

Supporting Information for DOI: 10.1055/s-0030-1261161 © Georg Thieme Verlag KG Stuttgart • New York 2011

SUPPORTING INFORMATION

Heck reaction on Morita-Baylis-Hillman adduct: diastereoselective synthesis of pyrrolizidinones and pyrrolizidines

Kristerson R. de Luna Freire, Cláudio F. Tormena and Fernando Coelho* Universidade Campinas – UNICAMP - Instituto de Química – 13083-970 – Caixa Postal 6154 – Campinas, SP – Brazil; E-mail: coelho@iqm.unicamp.br

Experimental procedure		Page
(2R,4R)-tert-Butyl 2-formyl-4-hydroxypyrrolidir	ne-1-carboxylate (7)	S4
(2 <i>R</i> ,4 <i>R</i>)- <i>tert</i> -Butyl	4-hydroxy-2-((S)-1-hydroxy-2-	S4-S5
(methoxycarbonyl)allyl)pyrrolidine-1-carboxylat	te (8)	
(1 <i>S</i> ,6 <i>R</i> ,7a <i>R</i>)-1,6-dihydroxy-2-methylenetetrahyd	ro-1 <i>H</i> -pyrrolizin-3(2 <i>H</i>)-one (11)	S5-S6
(2 <i>S</i> ,4 <i>R</i>)-tert-butyl 2-formyl-4-hydroxypyrroliding	e-1-carboxylate (9)	S 6
(2 <i>S</i> ,4 <i>R</i>)- <i>tert</i> -butyl	4-hydroxy-2-((R)-1-hydroxy-2-	S6-S7
(methoxycarbonyl)allyl)pyrrolidine-1-carboxylat	te (10)	
(1R,6R,7aS)-1,6-dihydroxy-2-methylenetetrahyd	ro-1 <i>H</i> -pyrrolizin-3(2 <i>H</i>)-one (12)	S 7
(1S,6R,7aR,E)-2-benzylidene-1,6-dihydroxytetra	hydro-1 <i>H</i> -pyrrolizin-3(2 <i>H</i>)-one	S7-S8
(14)		
(1S,6R,7aR,Z)-1,6-dihydroxy-2-(4-hydroxybenzy	lidene)tetrahydro-1H-	S 8
pyrrolizin-3(2 <i>H</i>)-one (15)		
(1S,6R,7aR,Z)-1,6-dihydroxy-2-(4-nitrobenzylide	ene)tetrahydro-1 <i>H</i> -pyrrolizin-	S8-S9
3(2 <i>H</i>)-ona (16)		
(1 <i>S</i> ,2 <i>S</i> ,6 <i>R</i> ,7a <i>R</i>)-2-benzyl-1,6-dihydroxytetrahydr	o-1 <i>H</i> -pyrrolizin-3(2 <i>H</i>)-one (18)	S 9
(1S,2S,6R,7aR)-1,6-dihydroxy-2-(4-hydroxybenz	zyl)tetrahydro-1 <i>H</i> -pyrrolizin-	S 9
3(2 <i>H</i>)-one (20)		
General experimental procedure for the a	amide carbonyl reduction of	S9-S10
pyrrolizidinones 16, 17, 18 and 20		
(1 <i>S</i> ,2 <i>R</i> ,6 <i>R</i> ,7a <i>R</i>)-2-benzylhexahydro-1 <i>H</i> -pyrrolizi	ne-1,6-diol (19)	S10
(1 <i>S</i> ,2 <i>R</i> ,6 <i>R</i> ,7a <i>R</i>)-2-(4-hydroxybenzyl)hexahydro-	1 <i>H</i> -pyrrolizine-1,6-diol (21)	S10
(1S,6R,7aR,Z)-2-benzylidenehexahydro-1H-pyrro	olizine-1,6-diol (22)	S 10

(1S, 6R, 7aR, E)-2-	(4-hydroxybenz	ylidene)hexahydro	o-1 <i>H-</i> pyrrolizine	-1,6-diol (23)	S10-S11
---------------------	----------------	-------------------	---------------------------	-------------------------	---------

References

Table of spectra				
Spectra	Pages			
¹ H- and ¹³ C NMR spectra of <i>cis</i> -4-hydroxy-(<i>D</i>)-prolinal 7.	S12-S13			
¹ H- and ¹³ C NMR spectra of MBH adduct 8 .	S14-S15			
HRMS (ESI) of MBH adduct 8.	S 16			
¹ H-, ¹³ C NMR spectra of pyrrolizidinone 11 .	S17-S18			
HRMS (ESI) of pyrrolizidinone 11 .	S19			
¹ H and ¹³ C NMR spectra of <i>trans</i> -hydroxy-prolinal 9 .	S20-S21			
¹ H and ¹³ C NMR spectrum of MBH adduct 10 .	S22-S23			
HRMS (ESI) of MBH adduct 10.	S24			
¹ H- and ¹³ C NMR (500 MHz, (CD ₃) ₂ CO) spectrum of pyrrolizidinone 12 .	S25-S26			
HRMS (ESI) of pyrrolizidinone 12 .	S27			
nOe spectrum of pyrrolizidinone 12 , irradiation at 1.59 ppm, H-7B.	S28			
nOe spectrum of pyrrolizidinone 12, irradiation at 3.73 ppm, H-5B.	S28			
nOe spectrum of pyrrolizidinone 12 , irradiation at 3.89 ppm, H-7a.	S29			
nOe spectrum of pyrrolizidinone 12, irradiation at 4.53 ppm, H-1).	S29			
nOe spectrum of pyrrolizidinone 12 , irradiation at 4.59 ppm, H-6).	S 30			
¹ H- and ¹³ C NMR spectra of benzylidene-pyrrolizidinone 14	S31-S32			
2-D NOESY spectrum of benzylidene-pyrrolizidine 14.	S33			
HRMS (ESI) of benzylidene-pyrrolizidinone 14.	S34			
¹ H- and ¹³ C NMR spectra of hydroxy-benzylidene-pyrrolizidinone 15 .	S35-S36			
2-D NOESY spectrum of hydroxy-benzylidene-pyrrolizidinone 15.	S37			
HRMS (ESI) of hydroxy-benzylidene-pyrrolizidinone 15.	S38			
¹ H- and ¹³ C NMR spectra of <i>p</i> -nitro-benzylidene-pyrrolizidinone 16 .	S39-S40			
2D-NOESY spectrum of <i>p</i> -nitro-benzylidene-pyrrolizidinone 16 .	S41			
HRMS (ESI) of <i>p</i> -nitro-benzylidene-pyrrolizidinone 16.	S42			
¹ H- and ¹³ C NMR spectra of benzyl-pyrrolizidinone 18 .	S43-S44			

S11

HRMS (ESI) of benzyl-pyrrolizidinone 18.	S45
¹ H- and ¹³ C NMR spectra of hydroxy-benzyl-pyrrolizidinone 20 .	S46-S47
HRMS (ESI) of hydroxy-benzyl-pyrrolizidinone 20.	S48
¹ H- and ¹³ C NMR spectra of benzylidene-pyrrolizidine 22 .	S49-S50
2D-NOESY spectrum of benzylidene-pyrrolizidine 22.	S 51
HRMS (ESI) of benzylidene-pyrrolizidine 22.	S52
¹ H- and ¹³ C NMR spectra of hydroxy-benzylidene-pyrrolizidine 23 .	S53-S54
2D-NOESY spectrum of benzylidene-pyrrolizidine 23.	S55
HRMS (ESI) of hydroxy-benzylidene-pyrrolizidine 23.	S56
¹ H- and ¹³ C NMR spectra of benzyl-pyrrolizidine 19 .	S57-S58
HMRS (ESI) of benzyl-pyrrolizidine 19.	S59
¹ H- and ¹³ C NMR spectra of hydroxy-benzyl-pyrrolizidine 21 .	S60-S61
HRMS (ESI) of hydroxy-benzyl-pyrrolizidine 21.	S62

ATTACHMENT 1

Experimental procedure and spectra	Page
(2R,4R)-2-(ethoxycarbonyl)-4-hydroxypyrrolidinium chloride (I)	S63
(2S,4R)-2-(ethoxycarbonyl)-4-hydroxypyrrolidinium chloride (II)	S 63
(2 <i>S</i> ,4 <i>R</i>)-1- <i>tert</i> -butyl 2-ethyl 4-hydroxypyrrolidine-1,2-dicarboxylate (III)	S63-S64
¹ H- and ¹³ C NMR spectru of ester I .	S65-S66
HRMS (ESI) of ester I.	S 67
¹ H- and ¹³ C NMR (300 MHz, CD ₃ OD) spectrum of ester II .	S68-S69
HRMS (ESI) of ester II.	S 70
¹ H- and ¹³ C NMR spectrum of ester III .	S71-S72
HRMS (ESI) of ester III.	S 73

Experimental procedures

(2R,4R)-*tert*-Butyl 2-formyl-4-hydroxypyrrolidine-1-carboxylate (7): A stirred solution of (2R,4R)-1-*tert*-butyl 2-ethyl 4-methoxypyrrolidine-1,2-dicarboxylate (0.25 g, 0.96 mmol, see attachment I for experimental details) in anhydrous dichloromethane (5 mL), at -84 °C and under argon

atmosphere, was slowly added (during 5 minutes) a toluene solution of DIBAL-H (1.0 mol/L solution, 1.9 ml, 2.89 mmol). The mixture was stirred for 20 min. At the same temperature and the evolution was followed by TLC. The cooling bath was removed and a saturated solution of sodium acetate (5 mL) was added. The reaction medium was poured into a stirred mixture of ethyl ether (50 mL) and saturated ammonium chloride (10 mL). After 2h, the gel formed was filtered over a pad of Celite® and the aqueous filtrate was extracted again with ethyl ether. The organic phases were combined, dried over anhydrous Na₂SO₄ and evaporated. The residue was quickly filtered over a tiny amount of silica gel (Hexane : AcOEt 40:60 to 20:80), to provide aldeyde 7, as colorless oil (0.190 g) in 92 % yield. Hydroxy-aldehyde 7 should be stored at -20 °C or used immediately after be prepared. $[\alpha]_D^{20}$ +45 (c 1.5; MeOH); IR (Film, ν_{max}): 3377, 2974, 2931, 2838, 1728, 1646, 1428, 1370, 1279 cm⁻¹; ¹H NMR (250 MHz, DMSO-d₆, 90 °C) δ 1.42 (9H, s), 1.89 (1H, m), 2.23 (1H, m), 3.31 (1H, dd); 3.42 (1H, dd), 4.04 (1H, m), 4.27 (1H, m), 9.47 (1H, s); ¹³C NMR (62.5 MHz, DMSO-d₆, 90 °C) δ 28.5, 38.1, 55.2, 64.1, 68.7, 79.7, 154.7, 202.8; HRMS (ESI-TOF) Calcd. for $C_{10}H_{18}NO_4$ [M + H]⁺ 216.1236. Found 216.1245. GC conditions: HP chiral, flow 1.5 mL/min; 100 °C; 10 °C/min up to 230 °C; pos run: 230 °C/15 min); $T_R = 15.57 min (2)$; dr = 1:12.

2R,4R)-tert-Butyl4-hydroxy-2-((S)-1-hydroxy-2-
(methoxycarbonyl)allyl)pyrrolidine-1-carboxylate(8):Mixture of hydroxy-aldehyde 7 (0.23 g, 1.069 mmol), DABCO
(0.12 g, 1.069 mmol) and ethyl acrylate (2 mL) was sonicated for

96 h (followed by GC). Then, the excess of methyl acrylate was removed under reduced pressure (**CAUTION**: this operation should be performed under an efficient fume hood). The residue was diluted with dichloromethane (20 mL). The organic phase was washed with brine (3 x 30 mL), dried over anhydrous Na₂SO₄ and evaporated. The crude residue was purified by flash silica gel column chromatography (Hexane : CH₂Cl₂ : AcOEt – 3.0:5.0:3.0) to provide adduct **8** (0.258 g), as a colorless oil, in 80 % yield. $[\alpha]_D^{20}$ -2 (c 1.5; MeOH); IR (Film, ν_{max}): 3387, 2970, 2958, 2933, 2355, 2332, 1715, 1666, 1413, 1368, 1155, 1090; ¹H NMR (250 MHz, DMSO-d₆, 90 °C) δ 1.43 (s, 9H), 1.74 (dt, *J* = 13.9, 4.3 Hz, 1H), 1.92 (m, 1H), 3.10 (dd, *J* = 11.2, 3.9 Hz, 1H), 3.57 (dd, *J* = 11.2, 5.9 Hz, 1H), 3.71 (s, 3H), 4.05 (m, 2H), 4.94 (m, 1H), 5.87 (t, *J* = 1.6 Hz, 1H), 6.17 (d, *J* = 1.3 Hz, 1H); ¹³C NMR (62.5 MHz, DMSO-d₆, 90 °C) δ 27.8, 32.9, 50.8, 54.8, 58.6, 67.4, 68.0, 78.0, 124.0, 142.2, 153.2, 165.6; HRMS (ESI-TOF) Calcd. for C₁₄H₂₄NO₆ [M + H]⁺ 302.1604. Found 302.1681; GC conditions: HP chiral, flow 1.5 mL/min; 100 °C; 10 °C/min up to 230 °C; pos run: 230 °C/15 min); T_R = 22.97 min.

(1S,6R,7aR)-1,6-dihydroxy-2-methylenetetrahydro-1*H*-pyrrolizin-3(2*H*)-one (11): To a stirred solution of Morita-Baylis-Hillman adduct
8 (0.20 g, 0.66 mmol) in toluene (3 mL), at 0 °C, was added concentrated HCl (0.1 mL, 3.31 mmol). The resulting mixture was further stirred for 5-7 min. Then, a 35% solution of NaOH was added

(0.46 mL, 4 mmol) and the reaction was further stirred for 30 min, at room temperature. The medium was neutralized to pH 7 (10% HCl solution) and the solvents were removed under reduced pressure. The crude residue was purified by flash silica gel column chromatography (CH₂Cl₂ : MeOH - 95:05) to give pyrrolizidinone **11** (0.06 g) as a white solid, in 57 % yield. $[\alpha]_D^{20}$ -5 (c 2; EtOH); M.p. 93-94° C; IR (KBr): v 3396, 3205, 2985, 2946, 2883, 1654, 1442 cm⁻¹. ¹H NMR (500 MHz, (CD₃)₂CO) δ 1.67 (m, *J* = 13.4, 6.4, 4.4 Hz, 1H, H-7A), 2.35 (ddd, *J* = 13.4, 7.3, 5.6 Hz, 1H, H-7B), 3.17 (dd, *J* = 12.2, 5.2 Hz, 1H,

OH

HO

H-5B), 3.57 (dd, J = 12.2, 2.9 Hz, 1H, H-5A), 3.62 (ddd, J = 7.3, 6.4, 5.2 Hz, 1H, H-7a), 4.51 (m, J = 5.2, 3.2 Hz, 1H, H-6), 4.61 (m, J = 5.2, 2.9 Hz, 1H, H-1), 5.47 (d, J = 2.6 Hz, 1H, CH₂), 5.82 (d, J = 3.0 Hz, 1H, CH₂); ¹³C NMR (62.5 MHz, (CD₃)₂CO) δ 38.3, 51.6, 65.7, 71.9, 75.7, 114.8, 148.4, 168.3; HRMS (ESI-TOF) Calcd. for C₈H₁₂NO₃ [M + H]⁺ 170.0817. Found 170.0864.

HO N Boc H

(2S,4R)-tert-butyl 2-formyl-4-hydroxypyrrolidine-1-carboxylate (9): A stirred solution of (2S,4R)-1-tert-butyl 2-ethyl 4-methoxypyrrolidine-1,2-dicarboxylate (0.25 g, 0.96 mmol, compound III, for details, see attachment I at the end of this supporting informations) in anhydrous dichloromethane (5 mL), at -84 °C and under argon atmosphere, was

slowly added (during 5 minutes) a toluene solution of DIBAL-H (1.0 mol/L solution, 1.9 ml, 2.89 mmol). The mixture was stirred for 20 min. At the same temperature. The reaction evolution was followed by TLC. The cooling bath was removed and a saturated solution of sodium acetate (5 mL) was added. The reaction medium was poured into a stirred mixture of ethyl ether (50 mL) and saturated ammonium chloride (10 mL). After 2h, the gel formed was filtered over a pad of Celite[®] and the aqueous filtrate was extracted again with ethyl ether. The organic phases were combined, dried over anhydrous Na₂SO₄ and evaporated. The residue was quickly filtered over a tiny amount of silica gel (Hexane : AcOEt 40:60 to 20:80), to provide aldeyde 9, as colorless oil (0.188 g) in 91 % yield. Hydroxy-aldehyde 9 should be stored at -20 °C or used immediately after be prepared. $[\alpha]_D^{20}$ -54.5 (c 1.5; MeOH); IR (Film, v_{max}): 3395, 2978, 2933, 1736, 1669, 1409, 1365, 1160, 1123 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆, 90 °C) δ 1.42 (s, 9H), 1.96 (m, 2H), 3.43 (m, 2H), 4.14 (m, 1H), 4.25 (m, 1H), 9.43 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆, 90 °C) δ 28.5, 35.8, 55.5, 64.0, 68.7, 79.9, 154.2, 200.7; HRMS (ESI-TOF) Calcd. for $C_{10}H_{18}NO_4$ [M + H]⁺ 216.1236. Found 216.1365. GC conditions: HP chiral, flow 1.5 mL/min; 100 °C; 10 °C/min up to 230 °C; pos run: 230 °C/15 min); $T_R = 15.39$ min.

(2*S*,4*R*)-*tert*-butyl 4-hydroxy-2-((*R*)-1-hydroxy-2-(methoxycarbonyl)allyl)pyrrolidine-1-carboxylate (10): A mixture of hydroxy-aldehyde 9 (0.23 g, 1.069 mmol), DABCO (0.12 g, 1.069 mmol) and ethyl acrylate (2 mL) was sonicated for 96 h (followed by GC). Then, the excess of methyl acrylate was

removed under reduced pressure (**CAUTION**: this operation should be performed under an efficient fume hood). The residue was diluted with dichloromethane (20 mL). The organic phase was washed with brine (3 x 30 mL), dried over anhydrous Na₂SO₄ and evaporated. The crude residue was purified by flash silica gel column chromatography (Hexane : CH₂Cl₂ : AcOEt – 3.0:5.0:3.0) to provide adducts **8** (0.206 g, see above for full spectral characterization) and **10** (0.052 g, spectral data below), as a colorless oil, in 70 % yield. $[\alpha]_D^{20}$ -11 (c 1.5; MeOH); IR (Film, v_{max}): 3402, 2879, 2952, 1720, 1670, 1417, 1368, 1273, 1163, 1092 cm⁻¹; ¹H NMR (250 MHz, DMSO-d₆, 90 °C) δ 1.45 (s, 9H), 1.52 (m, 1H), 1.98 (dt, *J* = 12.0, 5.9 Hz, 1H), 3.30 (m, 2H), 3.71 (s, 3H), 4.07 (m, 1H), 4.23 (s, 1H), 4.90 (s, 2H), 5.86 (s, 1H), 6.12 (s, 1H); ¹³C NMR (62.5 MHz, DMSO-d₆, 90 °C) δ 27.8, 33.2, 50.8, 55.0, 58.4, 67.8, 68.1, 77.7, 123.6, 142.0, 153.5, 165.7; HRMS (ESI-TOF) Calcd. for C₁₄H₂₄NO₆ [M + H]⁺ 302.1604. Found 302.1634. GC conditions: HP chiral, flow 1.5 mL/min; 100 °C; 10 °C/min up to 230 °C; pos run: 230 °C/15 min); T_R = 22.09 min.

(1R,6R,7aS)-1,6-dihydroxy-2-methylenetetrahydro-1*H*-pyrrolizin-3(2*H*)-one (12): To a stirred solution of Morita-Baylis-Hillman adduct 10 (0.05 g, 0.165 mmol) in toluene (1 mL), at 0 °C, was added concentrated HCl (300 µL, 1.1 mmol). The resulting mixture was further stirred for 5-7 min. Then, a 35% solution of NaOH was added

(0.16 mL, 1 mmol) and the reaction was further stirred for 30 min, at room temperature. The medium was neutralized to pH 7 (10% HCl solution) and the solvents were removed under reduced pressure. The crude residue was purified by flash silica gel column chromatography (CH₂Cl₂ : MeOH - 95:05) to give pyrrolizidinone **12** (0.012 g) as a white solid, in 55 % yield. $[\alpha]_D^{20}$ -12 (c 2; DMSO); IR (Film, v_{max}): v 3377, 3206, 2985, 2946, 2928, 1657, 1440 cm⁻¹; ¹H NMR (500 MHz, (CD₃)₂CO) δ 1.59 (ddd, *J* = 13.0, 10.8, 5.1 Hz, H-7B), 2.16 (dd, *J* = 13.0, 5.6 Hz, H-7A), 3.03 (d, *J* = 13.1 Hz, H-5A), 3.73 (dd, *J* = 13.0, 5.2 Hz, H-5B), 3.89 (dt, *J* = 10.5, 5.2 Hz, H-7a), 4.53 (dt, *J* = 5.1, 2.7 Hz, H-1), 4.59 (t, *J* = 5.1 Hz, H-6), 5.49 (d, *J* = 2.5 Hz, 1H, CH₂), 5.83 (d, *J* = 2.9 Hz, 1H, CH₂); ¹³C NMR (62.5 MHz, (CD₃)₂CO) δ 39.3, 51.6, 66.6, 72.8, 74.2, 116.9, 148.5, 167.9; HRMS (ESI-TOF) Calcd. for C₈H₁₂NO₃ [M + H]⁺ 170.0817. Found 170.0862.

QН

Н

HO

(1*S*,6*R*,7a*R*,*E*)-2-benzylidene-1,6-dihydroxytetrahydro-1*H*pyrrolizin-3(2*H*)-one (14): To a solution of pyrrolizidinone 11 (0.13 g, 0.77 mmol) in DMF (3 mL) was added iodobenzene (0.184 g, 0.92 mmol, 0.1 mL) de iodobenzeno, triethylamine (0.218 g, 2.16 mmol, 0.3 mL) and Nájera palladacycle 13 (0.5

mol%, 0.004 mmol, 0.003 g). The resulting dark brown solution was stirred for 5h, at 110-120 °C. Then the solvent was removed under reduced pressure and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH – solvent gradient: 0:100 to 97:03), to provide benzylidene-pyrrolizidinone **14** (0.14 g), as a colorless oil, in 76 %. $[\alpha]_D^{20} + 40$ (c 1, MeOH); IR (Film, v_{max}): 3427, 3195, 2940, 2855, 1668, 1634, 1493, 1424,

1268, 1156, 1067 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 1.30 (m, *J* = 13.8, 9.1, 5.4 Hz, 1H, H-7A), 2.38 (m, *J* = 13.8, 6.8 Hz, 1H, H-7B), 3.27 (dd, *J* = 12.3, 6.1 Hz, 1H, H-5B), 3.56 (dd, *J* = 12.3, 3.3 Hz, 1H, H-5A), 3.69 (ddd, *J* = 9.1, 7.4, 1.8 Hz, 1H, H-7a), 4.47 (qd, *J* = 6.1, 3.3 Hz, 1H, H-6), 4.91 (dd, *J* = 1.8 Hz, 1H, H-1), 7.35 (d, *J* = 2.1 Hz, 1H, CH), 7.41 (m, 3H, Ph), 7.79 (m, 2H, Ph); ¹³C NMR (62.5 MHz, (CD₃)₂CO) δ 38.1, 52.1, 68.2, 70.1, 72.0, 129.2, 130.3, 131.3, 134.1, 134.2, 137.1, 172.1; HRMS (ESI-TOF) Calcd. for C₁₄H₁₆NO₃ [M + H]⁺ 246.1130. Found 246.1168.

1*S*,6*R*,7*aR*,*Z*)-1,6-dihydroxy-2-(4hydroxybenzylidene)tetrahydro-1*H*-pyrrolizin-3(2*H*)-one (15): To a solution of pyrrolizidinone 11 (0.25 g, 1.48 mmol) in DMF (3 mL) was added 4-iodophenol (0.49 g, 2.22 mmol), triethylamine (0.746 g, 7.39 mmol, 1.0 mL), Cy₂NMe (0.216 g, 1.11 mmol, 0.24 mL) and Najera palladacycle 13 (0.5 mol%, 0.007 mmol, 0.006 g). The resulting brown solution was stirred

for 8 h, at 110-120 °C. After, the solvent was removed under reduced pressure and the residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH – solvent gradient 0:100 to 97:03) to give hydroxybenzylidene-pyrrolizidinone **15** (0.20 g), as a colorless oil, in 51 % yield. $[\alpha]_D^{20}$ + 32 (c 1, MeOH); IR (Film, ν_{max}): 3333, 2941, 1668, 1633, 1603, 1515, 1432, 1413, 1274, 1175, 1066 cm⁻¹; ¹H NMR (250 MHz, D₂O) δ 1.36 (m, *J* = 13.3, 9.3, 5.7 Hz, 1H, H-7A), 2.50 (dt, *J* = 13.3, 6.8 Hz, 1H, H-7B), 3.39 (dd, *J* = 12.6, 6.3 Hz, 1H, H-5B), 3.55 (dd, *J* = 12.6, 3.4 Hz, 1H, H-5A), 3.78 (t, *J* = 8.3 Hz, 1H, H-7a), 4.60 (m, 1H, H-6), 5.07 (t, *J* = 1.8 Hz, 1H, H-1), 6.89 (d, *J* = 8.7 Hz, 2H, Ar), 7.28 (d, *J* = 1.8 Hz, 1H, CH), 7.59 (d, *J* = 8.7 Hz, 2H, Ar); ¹³C NMR (62,5 MHz, (CD₃)₂CO) 39.9, 53.5, 68.8, 70.7, 73.0, 116.4, 127.4, 132.5, 133.8, 136.3, 159.6, 172.4; HRMS (ESI-TOF) Calcd. for C₁₄H₁₆NO₄ [M + H]⁺ 262.1079. Found 262.1122.

(1*S*,6*R*,7a*R*,*Z*)-1,6-dihidroxi-2-(4-nitrobenzilideno)tetrahidro-1*H*-pirrolizin-3(2*H*)-ona (16):

To a solution of pyrrolizidinone **11** (0.30 mmol, 0.05 g) em DMF (3 mL) were added 4-nitro-iodobenzene (1.5 equiv., 0.44 mmol, 0.11 g), triethylamine (5.0 equiv., 1.48 mmol, 0.2 mL), *N*-Methyl-dicyclohexylamine (Cy₂NMe, 0.75 equiv., 0.22 mmol, 0.04 mL), Nájera's palladacycle I (**13**, 0.5 mol%, 0.002 mmol, 0.001 g). The resulting solution was stirred at 110-120 °C for 8 hs. After that, the solvent was removed

under reduced pressure and the residue was purified by flash silica gel column chromatography (230-400 mesh; CH₂Cl₂ : MeOH - 0:100 to 95:05) to afford 0.07 of benzylidene-pyrrolizididinone **16**, as a colorless oil, in 83% yield. $[\alpha]_D^{20} + 28^\circ$ (c 2, MeOH); IR (Film, ν_{max}): 3308, 2974, 2924, 2864, 1699, 1671, 1644, 1596, 1523, 1513, 1435, 1381, 1346, 1314, 1264, 1244, 1220, 1202, 1133, 1104, 1075, 1055 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 1.49 (ddd, J = 13.2, 8.3, 5.1 Hz, 1H, H-7A); 2.49 (ddd, J = 13.3, 7.4, 6.2 Hz, 1H, H-7B); 3.38 (dd, J = 12.4, 5.8 Hz, 1H, H-5B); 3.68 (dd, J = 12.4, 3.0 Hz, 1H, H-5A); 3.80 (td, J = 8.1, 2.4 Hz, 1H, H-7a); 4.56 (qd, J = 5.8, 3.3 Hz 1H, H-6); 5.01 (t, J = 2.4 Hz, 1H, H-1); 7.45 (d, J = 2.3 Hz, 1H, CH); 8.01 (d, J = 8.8 Hz, 2H, Ar); 8.26 (d, J = 8.9 Hz, 2H, Ar); ¹³C NMRN (62.5 MHz, CD₃CN) 39.2; 53.3; 68.4; 71.5; 72.5; 124.3;

132.4; 133.2; 140.5; 141.8; 148.6; 170.9; HRMS (ESI-TOF) m/z Calc. for C₁₄H₁₅N₂O₅ [M + H]⁺: 291.0981. Found 291.0989.

(1S,2S,6R,7aR)-2-benzyl-1,6-dihydroxytetrahydro-1*H*-pyrrolizin-3(2*H*)-one (18): In a Parr[®] hydrogenation reactor was added a methanolic solution (5 mL) of pyrrolizidinone 14 (0.06 g, 0.24 mmol), followed by the addition of 10% Pd/C catalyst (20 mol%, 0.012 g). The reaction was stirred under a hydrogen pressure of 200 psi for 25 h, at room temperature. After that, the

medium was filtered over a pad of Celite®. The solid was washed with methanol and the combined organic phases were evaporated. The residue was purified by flash silica gel column chromatography (CH₂Cl₂:MeOH – solvent gradient: 0:100 to 97:03) to afford reduced benzyl-pyrrolizidinone **18** (0.06 g), as a white solid, in 97 %. $[\alpha]_D^{20}$ + 51 (c 1, MeOH); M. p. 135-136° C; IR (KBr, v_{max}): 3404, 3232, 2987, 2936, 2897, 2871, 1670, 1447, 1416, 1375, 1300, 1263, 1222,1175, 1121 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 1.55 (dddd, *J* = 13.4, 5.3, 4.0, 1.0 Hz, 1H), 2.25 (ddd, *J* = 13.4, 8.0, 5.4 Hz, 1H), 2.93 (m, 2H), 3.02 (m, *J* = 7.5, 1.8 Hz, 1H), 3.08 (ddd, *J* = 12.0, 4.9, 1.3 Hz, 1H), 3.52 (dd, *J* = 12.0, 2.4 Hz, 1H), 3.64 (m, *J* = 8.0, 7.0, 5.3 Hz, 1H), 3.88 (dd, *J* = 9.4, 7.0 Hz, 1H), 4.41 (m, *J* = 5.1, 4.0, 3.0 Hz, 1H), 7.15 (m, 1H), 7.23 (m, 2H), 7.29 (m, 2H); ¹³C NMR (62.5 MHz, (CD₃)₂CO) δ 34.4, 38.6, 52.3, 54.0, 65.6, 72.4, 80.6, 126.5, 128.7, 130.3, 141.0, 175.6; HRMS (ESI-TOF) Calcd. for C₁₄H₁₈NO₃ [M + H]⁺ 248.1287. Found 248.1286.

(1*S*,2*S*,6*R*,7*aR*)-1,6-dihydroxy-2-(4hydroxybenzyl)tetrahydro-1*H*-pyrrolizin-3(2*H*)-one (20): The same experimental procedure described previously was used to obtain pyrrolizidinone 20 (0.059 g), as a colorless oil, in 95 % yield. Reaction time: 48 h; $[\alpha]_D^{20}$ 185 (c 1, MeOH); IR (Film, v_{max}): 3351, 3031, 2923, 1669, 1515, 1443, 1366, 1237,

1100 cm⁻¹; ¹H NMR (400 MHz, (CD₃)₂CO) δ 1.44 (m, 1H, H-7A), 2.22 (ddd, *J* = 13.3, 7.0, 5.6 Hz, 1H, H-7B), 2.73 (td, *J* = 31.8, 7.3, 3.6 Hz, 1H, CH₂), 2.84 (m, *J* = 31.8, 13.3, 8.0 Hz, CH₂, *J* = 8.6, 7.0, 4.4 Hz, H-2, 2H), 3.06 (m, *J* = 12.1, 5.2 Hz, 1H, H-5B), 3.36 (dd, *J* = 12.1, 3.1 Hz, 1H, H-5A), 3.60 (q, *J*_{1,7a=7a,7A=7a,7B} = 7.0, Hz, 1H, H-7a), 3.84 (dd, *J*_{1,2} = 8.9, *J*_{1,7a} = 7.0 Hz, 1H, H-1), 4.40 (m, *J* = 5.1, 9.0 Hz, 1H, H-6), 6.65 (m, *J* = 5.5 Hz, 2H, Ph), 7.03 (m, *J* = 5.5 Hz, 2H, Ph); ¹³C NMR (62.5 MHz, (CD₃)₂CO) δ 32.5, 37.6, 50.8, 53.8, 65.0, 72.0, 78.7, 115.5, 130.5, 131.0, 155.1, 175.9; HRMS (ESI-TOF) Calcd. for C₁₄H₁₈NO₄ [M + H]⁺ 264.1236. Found 264.1318.

General experimental procedure for the amide carbonyl reduction of pyrrolizidinones 14, 15, 18, 20:

For example, to a solution of pyrrolizidinone **18** (0.063 g, 0.25 mmol) in anhydrous THF (5 mL) was added a freshly prepared solution of AlH₃ in THF (1 mol/L, 10 equiv., 2.5 mmol, 2.3 mL). <u>The AlH₃ solution was prepared as follow</u>: A solution of LiAlH₄ (2,4 mol/L, 2.5 mL, THF) was added, at 0° C, to a solution of AlCl₃ (2 mmol, 0.27 g) in anydrous THF (5 mL). The resulting solution was stirred for 40 min). After addition, the reaction medium was stirred for 30-60 min, at room temperature. Then, the medium was quenched with a saturated solution of Na₂SO₄ and filtered over a pad of Celite® and the solvents were removed under reduced pressure. The residue was purified by neutral alumina column

chromatography (eluting system CH_2Cl_2 :MeOH 9,0:1,0) for compounds **18** and **20**, and eluting system CH_2Cl_2 :MeOH:NH₄OH (30 %) 7,8:2,0:0,2) for compounds **16** e **17**, to provide the corresponding pyrrolizidines **19** in 80% yield, **21** in 53% yield, **22** in 50% yield and **23** in 21% yield.

(1*S*,2*R*,6*R*,7*aR*)-2-benzylhexahydro-1*H*-pyrrolizine-1,6-diol (19): a colorless oil; $[\alpha]_D^{20}$ - 197 (c 1, MeOH); IR (Film, v_{max}): 3325, 2926, 2899, 1447, 1383, 1296, 1114, 1073 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 1.82 (dt, *J* = 13.6, 4.3 Hz, 1H, H-7A), 2.16 (ddd, *J* = 13.6, 8.3, 5.4 Hz, 1H, H-7B), 2.31 (m, 1H, H-2), 2.59

(m, J = 14.0, 9.8 Hz (CH₂), J = 11.8, 4.0 Hz (H-5B), J = 11.0 Hz (H-3) 3H), 2.92 (dd, J = 11.8, 4.5 Hz, 1H, H-5A), 3.03 (m, J = 14.0, 4.1 Hz (CH₂), J = 11.0 Hz (H-3), 2H), 3.24 (td, $J_{1,7a} = 7.7$, 4.8 Hz, 1H, H-7a), 3.88 (dd, $J_{1,2} = 9.5$, $J_{1,7a} = 7.7$ Hz, 1H, H-1), 4.39 (quin, J = 4.5 Hz, 1H, H-6), 7.26 (t, J = 6.9 Hz, 3H, Ph), 7.35 (t, J = 7.4 Hz, 2H, Ph); ¹³C(100 MHz, D₂O) δ 35.7, 37.1, 48.6, 58.0, 60.3, 68.6, 73.1, 80.8, 126.3, 128.6, 128.9, 140.2; HRMS (ESI-TOF) calcd for C₁₄H₂₀NO₂ [M + H]⁺ 234.1494, found 234.1491.

(1*S*,2*R*,6*R*,7*aR*)-2-(4-hydroxybenzyl)hexahydro-1*H*pyrrolizine-1,6-diol (21): a colorless oil; $[\alpha]_D^{20}$ - 62 (c 1, MeOH); IR (Film, v_{max}): 3333, 2927, 2594, 1613, 1596, 1514, 1444, 1365, 1247, 1117, 1088 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 1.99 (d, *J* = 13.2, 4.0 Hz, 1H, H-7A) 2.22 (ddd, *J* = 13.9, 8.9, 5.0 Hz, 1H, H-7B), 2.33 (m, 1H, H-2), 2.53 (dd, *J* = 13.9, 8.8

Hz, 1H, CH₂), 2.84 (dd, J = 12.1, 11.0 Hz, 1H, H-3), 2.91 (m, J = 13.9, 4.0 Hz (CH₂), J = 12.4, 3.8 Hz (H-5A), 2H), 3.16 (dd, J = 12.4, 4.1 Hz, 1H, H-5B), 3.38 (dd, J = 10.6, 6.9 Hz, 1H, H-3), 3.60 (td, J = 8.5, 3.4 Hz, 1H, H-7a), 3.98 (dd, $J_{1,2} = 9.6$, $J_{1,7a} = 8.0$ Hz, 1H, H-1), 4.49 (m, 1H, H-6), 6.78 (m, J = 8.5 Hz, 2H, Ar), 7.06 (d, J = 8.5 Hz, 2H, Ar); ¹³C(100 MHz, D₂O) δ 33.8, 36.5, 47.8, 58.3, 60.3, 69.9, 72.4, 79.4, 115.8, 130.1, 130.3, 155.2. HRMS (ESI-TOF) Calcd. for C₁₄H₂₀NO₃ [M + H]⁺ 250.1443. Found 250.1461.

(1*S*,6*R*,7*aR*,*Z*)-2-benzylidenehexahydro-1*H*-pyrrolizine-1,6diol (22): a colorless oil; $[\alpha]_D^{20}$ -73 (c 1, MeOH); IR (Film, v_{max}): 3406, 2925, 2855, 1646, 1495, 1448 1108, 1019 cm⁻¹; ¹H NMR (400 MHz, (CD₃)₂CO) δ 1.58 (m, *J* = 13.9, 8.4, 6.0 Hz, 1H, H-7A), 2.55 (m, *J* = 13.9, 8.4, 6.5 Hz, 1H, H-7B), 3.02 (dd, *J* =

11.9, 5.2 Hz, 1H, H-5B), 3.71 (dd, J = 11.9, 5.8 Hz, 1H, H-5A), 4.03 (d, J = 15.3 Hz, 1H, H-3), 4.22 (t, $J_{7a,7A=7a,7B} = 8.4$ Hz, 1H, H-7a), 4.50 (quin, J = 5.8 Hz, 1H, H-6), 4.57 (d, J = 15.3 Hz, 1H, H-3), 4.70 (s, 1H, H-1), 6.79 (s, 1H, CH), 7.29 (t, J = 7.3 Hz, 1H, Ph), 7.37 (t, J = 7.5 Hz, 2H, Ph), 7.60 (d, J = 7.4 Hz, 2H, Ph); ¹³C NMR (62.5 MHz, (CD₃)₂CO) δ 39.2, 60.0, 61.6, 71.6, 74.1, 75.8, 127.0, 127.7, 129.0, 129.6, 137.8, 142.8; HRMS (ESI-TOF) Calcd. for C₁₄H₁₈NO₂ [M + H]⁺ 232.1338. Found 232.1380.

(1*S*,6*R*,7a*R*,*E*)-2-(4-hydroxybenzylidene)hexahydro-1*H*pyrrolizine-1,6-diol (23): a colorless oil; $[\alpha]_D^{20}$ - 48 (c 0.7, MeOH); IR (Film, v_{max}): 3431, 2923, 2852, 1628, 1603, 1509, 1416, 1384, 1364, 1268, 1242 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 1.77 (m, J = 13.6, 11.5, 5.6 Hz, 1H, H-7A), 2.46 (m, J = 13.9, 7.3 Hz, 1H, H-7B), 2.74 (dd, J = 11.5, 5.1 Hz, 1H, H-5B), 3.30 (dd, J = 11.5, 5.6 Hz, 1H, H-5A), 3.43 (m, J = 11.5, 7.0, 4.3 Hz, 1H, H-7a), 3.85 (d, J = 16.0, 1.5 Hz, 1H, H-3), 4.17 (d, J = 16.0 Hz, 1H, H-3), 4.47 (m, J = 5.6 Hz 1H, H-6), 4.70 (d, J = 4.3 Hz, 1H, H-1), 6.67 (s, 1H, CH), 6.83 (d, J = 8.5 Hz, 2H, Ar), 7.18 (d, J = 8.5 Hz, 2H, Ar); ¹³C NMR (125 MHz, D₂O) δ 36.9, 55.3, 61.0, 69.5, 71.6, 79.5, 116.9, 126.1, 126.8, 130.6, 137.0, 159.5; HRMS (ESI-TOF) Calcd. for C₁₄H₁₈NO₃ [M + H]⁺ 248.1287. Found 248.1289.

References:

1. Kimura, R.; Nagano, T.; Kinoshita, H. Bull. Chem. Soc. Jpn 2002, 75, 2517-2525.

¹H NMR (250 MHz, DMSO-d₆, 90 °C) spectrum of *cis*-4-hydroxy-(*D*)-prolinal **7**.

¹³C NMR (62.5 MHz, DMSO-d₆, 90 °C) spectrum of *cis*-4-hydroxy-(*D*)-prolinaldehyde 7.

¹H NMR (250 MHz, DMSO-d₆, 90 °C) spectrum of MBH adduct **8**.

¹³C NMR (62.5 MHz, DMSO-d₆, 90 °C) spectrum of MBH adduct **8**.

HRMS (ESI) of MBH adduct 8.

¹H NMR (500 MHz, (CD₃)₂CO) spectrum of pyrrolizidinone **11**.

 13 C NMR (62.5 MHz, (CD₃)₂CO) spectrum of pyrrolizidinone **11**.

HRMS (ESI) of pyrrolizidinone 11.

¹H NMR (300 MHz, DMSO-d₆, 90 °C) spectrum of *trans*-hydroxy-prolinal **9**.

¹³C NMR (75 MHz, DMSO-d₆, 90 °C) spectrum of *trans*-hydroxy-prolinal **9**.

¹H NMR (250 MHz, DMSO-d₆, 90 °C) spectrum of MBH adduct **10**.

 13 C NMR (62.5 MHz, DMSO-d₆, 90 °C) spectrum of MBH adduct **10**.

HRMS (ESI) of MBH adduct 10.

S24

¹H NMR (500 MHz, (CD₃)₂CO) spectrum of pyrrolizidinone **12**.

 13 C NMR (62.5 MHz, (CD₃)₂CO) spectrum of pyrrolizidinone **12**.

¹H NMR (400 MHz, CD₃CN) spectrum of benzylidene-pyrrolizidinone **14**.

¹³C NMR [62.5 MHz, (CD₃)₂CO)] spectrum of benzylidene-pyrrolizidinone **14**.

2-D NOESY (400 MHz, CD₃CN) spectrum of benzylidene-pyrrolizidine 14.

S34

¹H NMR (250 MHz, D₂O) spectrum of hydroxy-benzylidene-pyrrolizidinone **15**.

¹³C NMR [62.5 MHz, (CD₃)₂CO)] spectrum of hydroxy-benzylidene-pyrrolizidinone **15**.

S37

HRMS (ESI) of hydroxy-benzylidene-pyrrolizidinone 15.

¹H NMR (400 MHz, CD₃OD) spectrum of *p*-nitro-benzylidene-pyrrolizidinone **16**.

 13 C NMR (62.5 MHz, CD₃CN) spectrum of *p*-nitro-benzylidene-pyrrolizidinone **16**.

S41

HRMS (ESI) of *p*-nitro-benzylidene-pyrrolizidinone **16**.

¹H NMR (500 MHz, CD₃OD) spectrum of benzyl-pyrrolizidinone **18**.

¹³C NMR [62.5 MHz, (CD₃)₂CO)] spectrum of benzyl-pyrrolizidinone **18**.

¹H NMR [400 MHz, (CD₃)₂CO] spectrum of hydroxy-benzyl-pyrrolizidinone **20**.

¹³C NMR [62.5 MHz, (CD₃)₂CO)] spectrum of hydroxy-benzyl-pyrrolizidinone **20**.

HRMS (ESI) of hydroxy-benzyl-pyrrolizidinone 20.

¹H NMR [400 MHz, (CD₃)₂CO)] spectrum of benzylidene-pyrrolizidine **22**.

¹³C NMR [(62.5 MHz, (CD₃)₂CO)] spectrum of benzylidene-pyrrolizidine **22**.

HRMS (ESI) of benzylidene-pyrrolizidine 22.

¹H NMR (400 MHz, D₂O) spectrum of hydroxy-benzylidene-pyrrolizidine **23**.

 ^{13}C NMR (125 MHz, D₂O) spectrum of hydroxy-benzylidene-pyrrolizidine **23**.

S55

HRMS (ESI) of hydroxy-benzylidene-pyrrolizidine 23.

¹H NMR (400 MHz, D₂O) spectrum of benzyl-pyrrolizidine **19**.

 13 C NMR (100 MHz, D₂O) spectrum of benzyl-pyrrolizidine **19**.

HMRS (ESI) of benzyl-pyrrolizidine 19.

 ^{13}C NMR (100 MHz, D₂O) spectrum of hydroxy-benzyl-pyrrolizidine **21**.

HRMS (ESI) of hydroxy-benzyl-pyrrolizidine 21.

ATTACHMENT 1

NOTE: In this part of our supporting information we have included the experimental procedure for the preparation the intermediates used for the synthesis of our asymmetric aldehydes. They appear here because these compounds are not cited in the manuscript. In order to differentiate these compounds from those described in our manuscript they were numbered using roman numbers.

^{CO}₂Et (2*R*,4*R*)-2-(ethoxycarbonyl)-4-hydroxypyrrolidinium chloride (I): To a solution of commercial *cis*-4-hydroxy-D-proline or *trans*-4hydroxy-L-proline (0.50 g, 3.81 mmol) in ethanol (10 mL), at 0 °C, was slowly dropped thionyl chloride (0.31 mL, 0.513 g, 4.31 mmol). After that, the cooling bath was removed and the resulting solution was

refluxed for 12h and cooled to room temperature. The resulting crystals was filtered, washed with ethyl ether and dried under reduced pressure. The filtrate was diluted with ethyl ether to obtain crystals that were filtered, washed with ethyl ether and dried. The crystals were combined to afford 0.73 g of the corresponding ester in 98 % yield. $[\alpha]_D^{20}$ +18 (c 2; H₂O); Lit.¹ $[\alpha]_D^{20}$ +20.37 (c 2; H₂O); M. p. 143° C; IR (KBr, ν_{max}): v 3303, 2975, 2940, 1727, 1581, 1380, 1247, 1094 cm⁻¹. ¹H NMR (250 MHz, D₂O) δ 1.29 (3H, t), 2.48 (2H, m), 3.46 (2H, m), 4.31 (2H, q), 4.64 (1H, m); ¹³C NMR (62,5 MHz, D₂O) δ 12.8, 36.6, 53.1, 58.2, 63.6, 68.6, 170.0. HRMS (ESI-TOF) Calcd. for C₇H₁₄NO₃ [M + H]⁺ 160.0974. Found 160.0927.

HO ... CO2

 CO_2Et (2S,4R)-1-tert-butyl 2-ethyl 4-hydroxypyrrolidine-1,2-dicarboxylate (III): To a solution of the ester II (0.3 g, 1.53 mmol) in methanol (15 mL) was added di-terc-butyldicarbonate (Boc₂O, 0.4 g, 1.84 mmol) and NaHCO₃ (0.386 g, 4.60 mmol). The resulting suspension was immersed

in a ultrasound bath for 4 h. The development of the reaction was followed by the CO₂ releasing. After that, the solvent was removed and the residue was dissolved in cooled distilled water (10 mL) and the solution was acidified with a saturated solution of KHSO₄ until pH 2 and extracted with ethyl acetate. The organic phase was separated, dried over anhydrous Na₂SO₄ and removed under reduced pressure to give 0.42 g of **III**, as a colorless oil, in 91 % yield $[\alpha]_D^{20}$ -69.1 (c 2; EtOH); Lit.³ $[\alpha]_D^{20}$ -67.8 (c 2; EtOH); IR (film, ν_{max}): 3436, 2976, 2933, 1744, 1703, 1679, 1401, 1192, 1155 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆, 90 °C) δ 1.21 (t, 3H), 1.38 (s, 9H), 2.06 (m, 2H), 3.33 (m, 2H), 4.12 (q, 2H), 4.26 (m, 2H); ¹³C NMR (75 MHz, DMSO-d₆, 90 °C) δ 13.5, 27.6, 38.2, 54.1, 57.4, 59.8, 67.7, 78.5,

152.9, 172.0; HRMS (ESI-TOF) Calcd. for $C_{12}H_{22}NO_5 [M + H]^+$ 260.1498. Found 260.1473.

References:

1. Di Cesare, P.; Jacquet, J. –P.; Essiz, M.; Remuzon, P.; Bouzard, D.; Weber, A. EP 87-114686, 1987.10.08. (*CAS* **1987**, *112*:118793).

2. Merck KGaA – Chemicals – ChemDAT. Product info.: *L*-4-Hydroxyproline ethyl ester hydrochloride: 824456. http://www.merck-chemicals.com/.

3. Baker, G.L.; Fritschel, S.J.; Stille, J.R.; Stille, J.K. J. Org. Chem. 1981, 46, 2954-2960.

¹H NMR (250 MHz, D₂O) spectrum of ester **I**.

¹³C NMR (62.5 MHz, D₂O) spectrum of ester **I**.

¹H NMR (300 MHz, CD₃OD) spectrum of ester **II**.

¹³C NMR (75 MHz, CD₃OD) spectrum of ester **II**.

HRMS (ESI) of ester II.

¹H NMR (300 MHz, DMSO-d₆, 90 °C) spectrum of ester III.

¹³C NMR (75 MHz, DMSO-d₆, 90 °C) spectrum of ester III.

S72

HRMS (ESI) of ester III.