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Synthesis of Fluorinated Heteroaromatics through Formal
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Free Conditions
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Abstract: An efficient and transition-metal-free approach
was developed to access a series of fluorinated heteroaro-
matics in moderate to excellent yields. This one-pot proce-
dure features a triple-relay transformation of rapid dearo-
matization, fluorination, and rearomatization processes,
which represents a conceptually novel strategy of combin-
ing partial hydrogenation and electrophilic fluorination.

Fluorinated molecules are of remarkable significance in phar-
maceuticals, agrochemicals, tracers for positron emission to-
mography and new materials due to their improved properties
of lipophilicity, bioavailability, metabolic stability, etc.[1] To date,
great achievements have been made in the construction of
carbon–fluorine bonds, while the fluorination of aromatic com-
pounds is still challenging.[2] Fluorination of medicinally rele-
vant heteroaromatics, for example, mainly relies on classic fluo-
rination methods,[3] such as the Halex (halogen exchange) pro-
cess, the Balz–Schiemann reaction, and recently emerged tran-
sition-metal-mediated fluorination reactions.[2b, c, 4–6] Transition
metal-catalyzed fluorinations using palladium or silver have
been proven to be highly efficient and encompass a broad
substrate scope compared to traditional reactions; however, di-
recting groups and high catalyst loading are unavoidable.
Therefore, new and efficient fluorination methodologies are
highly desirable in response to the ever-growing need of fluo-
rinated aromatics in organic fluorine chemistry. Herein, we
present a conceptually novel and transition-metal-free route to
fluorinated heteroaromatics (Scheme 1).

In organic synthesis, the nitro group is viewed as a syntheti-
cally important functional group owing to its easy availability
and transformation into a variety of diverse functionalities.[7, 8]

Very recently, as part of our ongoing efforts to promote the
development of asymmetric hydrogenations of heteroaromatic

compounds,[9, 10] 3-nitroquinolines have been studied
(Scheme 2 a).[11] Due to the high electron-withdrawing and con-
jugative effect of the nitro group, the 1,4-reduction intermedi-
ate 3 was relatively stable in the asymmetric transfer hydroge-
nation (ATH) process ; thus, it was isolated and used in further
transformations to give more insights on the mechanism. The
key-intermediate enamine 3[12] also inspired us to investigate
the possibility of combining the partial reduction process with
other transformations. We envisioned that electrophilic fluorine
could be introduced into the C3-position of 3 to yield the fluo-
rinated intermediate 4, and, driven by the strong force of rear-
omatization, nitrous acid would then subsequently be eliminat-
ed to yield the desired 3-fluoroquinoline (Scheme 2 b). To ach-
ieve this sequential transformation, the reactivity of the enam-

Scheme 1. Different approaches to fluorinated heteroaromatics.

Scheme 2. a) ATH process of 3-nitroquinolines with Hantzsch ester. b) Syn-
thesis of 3-fluoroquinolines through the partial reduction, fluorination, and
elimination of nitrous acid.
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ine intermediate 3 with an electrophilic fluorine reagent and
the selectivity of the elimination of nitrous acid or hydrogen
fluoride are key considerations.

Following above hypothesis, the important step is how to
trap the 1,4-reduction intermediate 3 by electrophilic fluorina-
tion. An original survey on common fluorine sources showed
that both Selectfluor and N-fluorobenzenesulfonimide (NFSI)
performed well in trapping the in situ generated 3-nitro-2-
phenyl-1,4-dihydroquinoline (3 a) in CH3CN. In addition, the
electrophilic attack by Selectfluor quantitatively converted 3 a
to 3-fluoro-3-nitro-2-phenyl-3,4-dihydro-quinoline (4 a) within
5 min.[13] With isolated 4 a in hand, further research focused on
screening the conditions for the selective elimination of nitrous
acid.[14] Preliminary trials revealed that a base could accelerate
the eliminative rearomatization of 4 a, while acids, oxidants, or
heating could not (Table 1, entries 1–3); a promising result (full
conversion, 86 % selectivity to 2 a) was obtained in the pres-
ence of Et3N (Table 1, entry 4). Further evaluation of different
bases illustrated that complete rearomatization could be ach-
ieved by a series of common bases, with inorganic bases per-
forming better than organic bases in terms of selectivity and
yield, and the best result was obtained with KOtBu (Table 1,
entries 6–9,). Notably, no deterioration of conversion or selec-
tivity was observed when half amount of the base was used
(Table 1, entry 10). With KOtBu (2.0 equiv) as the optimized
base, increasing or lowering the temperature only had a mar-
ginal influence on the selectivity and conversion (Table 1, en-
tries 11–12).

After screening bases for the selective elimination, a >99:1
ratio of 2 a/1 a was achieved (entry 10, Table 1). Therefore, we
envisaged a one-pot transformation of 3-nitroquinolines to 3-
fluoroquinolines. With diethyl-2,6-dimethyl-1,4-dihydropyridine-
3,5-dicarboxylate (HEH) as the hydrogen source for the initial
partial reduction process and Selectfluor as the fluorinating re-

agent, a sequential transformation of 1 a to 2 a was conducted,
as depicted in Table 2. A high conversion of 96 % was obtained
in CH3CN, but other solvents diminished the first 1,4-reduction
step and reduced the fluorination and elimination rate drasti-
cally (Table 2, entries 1–5). Strong acids such as l-CSA or p-
TsOH·H2O could replace 1,1’-binaphthyl-2,2’-diylhydrogenphos-
phate (BPA) perfectly (Table 2, entries 8–9), while weaker acids
such as o-nitrobenzoic acid or acetic acid failed (Table 2, en-
tries 6–7). Therefore, p-TsOH·H2O was chosen as the alternative
hydrogenation catalyst in consideration of its cost and availa-
bility. The optimized conditions for this mild and metal-free flu-
orination reaction were finally established as: HEH (1.1 equiv),
p-TsOH·H2O (5 mol %); Selectfluor (1.3 equiv) ; KOtBu (2.0 equiv),
CH3CN.

With this newly developed triple-relay transformation strat-
egy in hand, we next set out to demonstrate the generality
and practicality in detail with various 3-nitroquinolines, and
the results are summarized in Table 3. The reaction could be
carried out with a series of substituted 3-nitroquinolines, af-
fording the corresponding products in moderate to good
yields. Both electron-donating and electron-withdrawing
groups at the C2-position were tolerated under the reaction
conditions and there was also no significant influence of the
position of the 2-aryl substituents. Besides, the yield decreases
with aryl>alkenyl�alkynyl>alkyl substituents at the C2-posi-
tion. Notably, in terms of reactivity, the dearomatization pro-

Table 1. Screening of conditions for the selective elimination of nitrous
acid.[a]

Entry Conditions Conversion [%][b] Ratio of 2 a/1 a[b]

1 Heat (50 8C) <5 –
2 DDQ (1.1 equiv) <5 –
3 p-TsOH·H2O (1.1 equiv) <5 –
4 Et3N (4.0 equiv) >95 86:14
5 DABCO (4.0 equiv) >95 82:18
6 Na2CO3 (2.0 equiv) >95 93:7
7 K2CO3 (2.0 equiv) >95 93:7
8 Cs2CO3 (2.0 equiv) >95 93:7
9 KOtBu (4.0 equiv) >95 >99:1

10 KOtBu (2.0 equiv) >95 >99:1
11[c] KOtBu (2.0 equiv) >95 99:1
12[d] KOtBu (2.0 equiv) >95 >99:1

[a] Reaction condition: 4 a (0.20 mmol), CH3CN (3.0 mL), RT, 12 h. [b] De-
termined by 1H NMR spectroscopy. [c] At 0 8C. [d] At 50 8C. DDQ = 2,3-di-
chloro-5,6-dicyano-p-benzoquinone; DABCO = 1,4-diazabicyclo[2.2.2]
octane.

Table 2. Optimization of reaction parameters for the one-pot transforma-
tion.[a]

Entry Solvents Acid Conversion [%][b]

1 CH3CN BPA 96
2 THF BPA 76
3 1,4-dioxane BPA 57
4 toluene BPA 58
5 Et2O BPA 44
6 CH3CN AcOH <5
7 CH3CN o-nitrobenzoic acid <5
8 CH3CN l-CSA 94
9 CH3CN p-TsOH·H2O 97

[a] Reaction conditions: 1 a (0.20 mmol), HEH (1.1 equiv), and acid
(5 mol %) in solvent (3.0 mL) were stirred for 10 h at RT; then Selectfluor
(1.3 equiv) was added and after about 20 h KOtBu (2.0 equiv) was added
and the mixture was stirred for 5.5 h. [b] Determined by 1H NMR spectros-
copy. l-CSA = (L)-camphorsulfonic acid; p-TsOH·H2O = p-toluenesulfonic
acid monohydrate; BPA = 1,1’-binaph-thyl-2,2’-diyl hydrogenphosphate.
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cess of alkyl-, alkynyl-, and alkenyl-substituted substrates was
faster than that of aryl-substituted ones, while in turn the fluo-
rination and rearomatization process of the former substrates
was slower than that of the latter ones.

In conclusion, we have developed an efficient and transi-
tion-metal-free procedure to synthesize a series of fluorinated
heteroaromatics in moderate to excellent yields through
formal substitution of a nitro group by fluorine. This one-pot
procedure features a triple-relay transformation of rapid dearo-
matization, electrophilic fluorination, and eliminative rearoma-
tization processes. This novel fluorination method also allows
for the possibility of late-stage fluorination.[6e, 6 h, 6k] Further in-
vestigations on new types of combinations of partial reduc-
tions and other reactions are underway in our laboratory.

Experimental Section

Typical procedure for the one-pot transformation

A solution of 2-phenyl-3-nitroquinoline (1 a, 50 mg, 0.20 mmol),
HEH (1.1 equiv), and p-TsOH·H2O (5 mol %) in CH3CN (3.0 mL) was
stirred at RT for 2 h. A yellow solid formed gradually; then Select-
fluor (1.3 equiv) was added and after about 5 min KOtBu
(2.0 equiv) was added and the mixture was stirred until the reac-
tion was complete. All volatiles were removed under reduced pres-
sure. Purification was performed on a silica gel column eluted with
hexane/EtOAc (80:1–50:1) to give the desired product 2 a (42 mg,
0.19 mmol, 94 % yield) as a white solid. M.p. = 36–38 8C; 1H NMR
(400 MHz, CDCl3): d= 8.16 (d, J = 8.5 Hz, 1 H), 8.07 (d, J = 7.3 Hz,
2 H), 7.87–7.61 (m, 3 H), 7.56–7.44 ppm (m, 4 H); 13C NMR (100 MHz,
CDCl3): d= 155.2 (d, 1JFC = 261.0 Hz), 149.2 (d, 2JFC = 14.5 Hz), 145.4
(d, 5JFC = 2.9 Hz), 135.9 (d, 4JFC = 5.2 Hz), 129.7 (s), 129.5 (d, 3JFC =

5.3 Hz), 128.9 (d, 5JFC = 2.4 Hz), 128.7 (s), 128.4 (d, 3JFC = 5.4 Hz),
127.4 (s), 126.9 (d, 4JFC = 4.8 Hz), 119.8 ppm (d, 2JFC = 19.4 Hz);
19F NMR (376 MHz, CDCl3): d=�124.2 ppm (s); HRMS (ESI): m/z
calcd for C15H10FN: 224.0877 [M+H]+ ; found: 224.0870 (see the
Supporting Information for spectroscopic data).
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Synthesis of Fluorinated
Heteroaromatics through Formal
Substitution of a Nitro Group by
Fluorine under Transition-Metal-Free
Conditions

An efficient and transition-metal-free
approach was developed to access
a series of fluorinated heteroaromatics
in moderate to excellent yields through
formal substitution of a nitro group by
fluorine (see scheme). This one-pot pro-

cedure features a triple-relay transfor-
mation of rapid dearomatization, fluori-
nation, and rearomatization processes,
which represents a conceptually novel
strategy of combining partial hydroge-
nation and electrophilic fluorination.
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