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ABSTRACT: One 12-metal Cd(II)−Yb(III) nanoring, [Cd8Yb4L8(OAc)8]·4OH (1), with a size of 1.2 × 2.8 × 2.8 nm was
obtained from a designed flexible salen-type ligand that has eight coordination sites (O and N atoms). The near-IR emission of
Yb(III) at 983 nm was detected upon the excitation of ligand-central absorption at 386 nm. This Cd(II)−Yb(III) nanoring exhibits
high sensitivity to nitrofuran antibiotics (NFAs) even in the presence of other antibiotics. The quenching constants and limits of
detection of NFAs are 2.5 × 104−4.5 × 104 M−1 and 1.5−2.8 μM, respectively.

During recent years, the development of high-nuclearity
metal nanorings has received much interest because of

their beautiful geometrical configuration and special physical
and chemical properties.1,2 Some large metallorings have been
obtained from the assembly of d-block transition metals and
lanthanides, e.g., Mn4Ln4,

3 Mn8Ln8,
4 Fe6Ln3,

5 Co16Ln24,
6

Cu36Ln24,
7 and Cu6(Zn6)Ln6.

8 At present, growing attention
has been devoted to fluorescence-based chemical sensors
because of their fast response, high sensitivities, and
convenient utilization.9,10 Among all kinds of detection objects,
pharmaceutical antibiotics, which have been broadly used in
many fields such as medical, aquaculture, and food processing,
have been considered to be one of the most noticeable classes
of environmental pollutants.11,12 For instance, nitrofuran
antibiotics (NFAs) are a class of broad-spectrum antimicrobial
compounds that have been proven to show potential
carcinogenic and mutagenic effects. In recent years, some
lanthanide complexes, including mononuclear complex and
metal−organic frameworks, have been designed for the
luminescence detection of antibiotics.13−15 As is known,
some porphyrins and heterocyclic-based macrocycles, which
have large ringlike structures, have been used as fluorescent
sensors to detect small molecules and ions,16−18 while the
construction of high-nuclearity d−4f nanorings as fluorescent
probes for detection is still challenging.
For the synthesis of d−4f nanorings, much attention has

been focused on the use of small bridging ligands, such as
phosphonates,19,20 alkoxides,21,22 and carboxylates,5,7 for the
purpose of obtaining single-molecule magnets (SMMs). In
contrast, so far there are very few reported ringlike metal
clusters with large organic ligands. Flexible long-chain Schiff
base ligands can coordinate with metal ions by various modes
in polynuclear d−4f complexes.23−25 We herein report a 12-
metal Cd(II)−Yb(III) nanoring, [Cd8Yb4L10(OAc)8]·4OH
(1), with a new flexible salen-type Schiff base ligand, 6,6′-
{(1E,1′E)-[[[butane-1,4-diylbis(oxy)]bis(2,1-phenylene)]bis-
(azaneylylidene)]bis(methaneylylidene)}bis(2-methoxyphe-
nol) (H2L; Figure 1a), which has eight coordination sites (O
and N atoms) to bind both d- and f-block metal ions. 1

exhibits interesting near-IR (NIR) emission sensing to
antibiotics, particularly to NFAs at the parts per million level.
The salen-type ligand H2L was synthesized with 2-nitro-

phenol, 1,4-dibromobutane, and 2-hydroxy-3-methoxybenzal-
dehyde as raw materials (Figure 1a), and its structure was
confirmed by NMR, electrospray ionization mass spectrome-
try, and Fourier transform infrared (Figures S1 and S2). The
product of 1 was formed as red crystals from the reaction of
H2L with Yb(SO3CF3)3 and Cd(OAc)2 in an ethanol (EtOH)/
methanol (MeOH) solution. Employment of a long salen-type
ligand leads to the large size of 1 (about 1.2 × 2.8 × 2.8 nm;
Figure 1b). The centrosymmetric structure of 1 includes four
equivalent Cd2Yb moieties that are linked into a nanoscale ring
by eight salen-type ligands. The diameter of the ring is about
1.6 nm. Eight O atoms from one OAc− anion and four L2−

ligands bond to the Yb(III) ion, which exhibits a slightly
distorted dodecahedral configuration.26 The coordination
numbers of Cd(II) ions are 6 and 7. In 1, the coordination
modes of OAc− and L2− are μ2(η

1:η1 or η1:η2) and
μ4(η

1:η2:η1:η1:η2:η1), respectively. The distances between the
adjacent Cd(II) and Yb(III) ions are from 3.693 to 3.736 Å.
The Yb−O, Cd−N, and Cd−O bond lengths are 2.039−2.970,
2.190−2.460, and 1.907−2.529 Å, respectively. As shown in
Figure 1c, the Cd/Yb molar ratio is found to be 2 by energy-
dispersive X-ray spectroscopy (EDX) of 1, in agreement with
its molecular formula. Thermogravimetric analysis (TGA)
displays that 1 loses about 5% weight before 100 °C because of
the escape of solvent molecules (e.g., MeOH, EtOH, and
H2O) uncoordinated in the structure, and then its weight
hardly changes until it is heated to more than 200 °C (Figure
S4). The thermodynamic stability of 1 is also investigated by
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melting point measurement, which indicates that it begins to
decompose from 220 °C (see the Supporting Information, SI).
The stability of the ringlike structure of 1 in solution is
confirmed by dynamic light scattering (DLS) analysis, which
displays a diameter distribution centered at 2.8 nm (Figure
1d), consistent with its crystal structure of 1.27−30

In 1, the lanthanide ions are surrounded within the nanoring
structure and separated from outside solvent molecules that
may decrease the lanthanide emission.31 Meanwhile, no
solvent molecules such as MeOH or H2O bond to the Yb(III)
ions. These factors are conducive to improvement of the
luminescence properties of 1. The free H2L ligand displays
absorption bands at 280 and 338 nm (Figure S6) and exhibits
a broad emission band at 554 nm (Figure S7a). Under
excitation at 386 nm, the NIR emission of Yb(III)
corresponding to the 2F5/2→

2F7/2 transition was found at
983 nm (Figure S7b), with a lifetime (τ) of 7.48 μs (Figure
S8). The intrinsic quantum yield of Yb(III) (ΦLn = τ/τ0) is
able to be estimated as 0.37%, with τ0 = 2000 μs.32 The
quantum yield of the NIR emission of 1 (Φem) is measured as
0.09%. Consequently, the transfer energy efficiency (ηsens =
Φem/ΦLn) of salen-type ligands is found to be 24.3%.33 The
energy gap between the excited triplet-state level (3LC) of the

salen-type ligand and the 2F5/2 level of Yb(III) in 1 plays a key
role in the energy-transfer process.34,35 The 3LC level of the
salen-type ligand in 1 can be estimated from the visible
emission of the Gd(III) analogue ([Cd8Gd4L8(OAc)8]·4OH;
see the SI), in which energy transfer from the salen-type
ligands to lanthanides does not occur. The 3LC level of the
salen-type ligand is determined to be 18200 cm−1 (Figure S9).
Hence, the energy gap between the 3LC and 2F5/2 levels
[Yb(III): 10200 cm−1] in 1 is calculated to be about 8000
cm−1. This large energy gap suggests that the process of energy
transfer in 1 may be decided by electron transfer or a phonon-
assisted energy-transfer mechanism.36,37

The sensing behavior of 1 to four types of classic antibiotics,
i.e., nitrofurans (NFAs: NFZ, FZD, and NFT), nitroimidazoles
(MDZ, RDZ and ODZ), sulfonamides (SMX, SDZ, and
SMZ), and chloramphenicols (THI and CAP), and one
commonly used antibiotics−pyrazinamide (PZA; Scheme S2)
was studied in acetonitrile (CH3CN). The addition of these
antibiotics leads to various changes of the NIR emission of 1.
Except SDZ and SMZ, the addition of other antibiotics
decreases the emission of 1 (Figures 2 and S10). NFAs (NFZ,

FZD, and NFT) decrease the lanthanide luminescence much
faster than other antibiotics. For example, the addition of 100
μM NFAs decreases the luminescence more than 70%, but less
than 20% for the addition of other antibiotics with the same
concentration (Figure S10).
The quenching constants (KSV) of the antibiotics were

calculated by the Stern−Volmer equation (I0/I = 1 +
KSV[A]).

38 As shown in Figure 2, the KSV values of NFZ,
FZD, and NFT are 4.49 × 104, 2.62 × 104, and 2.51 × 104

M−1, respectively, which correspond to the highest numbers
reported so far for NFA detection based on fluorescent metal
complexes39−42 and higher than those obtained from
fluorescent silica nanoparticles.43 For 1, the limits of detection
(LOD = 3σ/KSV

44) of these three NFAs are calculated to be
1.53, 2.63, and 2.74 μM, respectively. This indicates that 1 has
high luminescence sensitivity to NFAs at the parts per million
level.
The origin of emission quenching of 1 caused by antibiotics

can be due to an “inner filter effect”,39,40 in which the added
antibiotics also absorb light energy at the excitation wavelength
(386 nm), resulting in a decrease in energy absorption of 1. As

Figure 1. (a) Synthesis route of the salen-type ligand H2L. (b)
Ringlike crystal structure of 1 [Cd(II), green, Yb(III), blue]. (c) EDX.
Inset: Field emission scanning electron microscopy image. (d) DLS
analysis of 1 in CH3CN. Figure 2. Intensity changes of 1 (c = 10 μM) at 983 nm caused by the

addition of antibiotics at different concentrations. Inset: Quenching
constants of antibiotics (λex = 386 nm).
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shown in Figure 3, NFAs exhibit strong absorption at 386 nm;
however, other antibiotics have very little absorption. For

instance, the absorption coefficients of NFT and NFZ at λex are
7.27 × 104 and 7.73 × 104 M−1 cm−1, respectively, which are
larger than that of 1 (6.47 × 104 M−1 cm−1). Therefore, the
added NFAs can effectively compete with the salen-type
ligands of 1 to absorb light energy. In addition, another
mechanism that may be involved is the photoinduced electron-
transfer (PET) process, where emission quenching of 1 is due
to excited electron transfer from the salen-type ligand to the
LUMO of antibiotics.17,41 According to the literature,45 the
approximate LUMO energy level of the salen-type ligand in 1
is at about −1 eV, which is higher than those of NFAs. Thus,
antibiotics with lower LUMO energy levels have a stronger
ability to accept an electron from the ligand. As shown in
Scheme 1, although the LUMO energy levels of NFAs are

generally lower than those of other antibiotics, the changing
trends of the KSV values of all antibiotics and their LUMO
energy levels are not the same. For instance, the LUMO energy
levels of MDZ, RDZ, ODZ, THI, and CAP are much lower
than those of SMX, PZA, SDZ, and SMZ; however, these nine
antibiotics have similar KSV values. These results suggest that
the PET mechanism may not play a key role in emission
quenching caused by antibiotics, while the “inner filter effect”
dominates the quenching process of 1 to NFAs.
In the presence of other antibiotics, the sensing behavior of

1 to NFAs was studied in CH3CN. It was found that the

existence of other antibiotics with 10 times concentration does
not change the emission quenching of 1 caused by NFZ
(Figure 4a). In addition, the stepwise addition of antibiotics

also confirms the selectivity of 1 to NFAs (Figure 4b). For
instance, emission quenching is not very obvious with the
addition of MDZ twice first. However, the continued addition
of NFZ gives a rapid decrease of the lanthanide emission. In
the following addition cycles, this changing trend of the
luminescence intensities repeats again, which indicates that 1
exhibits high selectivity to NFZ even in the presence of other
antibiotics.
In order to evaluate the practicality of the Yb(III) nanoring

on real samples, the luminescent response of 1 to antibiotic
drugs sold in pharmacies was investigated. For example, the
addition of 60 mg L−1 nitrofurazone (containing NFZ) and
furazolidone (containing FZD) reduces the luminescence
intensities by 95% and 73%, respectively (Figure S11). These
results show that 1 displays high sensitivity to real antibiotic
drugs containing NFAs.
In brief, one 12-metal Cd(II)−Yb(III) nanoring, 1, was

constructed by the use of a new flexible salen-type ligand that
shows a μ4(η

1:η2:η1:η1:η2:η1) coordination mode. The
molecular size of the metal nanoring is about 1.2 × 2.8 ×
2.8 nm. 1 exhibits NIR emission sensing to NFAs at the ppm
level. The quenching constants and LODs of NFAs are 2.5 ×
104−4.5 × 104 M−1 and 1.5−2.8 μM, respectively. The
presence of other antibiotics does not affect the high sensitivity
and selectivity of 1 to NFAs. The practicality of 1 was
investigated by its luminescent response to real antibiotic drugs

Figure 3. UV−vis absorption spectra of tested antibiotics (c = 10 μM)
in CH3CN.

Scheme 1. HOMO and LUMO Energy Levels of the
Antibiotics

Figure 4. NIR emission sensing of 1 (c = 10 μM) to NFZ in the
presence of other antibiotics in CH3CN: (a) percentages of emission
quenching before and after the addition of NFZ (c = 100 μM) with
the existence of other antibiotics (c = 1000 μM); (b) decrease of the
luminescence intensities with the stepwise addition of other
antibiotics and NFZ (15 μM each time).
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such as nitrofurazone and furazolidone. Further studies in the
design of luminescent d−4f nanorings with sensing properties
to more antibiotics are in progress.
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