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Abstract: A stereocontrolled synthesis of hyaluronan tetrasaccharide is described for the first 
time. 

Hyaluronan is one of the major components of extracellular matrixes in which embryonic 

development and other significant cellular events are carried out2. Interaction of hyaluronan 

with cell surface is mediated by hyaluronan receptor glycoproteins and manifests crucial roles3 

of hyaluronan in various biological processes such as modulation of tissue morphogenesis and 

cellular proliferation. It is interesting to note that in cartilage differentiation exogenous 

addition of hyaluronan hexasaccharide disturbs the interaction between hyaluronan and cell 

surface and eventually normal differentiation of mesodermal cells into chondrocytes is blocked4. 

In order to provide tailor-made hyaluronan oligosaccharides as molecular probes for cell 

biological studies, we started a project on their synthesis. We describe here an efficient 

approach to the synthesis of hyaluronan tetrasaccharide derivative 1. The target 

tetrasaccharide 1 was designed to carry 4-methoxyphenyl group at O-11 (O-l of a sugar residue 1) 

as the handle for further manipulation of the glycan chain at the reducing end. Because of the 

low reactivity of hydroxyl group at C-4 of uranic acid5, we chose to oxidize two primary hydroxyl 

groups near to the last step of synthesis and designed a key intermediate 2 which may in turn be 
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bond-disconnected into two glycosyl donors 3 and 4, and a glycosyl acceptor 5. The compound 5 

may in turn be prepared by coupling of a glycosyl donor 6 with a glycosyl acceptor 7. 

The necessary monosaccharide building units 3. 4, 6, and 7 were synthesized in a 

straightforward manner. Compound 86 was readily obtainable from penta-O-acetyl-P-D- 

glucopyranose in 3 steps (I MeOPhOH, TMSOTf in (ClCH2)2 4Sh at 0°, 2 NaOMe in MeOH, 3 

PhCH(OMe)2, TsOH in DMF 16h at 25“. 84% overall). Conversion of 8 into a glucosyl donor 3 was 

carried out in 6 steps via 96’ and lo6 (I MBzCl, DMAP in Py. 2 4:l AcOH-H20, 80°, 3 LevOH, 2-chloro 

l-methylpyridinium iodide (CMPI)‘I, DABCO in (ClCH2)2.4 MB&l, DMAP in Py, 5 CAN8 in 1:1:1 

toluene-MeCN-H20, 6 C13CCNg, DBU in CH2Cl2; 59% overall). Another glucosyl donor 6 could be 

prepared from 9 via II6 and 126 in 3 steps (I AllOCOCl 10 in 1:l CH2Cl2-Py, -35’. 2 CAN in 3:4:3 

toluene-MeCN-H20, 3 Cl3CCN. DBU in CH2Cl2, 51% overall). Next compound 1311 was transformed 

into a GlcNAc donor 4 via 76 and 146 in 4 steps (I Me2C(OMe)2, TsOH in DMF, 2 AllOCOCl in I:1 

CH2Cl2Py, -35O, 3 CAN in 1:1:1.4 toluene-H20-MeCN, 4 Cl3CCN. DBU in CH2Cl2, 58% overall). 
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Scheme 2 

Having prepared monosaccharide building units, carbohydrate chain elongation was now 

examined as follows. Stereocontrolled glycosylation of 7 with 1.3 equivalents of 6 in CH2Cl2 in 

the presence of TMSOTf and powdered molecular sieves AW-300 (MSAW-300) at 0” afforded an 

87% of 156 which was converted into a glycosyl acceptor 56 via 166 in 3 steps (I TFA in CH2Cl2, 2 

Ac20, DMAP in Py, 3 (Ph3P)4Pd12, morpholine in THF reflux, 82% overall). Glycosylation of 5 

with a GlcNAc donor 4 (2.5 equivalents) in the presence of BF3*0Et2 and MSAW-300 in CH2Cl2 at 

20’ gave exclusively an 88% of 176, which was again treated with (Ph3P)qPd and morpholine in 

THF to afford a 95% of glycotriosyl acceptor 186. TMSOTf-MSAW-300 promoted glycosylation of 

18 with a Glc donor 3 (5.0 equivalents) in CH2Cl2 at 0’ gave an 87% of tetrasaccharide I96 which 

was further converted into 206 equivalent to a designed key intermediate 2 in 3 steps (1 6:l TFA- 

Hz0 in CH2Cl2,2 AczO-DMAP in Py, 3 NH2NHz*AcOH in 2:l EtOH-toluenelf, 62% overall). Crucial 

oxidation of 20 into 216 was successfully achieved in 2 steps (I DMSO, (COCl)2, iPr2NEt, -78”, 2 
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NaCI02 ,  NaH2PO4 in 3:2:1 t B u O H - H 2 0 - 2 - m e t h y l b u t e n e  14, 86% overall). Finally deprotection of 21 

into 16 was carded out in 2 steps (1 MeNH215 in MeOH, 2 Ac20 in MeOH, 82% overall). 
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In summary, a stereocontrolled approach to the synthesis of hyaluronan tetrasaccharide 1 

was achieved in a highly efficient manner by employing four monosaccharide building units 3, 

4 , 6 ,  a n d 7 .  
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