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The catalytic cleavage and functionalization of an otherwise
unactivated C�H bond within the ligand sphere of a
coordinatively unsaturated transition-metal complex is devel-
oping into a practical synthetic methodology, despite the
inherent difficulty associated with breaking such robust
s bonds.[1] In contrast, the activation of multiple C�H bonds
on a single substrate has proven to be a significantly greater
challenge; stoichiometric transformations of this type are still
uncommon and examples in which this reactivity has been
incorporated into useful catalytic cycles are few.[1,2] Given the
central role that multiple C�H bond activation processes
could play in the functionalization of hydrocarbons and other
relatively unreactive molecules, we are targeting new classes
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of reactive transition-metal complexes that are designed to
effect one or more C�H bond activation steps. On the basis of
the propensity of late-transition-metal cations for C�H
activation,[3] and the desirable reactivity characteristics com-
monly associated with P,N ligation,[4] one facet of our research
targets coordinatively unsaturated cations supported by k2-
P,N-ligated 1-PiPr2-2-NMe2-indene (1a[H]) or 2-NMe2-3-
PiPr2-indene (1b[H]), as well as structurally related zwitter-
ionic complexes that feature k2-P,N-ligated 2-NMe2-3-PiPr2-
indenide (1) in which the ten-p-electron indenide unit
functions as a sequestered anionic charge reservoir.[5] We
view these coordinatively unsaturated zwitterions as partic-
ularly attractive candidates for multiple C�H activation, since
the anionic backbone in 1 is poised to accept a proton from a
formally cationic metal center following an initial C�H bond
activation step, thereby re-establishing coordinative unsatu-
ration at the reactive metal center and enabling subsequent
C�H activation processes. As part of this study, we identified
the 16-electron cation [Cp*Ru(k2-P,N-1b[H])]+ and the
coordinatively unsaturated zwitterion [Cp*Ru(k2-P,N-1)] as
important targets (Cp* = h5-C5Me5); whereas 16-electron
complexes of the type [Cp*RuL2]

+X� (L = N- or P-donor
fragments) have proven to be effective in the activation of C�
H bonds, related P,N-ligated cations have yet to be iso-
lated.[6, 7] Herein, we report the preparation of a masked
source of [Cp*Ru(k2-P,N-1b[H])]+ that exhibits reversible C�
H activation. We also report the facile isomerization of the
putative zwitterion [Cp*Ru(k2-P,N-1)] to a [Cp*Ru(H)(k2-
P,C)] hydridocarbene complex in an apparent double-geminal
C�H bond activation process that is enabled by the proton-
accepting ability of the indenide unit in 1. Dynamic NMR
spectroscopic and reactivity studies involving this hydrido-
carbene species provide compelling evidence for what
appears to be the first documented interconversion of
Ru(H)=CH and Ru�CH2 fragments by reversible a-H
elimination.

The addition of 0.25 equivalents of [(Cp*RuCl)4] to 1a[H]
afforded 2a, which was isolated in 92 % yield (Scheme 1);[8]

treatment of 2a with NEt3 resulted in a clean isomerization to

2b. In the pursuit of the 16-electron cation [Cp*Ru(k2-P,N-
1b[H])]+ (3), complex 2b was treated with Li(Et2O)2.5B-
(C6F5)4. After 1.5 h, 31P NMR spectroscopic analysis of the
reaction mixture confirmed the consumption of 2b (d31P =

54.0 ppm) and the appearance of a single product (d31P =

82.3 ppm), which was isolated in 83% yield as a pale-yellow
solid. Elemental analysis data obtained from this solid were
found to be consistent with 3, but X-ray diffraction analysis
allowed for the identification of this complex as the isomeric
C�H activation product 4 (Figure 1),[8b,c] which exhibits

interatomic distances in keeping with an aza-ruthenacyclo-
propane ring.[9] Notably, the 1H and 13C NMR spectra of 4
(300 K) in solution are not consistent with the rigid structure
depicted in Figure 1.[8a] The effective mirror-plane symmetry,
as well as the low-frequency and broadened 1H NMR
resonance of NMe2 (d = 0.95 ppm, Dn1/2 = 20.3 Hz; cf. Dn1/2 =

4.5 Hz for C5Me5 in 4), suggest a reversible C�H oxidative
addition process involving the NMe2 unit of 4 in which the
metalated and free N-C-H fragments exchange rapidly on the
NMR timescale at 300 K.[10] On lowering the temperature
from 300 to 178 K, the 1H NMR spectra of 4 become
increasingly complex and downfield signals attributable to
non-metalated NMe groups emerge, thus suggesting a slowing
of the aforementioned exchange process. However, neither
low-frequency 1H NMR signals attributable to Ru�H or
agostic Ru-H-CH2 units, nor new 31P NMR resonances were
detected over this temperature range. The apparent reversi-
bility of the intramolecular C�H activation process leading to
4 suggests that this complex could serve as a masked source of

Scheme 1. Synthesis and reactivity of the masked [Cp*Ru(k2-P,N)]+

complex 4. Reagents: a) 0.25 [(Cp*RuCl)4] ; b) NEt3;
c) Li(Et2O)2.5B(C6F5)4; d) MeCN.

Figure 1. ORTEP diagrams for 4 and 8b shown with 50% displacement
ellipsoids; selected hydrogen atoms and the B(C6F5)4

� counteranion in
4 have been omitted for clarity. Selected bond lengths [�] and angles
[8]: 4 : Ru�P 2.3094(4), Ru�N 2.136(1), Ru�C27 2.071(2), P�C3
1.809(2), N�C2 1.441(2), N�C27 1.433(2), N�C28 1.484(2), C1�C2
1.503(2), C2�C3 1.336(2); P-Ru-N 82.26(4), Ru-P-C3 101.90(5), Ru-N-
C27 67.67(9), Ru-N-C2 116.6(1), Ru-C27-N 72.55(9); 8b : Ru�P
2.2374(7), Ru···N 3.05, Ru�C27 1.886(2), P�C3 1.812(2), N�C2
1.384(3), N�C27 1.374(3), N�C28 1.475(3), C1�C2 1.512(3), C2�C3
1.362(3); Ru-P-C3 112.74(9), C2-N-C27 123.5(2), C2-N-C28 117.1(2),
C27-N-C28 119.4(2), N-C2-C3 129.3(2), P-C3-C2 122.7(2),
Ru-C27-N 138.3(2).
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the coordinatively unsaturated target cation 3. Indeed, treat-
ment of 4 with CH3CN cleanly yields 3·CH3CN (5),[11a] and as
such we are currently assessing the intermolecular C�H bond
activating abilities of 4.

In an effort to prepare [Cp*Ru(k2-P,N-1)] (7), a zwitter-
ionic analogue of 3, compound 2b was treated with NaN-
(SiMe3)2 in toluene at ambient temperature (Scheme 2);

31P NMR spectroscopic analysis of the reaction mixture after
24 hours indicated the clean conversion into a single product
(d31P = 78.2 ppm), which was isolated as an orange powder in
84% yield. Elemental analysis data for this powder were in
keeping with 7, but further characterization revealed this
material to be the isomeric double-geminal C�H bond
activation product 8b. The identification of 8b as a hydrido-
carbene complex was based in part on the observation of
1H NMR signals at d = 12.1 and �12.4 ppm, as well as a
13C NMR resonance at d = 244.1 ppm; the structure of 8b was
subsequently confirmed by X-ray diffraction analysis (Fig-
ure 1).[8b,d] The contracted Ru�C27 (1.886(2) �) and N�C27
(1.374(3) �) distances in 8b are comparable to some other N-
stabilized Ru=C fragments.[12b–d] These interatomic distances,
the short N�C2 distance (1.384(3) �; cf. N�C28 1.475(3) �),
and the planarity of the nitrogen center are all indicative of
significant p-bonding interactions in 8b extending from the
Ru=C fragment through to the indene backbone.

In monitoring the progress of the reaction, the consump-
tion of 2b was confirmed after 20 minutes, with the 31P NMR
spectrum displaying new signals at d = 67.8 (possibly corre-
sponding to 7) and 112.6 ppm (8a ; ratio� 1:8). After 1 hour,
only the resonance at d = 112.6 ppm was detected, and the
features observed in the 1H NMR spectrum allowed for the
tentative assignment of 8a as the allylic isomer of 8b.[11b] Over
the ensuing 23 hours, 8a evolved into 8b in the absence of
detectable intermediates. These observations are consistent
with the mechanism outlined in Scheme 2,[11c] in which the
transiently formed zwitterion 7 undergoes an intramolecular
C�H activation process to yield a zwitterionic relative of 4.[11d]

Regioselective proton transfer from ruthenium to the inden-
ide ligand backbone regenerates a coordinatively unsaturated
alkylruthenium complex that undergoes a second C�H
activation step (a-H elimination) to yield 8a, which isomer-
izes to 8b.[13] The facile rearrangement of 7 to 8b is
remarkable, since double-geminal C�H bond activation to
give a Ru=C complex is rare and invariably requires extended
heating and loss of a small molecule to facilitate the
reaction.[12]

In exploring the reactivity of 8 b, we observed that
treatment with PHPh2 provided 9, a product that can be
viewed as an adduct of a 16-electron alkylruthenium species;
perhaps the most striking feature in the crystal structure of 9 is
the elongated Ru�CH2 distance (2.124(2) �) relative to the
Ru=C unit in 8b.[8b,e] The formation of 9 provided indirect
evidence of the dynamic interconversion of Ru(H)=CH and
Ru�CH2 fragments (as in 8b and 8c[11e]) by reversible a-H
elimination. In contrast to the well-established reversibility of
b-H eliminations, reversible a-H elimination is rare,[14] and to
the best of our knowledge the latter process involving
ruthenium has not been documented previously.

Data from 1D- and 2D-exchange spectroscopic (EXSY)
1H NMR experiments provide definitive spectroscopic evi-
dence for the operation of reversible a-H eliminations
involving 8b.[8a] In the case of 1H EXSY experiments,
irradiation of either the Ru(H)=CH or the Ru(H)=CH
signal in 8b results in significant positively-phased enhance-
ment of the other resonance, indicating that these two sites
are undergoing chemical exchange. Similarly, the 1H-
1H EXSY spectrum of 8b exhibits positively-phased off-
diagonal exchange cross-peaks that connect the two Ru(H)=
CH environments. The observation of reversible a-H elimi-
nation involving ruthenium is significant, as the interconver-
sion of Ru=C and Ru–alkyl species by this mechanism may
play a role in the transmutation of olefin metathesis and
hydrogenation catalysts in situ.[15]

In conclusion, we have prepared and isolated a masked
variant of the first coordinatively unsaturated [Cp*Ru(k2-
P,N)]+ complex, which has proven to be capable of single C�H
bond activation. By comparison, the putative zwitterion 7
exhibits much more aggressive reactivity with C�H bonds to
yield a hydridocarbene by way of a remarkably facile double
C�H activation process that is enabled by the proton-
accepting ability of the ancillary ligand 1; moreover, an
NMR investigation of this hydridocarbene has revealed a
reversible a-H elimination process previously undocumented
for ruthenium. We are currently developing more cyclo-
metalation-resistant analogues of 7, with the aim of exploiting
the proton-accepting function of 1 in the establishment of new
and synthetically useful intermolecular multiple C�H bond
activation processes.
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Scheme 2. Synthesis and reactivity of the hydridocarbene complex 8b.
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