
Three new titanium complexes having two indolide-imine
ligands were synthesized and investigated as ethylene polymer-
ization catalysts.  These complexes using MAO as a cocatalyst
promoted ethylene polymerization at 25 °C to produce polyeth-
ylenes (Mn:11000–41800) having narrow molecular weight dis-
tributions (Mw/Mn: 1.11–1.14), displaying very high activities
(52–288 kg-PE/mol-Ti·h·atm).

The development of high performance living olefin poly-
merization catalysts has been the subject of extensive study for
many years since living olefin polymerization is a powerful tool
for creating precisely-controlled polymers such as monodis-
perse polymers, end-functionalized polymers, and block
copolymers.1,3k The living olefin polymerization requires low
temperatures to suppress the side reactions, namely chain termi-
nation or transfer reactions and, thus, it generally produces a
relatively low molecular weight polymer, displaying low activi-
ty.  Much research effort devoted to the study on soluble, well-
defined transition metal complexes for olefin polymerization2

has resulted in the introduction of a variety of living olefin
polymerization catalysts working at relatively high tempera-
tures.  There are, however, a limited number of examples of
room-temperature living ethylene polymerizations using solu-
ble, well-defined transition metal complexes so far.1f,1g,1o

Recently, we have found, as a result of ligand-oriented cat-
alyst design research, that transition metal complexes having
non-symmetric bidentate ligand(s) (e.g., phenoxy-imine ligand,
pyrrolide-imine ligand, and imine-pyridine ligand) exhibit high
catalytic performance for olefin polymerization. 3 These results
inspired us to conduct further study on transition metal com-
plexes having non-symmetric bidentate ligand(s) as potentially
viable olefin polymerization catalysts.

In this paper, we introduce three titanium complexes, bear-
ing two indolide-imine chelate ligands, which promote living
ethylene polymerization at room temperature. 

A general synthetic route for titanium complexes employed
in this study is shown in Scheme 1.  The indolide-imine ligands
of general structures A–C, namely 7-(N-aryliminomethyl)
indole ligands, are prepared in high yields (A: 98%, B: 64%, C:
72%) by the Schiff-base condensation of the desired primary
amine with 7-formylindole.4  The titanium complexes possess-
ing two indolide-imine ligands, namely bis[7-(N-arylimi-
nomethyl)indolinyl]titanium(IV) dichloride  complexes, are
obtained as dark purple powder in moderate yields (1: 36%, 2:
27%, 3: 29%) by the treatment of TiCl4 with 2 equiv of the
lithium salt of the indolide-imine ligand. 5

Complexes 1–3 were investigated as ethylene polymeriza-
tion catalysts using MAO as a cocatalyst for 10 min at 25 °C
under atmospheric pressure.6 The results are collected in Table 1.  

The activities obtained were in the range of 52–288 kg-
PE/mol-Ti·h·atm.  In all cases, solid polyethylene was obtained.
The melting temperature (Tm) of the polyethylenes, based on
DSC measurement, lies in the range of 132.2–134.2 °C, sug-
gesting that the polyethylenes possess a linear structure.  GPC
analyses revealed that the polyethylenes produced at 25 °C pos-
sess narrow molecular weight distributions (Mw/Mn: 1.11–1.14,
entries 1–3) for their high molecular weights (Mn:
11000–41800).  The Mw/Mn values suggest that complexes 1–3
/ MAO catalyst systems have the character of living polymer-
ization.  Initiation efficiencies for the polymerization are more
than 71%.7 Interestingly, ethylene polymerization using com-
plex 3 / MAO at 50 °C for 10 min produced polyethylene hav-
ing a reasonably narrow molecular weight distribution (Mw/Mn:
1.24, Mn: 53200), displaying higher catalytic activity (290 kg-
PE/mol-Ti·h·atm) (entry 4).  A comparison of the polymeriza-
tion results of entries 1–3 indicates that the substituents on the
imine nitrogen influenced catalytic activities.  The introduction
of fluorine atoms to the benzene ring on imine nitrogen is sup-
posed to enhance the electrophilicity of the titanium metal in
active species for olefin polymerization.  Thus, concerning the
titanium complexes we studied, the electrophilicity of the titani-
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um metal in active species probably plays a predominant role in
determining the polymerization activity.  The highest activity
(288 kg-PE/mol-Ti·h·atm) (entry 3) is extremely high through
the polymerization proceeded in a living fashion.  

Catalytic performance of complex 3 / MAO catalyst sys-
tem was further investigated since this catalyst system exhibited
the highest catalytic activity and the narrowest molecular
weight value.  Mn and Mw/Mn values of complex 3 / MAO were
monitored as a function of polymer yield at 25 °C.  As shown in
Figure 1, the Mn value increased proportionally with the poly-
mer yield while the narrow Mw/Mn value was retained, further
confirming a living polymerization.

In summary, three new titanium complexes with two
indolide-imine chelate ligands were prepared and found to be
room-temperature living ethylene polymerization catalysts.
The influence of substitution groups of the ligands and cocata-
lysts as well as potential applications of the catalyst systems are
under active investigation.
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