Note

Synthesis of some disaccharide derivatives containing a β -L-rhamnopyranosidic bond

VINAI K. SRIVASTAVA AND CONRAD SCHUERCH

Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, N.Y. 13210 (U.S.A.)

(Received March 2nd, 1981; accepted for publication, June 17th, 1981)

We have reported^{1,2} a practical, stereoselective synthesis of β -D-mannopyranosides and β -L-rhamnopyranosides. The β -stereoselectivity of these glycosidations is the result¹ of the interaction of opposing dipoles of a strongly electronegative, nonparticipating substituent on C-2, and a highly reactive, electronegative leaving-group on C-1. A systematic study of the synthesis of oligosaccharides containing β -Lrhamnosyl residues is needed because this structural unit occurs in bacterial antigens^{3,4}. Recently, Kochetkov and his co-workers⁵ and Iversen and Bundle⁶ reported syntheses of β -L-rhamnopyranosides that involve approaches that have been used previously for the preparation of β -D-mannopyranosides⁷⁻¹⁰. We now report on the synthesis of β -L-rhamnopyranosidic disaccharides by our alternative method^{1,2}.

3,4-Di-O-benzyl-2-O-methylsulfonyl- α -L-rhamnopyranosyl chloride (1) and the corresponding 1-O-(2,2,2-trifluoroethylsulfonyl) (tresyl) derivative 2 were prepared as described earlier^{1,2}. The reaction of methyl 2,3,4-tri-O-benzyl- α -D-mannopyranoside (8) with 2 in acetonitrile for 48 h gave a mixture of two anomers having

0008-6215/82/0000-0000/\$ 02.75, © 1982 --- Elsevier Scientific Publishing Company

1	
ED.	
3	
8	
2	
2	
<u>-</u>	

SOME PHYSICAL PROPERTIES OF THE DISACCHARIDES

	За	Эß	4α	4 <i>β</i>	Sa	5ß	6ß	7/3	16α	16 <i>β</i>
[a] ²²⁻²⁶ (degrees)	-3.5	45	+29	-† 67	m 1	+33	-+ 46	+91	-+27.5	- 18
(concentration) ^d	2.0	1,6	0.4	0.5	0.4	0.62	1.1	1.05	0.75	0.4
Mol. formula	C40H50012S		C40H66012S		C40Htr6O12S		CatHagOlbS	Ch1H54013S	C60H62O13S	
Allal. Calc: Chip	:00:0 :27.70		3.69		3.69		04.07; 0.00; 3.39	0/.38; 0.21; 3.53	08.97; 0.41; 3.29	
Found: C,H,S	i	67.64; 5.90;	ł	67.23; 5.97;	67.26; 6.18;		64.31; 6.30;	67.40; 6.17;	68.52; 5.99;	I
		3.69		3.37	3.74		3.08	4.0 214	3.54	
Yield (%)	S	11	ć	06,	5		~ 85"	> 84ª	90	
Anomeric ratio (α : β , %)	27	:73	91	; 84	67:33		p	q	75:25	
¹ H-N.m.r. data										
H-1 (0)	4.87	4.86	U	U	4.80	4.80	4.83	5.26	U	u
J _{1,2} (Hz)	0,6	0.5			1.8	1.80	1.4	2.0		
H-1' (ð)	4.91	4.53	5,16	4.55	5.01	4.46	4.26	4.76	v	4.61
J _{1',2'} (Hz)	1,4	I	2.2	ł	4.2	ſ	I	í		
OMc (ð)	3.32	3.30	3,38	3.38	3.37	3,35	ł	ſ	3.27	3.25
OMs (ð)	3.01	2.95	3.10	2.92	2.98	3,01	2.70	2.77	2.92	3.05
⁴ In chloroform, ^b Of pure c amount, ^e Contains some α	compound. ^c Pro anomer.	tons indisting	uishable (mae	sked by signals	for benzyl m	thylen	es). ^d The a ai	nomer was pre	csent in a very	small

TABLE II

	3a	зβ	4œ	4β	5 a	5β	6 β	7β	16 x	16β
C-1	98.17	98.46	100.37	100.38	98.50	99.16	97.61	96.01	99.85	99.80
C-1′	99.10	99.93	99.10	99.65	97.05	100.55	99.89	100.42	99.85	100.10
C-5	c	c	c	c	c	c	68.60	c	71.11)	^a 71.06
C-5′	68.25	71.72	68.78	72.05	69.44	71.40	72.53	72.82	71.88	76.21
C-6	67.04	67.89	68.78	69.40	68.51	69.03	17.59)	^d 68.72	69.48	^d 69.72) ^d
C-6'	17.82	17.95	17.93	18.06	17.81	17.82	17.75	18.00	69.30	69.40
OMe	54.90	54.97	55.06	55.14	54.94	54.77	'		54.82	55.02
OMs	38.86	39.53	38.85	39.25	38.58	39.53	38.37	38.21	38.76	39.19

¹³C-N.M.R. SHIFTS (PROTON-DECOUPLED, P.P.M., IN CDCl₃)^{*a*, ^b}

^aThese assignments are tentative, based on analogies. ${}^{b}C-2,3,4,2',3',4'$ and benzyl CH₂ resonances could not be identified, but the total number of carbons was accounted for. Indistinguishable from remaining carbons. ^dAssignment may be reversed.

an $\alpha\beta$ -ratio of 27:73, as determined by the ratio of mesyl peak-areas in the ¹H-n.m.r. spectra. The anomers were isolated by chromatography on silica gel, to afford 2,3,4-tri-O-benzyl-6-O-(3,4-di-O-benzyl-2-O-methylsulfonyl- α - and $-\beta$ -L-rhamnopyranosyl)- α -D-mannopyranosides (3 β and 3 α). Optical rotation, ¹H-n.m.r. (Table I), and ¹³C-n.m.r. data (Table II) confirmed the anomeric configurations.

Reactions of this type were carried out to synthesize disaccharides containing β -L-rhamnopyranosidic bonds linked at secondary positions (O-2, O-3, and O-4) of aglycons. Thus, the reaction of methyl 3,4,6-tri-O-benzyl- α -D-glucopyranoside (9) with 2 afforded methyl 3,4,6-tri-O-benzyl-2-O-(3,4-di-O-benzyl-2-O-methylsulfonyl- β -L-rhamnopyranosyl)- α -D-glucopyr moside (4 β) along with its α anomer 4 α in the ratio 84:16. The β -anomeric assignment to 4 β was made on the basis of optical rotation (+66.6°), ¹H-n.m.r. (Table I), and ¹³C-n.m.r. data (Table II). Similarly, the reaction of 2 with aglycon 12 [8-(methoxycarbonyl)octyl 2,4-di-O-benzoyl- α -L-rhamnopyranoside¹¹] afforded mainly 8-(methoxycarbonyl)octyl 2,4-di-O-benzoyl-3-O-(3,4-di-O-benzyl-2-O-methylsulfonyl- β -L-rhamnopyranosyl)- α -L-rhamnopyranosyl- α -L-rhamnopyranosy

In an attempt to see whether reaction with an axial HO-2 would also be stereoselective, allyl 3,4,6-tri-O-benzyl- β -D-mannopyranoside¹² (10) was treated with 2, but no reaction occurred. This failure may be due to strong, steric shielding of HO-2 by the β -allyl group at C-1. To avoid the problem of the β configuration, methyl 3,4,6-tri-O-benzyl- α -D-mannopyranoside (11) was treated with 2 for 48 h. In this case, the major product was the α anomer 5α , with methyl 3,4,6-tri-O-benzyl-2-O-(3,4-di-O-benzyl-2-O-methylsulfonyl- β -L-rhamnopyranosyl)- α -D-mannopyranoside (5 β) obtained in lesser amount ($\alpha\beta$ -ratio 2:1). Dichloromethane or tetrahydrofuran gave no better stereoselectively than acetonitrile when used as reaction solvent. The use of a more reactive leaving-group, trifluoromethanesulfonate, gave other side-products and the stereoselectivity was not as good as with the tresyl derivative 2.

In order to alter any specific steric or dipole interactions that might be hindering β -glycosidation, the reaction was performed on the same "aglycon" (10) with the corresponding derivative of D-mannose, namely, 3,4,6-tri-O-benzyl-2-O-methyl-sulfonyl-1-O-tresyl- α -D-mannopyranose^{1,2} (15). In this case, an S_N2-like transition state leading to a β linkage would be essentially diasteromeric with that involved in the β -glycosidation of the L-rhamnose derivative 2. Nevertheless, in this case also, an α -linked disaccharide 16 α was the main product, and methyl 3,4,6-tri-O-benzyl-2-O-(3,4,6-tri-O-benzyl-2-O-methylsulfonyl- β -D-mannopyranosyl)- α -D-mannopyranoside (16 β) was minor (α , β -ratio 3:1). The similarity of this result to that of the preceding reaction of 2 suggests that these reactions probably pass through an essentially planar, cationic intermediate and the higher preference for α -stereo-selectivity is thermodynamic and due to the favorable relationship between the dipoles of the C-1-O and C-2-O bonds¹³.

In contrast, the reaction of 2 with the unreactive, axial HO-4 of allyl 2-Obenzoyl-3,6-di-O-benzyl- α -D-galactopyranoside¹⁴ (13) afforded mainly allyl 2-Obenzoyl-3,4-di-O-benzyl-4-O-(3,4-di-O-benzyl-2-O-methylsulfonyl- β -L-rhamnopyranosyl)- α -D-galactopyranoside (7) in ~84% yield. The α anomer was present in very small amount and could not be obtained pure. It is surprising that the pathway to the formation of an axial 2-O- β -glycosyl linkage is apparently more hindered than that leading to an axial 4-O- β -coupling.

Determination of the anomeric configuration

The anomeric configuration of the disaccharides 3β , 4β , 5β , and 16β was

established by comparison of the specific rotations with those of their α anomers. Disaccharides 6 and 7 had high, positive values, as expected for β -L compounds, but the configuration could not be confirmed by direct comparison, since the α anomers of these disaccharides were not available.

In the ¹H-n.m.r. spectra, coupling constants could not be used for determination of anomeric configuration in the present series, as $J_{1,2}$ values for α - and β -Lrhamnopyranosides and α - and β -D-mannopyranosides correspond to a gauche $(\varphi_{1,2} \sim 60^{\circ})$ relationship (eq-eq and ax-eq). Chemical shifts of β -anomeric protons are usually to higher field than those of corresponding α -anomeric protons. This relationship is observed in the current series (α at δ 5.16–4.80; β at δ 4.26–4.76), and the H-1' chemical shifts for **6** and **7** lie in the appropriate range for β linkages.

In the ¹³C-n.m.r. spectra of β -linked L-rhamnopyranosyl and D-mannopyranosyl disaccharides, the difference between chemical shifts for C-1 in the α - and β -series is too small to use in establishing anomeric configuration. Generally, a β -anomeric C-1' resonates downfield of an α -anomeric C-1', as is observed in the current series. However, a reversal of this order may occur^{15,16} with some aglycons, and therefore, configuration cannot be assigned completely on this basis of chemical shifts. Nevertheless, they can support an assignment based on other evidence. The chemical shifts of C-5 in unsubstituted β -D-mannopyranosides and β -L-rhamnopyranosides are at substantially lower field^{16,17} (~4.0 p.p.m.) than for the corresponding α anomers. This difference is seen in the present series (and has been observed by other workers^{6,15}). For each pair of anomers shown in Table II, a downfield shift ($\sim 2-3$ p.p.m. for β -L-rhamnopyranosides and 4.33 p.p.m. for β -D-mannopyranoside) for C-5' is found in the case of the β anomer compared to the α anomer. Chemical shifts for C-5' can therefore be used to establish the anomeric configuration in the L-rhamnose and D-mannose series. The chemical shifts of the C-5' signals for disaccharides 6 and 7are at 72.53 and 72.82 p.p.m., in close agreement with those observed for other β anomers in the present series. Other differences in the 13 C-n.m.r. spectra which reflect differences in the anomeric configuration are the chemical shift of the 2-O-mesyl group. Usually, the signal for the mesyl group of the β anomer is downfield to that of the α anomer. The configuration at C-1' in all products reported can therefore be considered established by the weight of the cumulative evidence cited.

EXPERIMENTAL

General. — ¹H-N.m.r. spectra were recorded with a Varian A-60-A or XL-100-15 spectrometer for solutions in chloroform with tetramethylsilane as the internal reference. ¹³C-N.m.r. spectra were recorded with a Varian XL-100-15 spectrometer in the pulsed Fourier-transform/proton noise-decoupled mode on similar solutions. The spectra are reported with chemical shifts downfield from Me₄Si. Optical rotations were determined with a Perkin–Elmer 141 polarimeter in jacketed 1-dm cells. T.l.c. was performed on "Baker-Flex" silica gel 1B-F (2.5 × 7.5 cm) plates. High-pressure liquid chromatography (h.p.l.c.) was performed with a Valvco septumless injector (1.0 ml), a Glenco pump (model HPLPS-1), and a Waters differential refractometer R-401. A stainless-steel column (25×1 cm inside diameter) containing silica gel (Whatman, Partisil M 9 10/25) was used at a flow rate of 8.0 ml/min.

Spectrograde acetonitrile was dried with CaH₂. Silver 2,2,2-trifluoroethanesulfonate was prepared as described earlier¹⁸. 3,4-Di-O-benzyl-3-O-methylsulfonyl- α -D-mannopyranosyl chloride (1) and 3,4,6-tri-O-benzyl-2-O-methylsulfonyl- α -D-mannopyranosyl chloride (14) were prepared as described in earlier papers^{1,2}. Methyl 2,3,4-tri-O-benzyl- α -D-mannopyranoside¹⁹ (8), methyl 3,4,6-tri-O-benzyl- α -D-glucopyranoside¹² (9), allyl 3,4,6-tri-O-benzyl- β -D-mannopyranoside¹² (10), methyl 3,4,6-tri-O-benzyl- α -D-mannopyranoside¹⁸ (11), and 8-(methoxycarbonyl)-octyl 2,4-di-O-benzoyl- α -L-rhamnopyranoside¹¹ (12) were prepared by literature procedures. Aglycon 13 was prepared by Mr. H. A. El Shenawy¹⁴ of this laboratory.

General method of glycosidation. — α -L-Rhamnopyranosyl chloride (1) or α -D-mannopyranosyl chloride (14) was treated with 1.5 equiv. of silver 2,2,2-trifluoroethanesulfonate or trifluoromethanesulfonate in acetonitrile to form the sulfonate, as described earlier^{1,2}. The glycosyl sulfonate solution in acetonitrile or other solvent (dichloromethane or tetrahydrofuran) was allowed to react with 1 equiv. of aglycon for 40–48 h at room temperature. All operations were performed on a high-vacuum rack. The mixtures were isolated, and the crude product was analyzed by ¹H-n.m.r. spectroscopy and h.p.l.c. The anomeric mixture was fractionated by chromatography on silica gel with ethyl acetate-hexane (1:4 or 1:3).

ACKNOWLEDGMENTS

This research was supported by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Public Health Service (R01 AI-12509). We thank Dr. D. R. Bundle for kindly supplying a sample of aglycon 12, and Mr. H. A. El Shenawy for the synthesis of aglycon 13.

REFERENCES

- 1 V. K. SRIVASTAVA AND C. SCHUERCH, Carbohydr. Res., 79 (1980) c13-c16.
- 2 V. K. SRIVASTAVA AND C. SCHUERCH, J. Org. Chem., 46 (1981) 1121-1126.
- 3 K. JANN AND O. WESTPHAL, in M. SELA (Ed.), *The Antigens*, Vol. 3, Academic Press, New York, 1975, pp. 1-125.
- 4 O. LÜDERITZ, O. WESTPHAL, A. M. STAUB, AND H. NIKAIDO, in G. WEINBAUM, S. KADIS, AND S. J. AJL (Eds.), *Microbial Toxins*, Vol. 4, Academic Press, New York, 1971, pp. 145–233.
- 5 L. V. BACKINOWSKY, N. F. BALAN, A. S. SHASHKOV, AND N. K. KOCHETKOV, Carbohydr. Res., 84 (1980) 225-235.
- 6 T. IVERSEN AND D. R. BUNDLE, Carbohydr. Res., 84 (1980) c13-c15.
- 7 P. A. J. GORIN AND A. S. PERLIN, Can. J. Chem., 39 (1961) 2474-2485.
- 8 A. S. PERLIN, Pure Appl. Chem., 50 (1978) 1401-1408.
- 9 P. J. GAREGG AND T. IVERSEN, Carbohydr. Res., 70 (1979) c13-c14.
- 10 P. J. GAREGG, T. IVERSEN, AND R. JOHANSSON, Acta Chem. Scand., Ser. B, 34 (1980) 505-508.
- 11 S. JOSEPHSON AND D. R. BUNDLE, J. Chem. Soc., Perkin Trans. 1, (1980) 297-301.
- 12 V. K. SRIVASTAVA AND C. SCHUERCH, Tetrahedron Lett., (1979) 3269-3277.

- 13 R. J. FERRIER AND P. M. COLLINS, Monosaccharide Chemistry, Penguin Books, Baltimore, MD, 1972, p. 48.
- 14 H. A. EL-SHENAWY AND C. SCHUERCH, unpublished results.
- 15 E. S. H. EL ASHRY AND C. SCHUERCH, unpublished results.
- 16 R. KASAI, M. OKIHARA, J. ASAKAWA, K. MIZUTANI, AND G. TANAKA, Tetrahedron, 35 (1979) 1427-1432.
- 17 J. B. STOTHERS, Org. Chem. Ser. Monogr., 24 (1972) 270.
- 18 E. S. RACHAMAN, R. EBY, AND C. SCHUERCH, Carbohydr. Res., 67 (1978) 147-161.
- 19 S. J. SONDHEIMER, R. EBY, AND C. SCHUERCH, Carbohydr. Res., 60 (1978) 187-192.