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Abstract: An efficient synthetic route to the glycobiosyl phosphatidylinositol is 
developed by use of a H-phosphonate intermediate. 

Aiming at a total synthesis of a glycophosphatidylinosito12 (GPI) anchor 1 of the 

parasitic protozoan Trypanosoma brucei, we recently reported a stereocontrolled 

synthesis 3 of glycoheptaosyl core 2 of the GPI anchor 1. As part of the project we 

now describe an efficient synthesis of glycobiosyl phosphatidylinositol 3, a part 

structure of the GPI anchor 1, that is proposed to play role as a second messenger for 

insulin action4 as well as a signalling molecule in Qa-2 mediated T-cell activation5. 

R’-+6) 
1 

a-D-Manp-(l+4)-a-D-GlcpNHT(b6) 

J 
7 

f&3) 1 D-myo-lnositol 

R3+1) -I 

R’ R2 R’ 

I. 

2. 

3 _’ 

R 
R 

NH~(CH~O~O-+6)-c-D-Manp(l~2)+a-D-Manp-(l+ a-D-Gnlp(l+6)-a-LLGalg(l+ 

OH 

a-LLGslp(l+6)-a-LB-Gelp-(l+ H 

H 

Scheme 1 

H 

Our synthetic strategy for the target molecule 3 depends on an efficient 

introduction of phosphodiester function at O-l of lD-myo-inositol. This could be 
achieved successfully, after intensive examination of the available synthetic 
technologies 6, by employing H-phosphonate approach7 that was originally 
developed* for the oligonucleotide synthesis. 
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First, we applied H-phosphonate approach to the synthesis of 

phosphatidylinositol 8. A properly protected ID-myo-inOSit0) 43 was coupled in the 

presence of pivaloyl chloride in pyridine with 1,2-di-0-myristoyl-3-O-H-phosphonyl- 

sn-glycerol 59 that was prepared according to the method of Lindh and Stawinsk?, to 

give an 80% yield of a diastereomeric mixture of H-phosphonate diester 69. 

Oxidation of 6 with 12 in 5O:l pyridine-water gave 7 in 71% yield as a 

triethylammonium salt, which was subsequently hydrogenolyzed in the presence of 

20% Pd(OH)z-C to afford quantitatively phosphatidylinositol 8. 

into 8 was achieved in 57% overall yield in a similar efficiency 

different approacheslo. 
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To execute the synthesis of glycobiosylphosphatidylinositol 3, was chosen as 
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the starting material a suitably protected glycobiosylinositol 9 that was already 

reportedj. 

Deacetylation of 9 with NaOMe in 2:l MeOH-THF afforded 109 which was 

benzylated (NaH, BnBr in THF) to give a 95% yield of 119. Treatment11 of 11 with 

(NH&Ce(N03)6 in 1O:l CHsCN-H20 gave the alcohol 129 in 79% yield. Coupling of 12 

with H-phosphonate 5 in the presence of pivaloyl chloride in pyridine afforded a 79% 

yield of the desired H-phosphonate diester 139 as a diastereomeric mixture, that was 

then oxidized with I2 to afford an 89% yield of the phosphate diester 149. It is to be 

noted that in our hands all the other phosphorylation methodsto by use of either 

phosphodiester or phosphite chemistry for the conversion of 12 into 14 afforded 
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significantly inferior results. Finally hydrogenolysis of 14 in the presence of 20% 

Pd(OH)z-C in 6:4:3 CHCls-H20-MeOH and purification of the product by Sephadex LH- 

20 in 9:7:2 CHCls-MeOH-Hz0 gave 39 in 51% yield. 
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In summary, an efficient conversion of a key glycobiosylinositol derivative 9 

into 3 was achieved in 6 steps in 27% overall yield. Facile and practical synthesis of 

glycobiosyl phosphatidylinositol 3 described above should be of significant 

importance from the view point of elucidation of molecular mechanisms for the 

possible biological function&5 proposed for GPI anchors. 
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