cl (2b) 15
10 CH3 (2c) >720
aReaction conditions: room temperature, 0.1 mmol oftrans-stilbene,

1.0 mmol of catalyst, 0.5 mmol of Oxone, 1.55 mmol of NaHCO3, 1.5
mL of CH3CN, 1.0 mL of aqueous Na2‚EDTA (4 × 10-4 M). b Time
when epoxidation was completed as shown by TLC.
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room temperature. The epoxidation was completed in 12 h,
and thetrans-stilbene epoxide was isolated in 98% yield.

Since ketones with chiral centers atR positions are prone to
racemization, we chose to put theC2 symmetric chiral element
away from the catalytic center (i.e., the keto group). AC2

symmetric, 11-membered-ring ketone4was designed when the
diphenic unit of ketone3was replaced by a chiral binaphthalene
unit.15 X-ray analysis16 revealed that ketone4 indeed has a
rigid andC2 symmetric structure (Figure 1): the keto group
lies on theC2 axis of the molecule; the two ester groups, anti-
parallel to each other, retain the favorables-transgeometry and
are nearly perpendicular to the macrocyclic ring plane; and the
dihedral angle of the two naphthalene rings is ca. 70°.

Preliminary results of asymmetric epoxidation catalyzed by
chiral ketone4 are summarized in Table 3. Similar to ketone
3, chiral ketone4was highly efficient in catalyzing epoxidation
reactions.17 More importantly, chiral ketone4 gave moderate
to good enantioselectivity for epoxidation oftrans-olefins and
trisubstituted olefins (entries 1-5) but not forcis-olefins or
terminal olefins (entries 6-8). It is significant that, even with
10 mol % of ketone4, 87% ee was obtained for epoxidation of
trans-stilbene derivative6. This is the highest ee reported for
epoxidation of unfunctionalizedtrans-olefins using chiral
ketones as catalysts.

Despite recent advances, catalytic asymmetric epoxidation
of unfunctionalizedtrans-olefins and trisubstituted olefins still
represents a great challenge.10,11 In this paper, we have shown
the potential of the chiral dioxirane approach to this problem.
Further work should be directed at understanding the mechanism
of the chiral induction as well as developing better ketone
catalysts.
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Table 2. Activity of Ketone3 in Catalyzingin SituEpoxidation of
trans-Stilbenea

catalyst
reaction
time (min)

epoxide
yield (%)

ketone
recovery (%)

1b 30 96
1f 50 90 85
3 7 99 93b

aReaction conditions: room temperature, 0.1 mmol oftrans-stilbene,
0.1 mmol of catalyst, 0.5 mmol of Oxone, 1.55 mmol of NaHCO3, 1.5
mL of CH3CN, 1.0 mL of aqueous Na2‚EDTA (4 × 10-4 M). b Flash
column purification with Et3N (ref 14).

Figure 1. X-ray structure of racemic ketone4 (ORTEP view; only
one molecule is shown).

Table 3. Asymmetric Epoxidation of Unfunctionalized Olefins
Catalyzed by Ketone4a

entry catalyst substrate
time
(min)

epoxide
yield (%)b

epoxide
config

ee
(%)c

1 (R)-4 5 20 99 (-)-(S,S)d 47
2e (R)-4 6 480 82 (-)-(S,S)d 87
3e (S)-4 6 480 80 (+)-(R,R)d 87
4 (R)-4 7 60 98 (+)-(S)f 50
5g (R)-4 8 90 83 (-)-(S,S)f 33
6h (R)-4 9 210 70 ndi 18
7j (R)-4 10 80 85 ndi <5
8j (R)-4 11 60 83 (-)-(S)k 18

aUnless otherwise indicated, all the epoxidation reactions were
carried out at room temperature with 0.1 mmol of substrate and 0.1
mmol of ketone4, 0.5 mmol of Oxone, 1.55 mmol of NaHCO3, 2 mL
of CH3CN, and 1.7 mL of aqueous Na2‚EDTA solution (4× 10-4 M).
b Isolated yield after flash column chromatography.cDetermined by
1H NMR using chiral shift reagent Eu(hfc)3 (Aldrich Cat. No. 16,474-
7). dDetermined by circular dichroism spectroscopy (see supporting
information).e 0.01 mmol of ketone4, 2.5 mL of CH3CN, and 2 mL
of aqueous Na2‚EDTA solution (4× 10-4 M). f Reference 11a.g 0.2
mmol of the substrate.h 0.5 mmol of the substrate.i Not determined.
j 0.2 mmol of the substrate, 0.01 mmol of ketone4. kReference 18.
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